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A formal methods approach to interpretable
reinforcement learning for robotic planning
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Growing interest in reinforcement learning approaches to robotic planning and control raises concerns of pre-
dictability and safety of robot behaviors realized solely through learned control policies. In addition, formally
defining reward functions for complex tasks is challenging, and faulty rewards are prone to exploitation by the
learning agent. Here, we propose a formal methods approach to reinforcement learning that (i) provides a for-
mal specification language that integrates high-level, rich, task specifications with a priori, domain-specific
knowledge; (ii) makes the reward generation process easily interpretable; (iii) guides the policy generation pro-
cess according to the specification; and (iv) guarantees the satisfaction of the (critical) safety component of the
specification. The main ingredients of our computational framework are a predicate temporal logic specifically
tailored for robotic tasks and an automaton-guided, safe reinforcement learning algorithm based on control
barrier functions. Although the proposed framework is quite general, we motivate it and illustrate it experimen-
tally for a robotic cooking task, in which two manipulators worked together to make hot dogs.

INTRODUCTION
Robotic systems that are capable of learning from experience have re-
cently becomemore commonplace. These systems have demonstrated
success in learning difficult control tasks. However, as tasks become
more complex and the number of options to reason about becomes
greater, there is an increasing need to be able to specify the desired
behavior in a structured and interpretable fashion, guarantee system
safety, and conveniently integrate task-specific knowledge with more
general knowledge about the world. This paper addresses these prob-
lems specifically in the case of reinforcement learning (RL) by using
techniques from formal methods.

Experience and prior knowledge shape the way humans make
decisions when asked to perform complex tasks. Conversely, robots
have had difficulty incorporating a rich set of prior knowledge when
solving complex planning and control problems. In RL, the reward
offers an avenue for incorporating prior knowledge. However, incor-
porating such knowledge is not always straightforward using stan-
dard reward engineering techniques. This work presents a formal
specification language that can combine a base of general knowledge
with task specifications to generate richer task descriptions that are
interpretable. For example, to make a hot dog at the task level, one
needs to grab a sausage, grill it, place the cooked sausage in a bun,
apply ketchup, and serve the assembled hot dog. Prior knowledge
about the context of the task, e.g., sausages can be damaged if squeezed
too hard, should also be taken into account.

Interpretability in RL rewards—easily understanding what the
reward function represents and knowing how to improve it—is a
key component in understanding the behavior of an RL agent. This
property is often missing in reward engineering techniques, which
makes it difficult to understand exactly what the implications of the
reward function are when tasks become complex. Interpretability of
the reward allows for better value alignment between human intent
and system objectives, leading to a lower likelihood of reward hacking
(1) by the system. The formal specification language presented in this

work has the added benefit of being easily interpretable from the
beginning because the language is very similar to plain English.

Safe RL, guaranteeing that undesirable behaviors do not occur
(i.e., collisions with obstacles), is a critical concern when learning
and deployment of robotic systems happen in the real world. Safety
for these systems not only presents legal challenges to their wide
adoption but also raises risks to hardware and users. By using tech-
niques from formal methods and control theory, we provide two
main components to ensure safety in the RL agent behaviors. First,
the formal specification language allows for explicit definition of
undesirable behaviors (e.g., always avoid collisions). Second, control
barrier functions (CBFs) are used to enforce the satisfaction of the
safety specifications.

Related work
Value alignment and policy verification are two important use cases
of interpretability in RL. Value alignment (2) focuses on ensuring
that the objectives given to the learning systems align with human’s
intentions. This is important because RL agents are capable of ex-
ploiting faulty objectives to gain a high return. In policy verification,
the goal is to understand how and why the learned policy makes
certain decisions. This is important for ensuring safe deployment of
RL agents.

In value alignment, the objective of a task can be expressed in a
reward-based or reward-free fashion. Reward shaping (3) has been a
popular approach to create dense reward functions. On one hand, for
complex tasks, shaping a dense reward function that aligns well with
the true task objective can be a challenge. On the other hand, learning
fromdemonstrations allows agents to learn without an explicit reward
function. Imitation learning and behavior cloning (BC) are efforts in
this direction. However, learning solely from demonstrations faces
challenges, such as distribution shift (accumulative error resulting
fromdeviation of state and action distributions fromdemonstrations).
Inverse RL (IRL) aims to alleviate this problem by combining demon-
strations with exploration. In IRL, demonstrations are used to learn a
reward function that is then fed to an RL agent. One problemwith IRL
in practice is that the inaccuracy of the learned reward function can
result in compound error in the learned policy. In addition, the in-
comprehensibility of the parameterized reward function makes it
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difficult to improve using prior knowledge. More recent efforts in
value alignment include iterated amplification (4) and cooperative
IRL (5), where the agent and human work together to learn the
desired policy (possibly in an iterative process). The authors of (6)
provided an up-to-date overview of recent progress in value align-
ment. Comparedwith these efforts, themethod presented here focuses
on a simpler, more structured, and deterministic way of specifying
complex behaviors.

In policy verification, the authors of (7) used probabilistic model
checking to verify policies against constraints specified in probabilis-
tic temporal logic. In their approach, the environment was modeled
as an abstract Markov decision process (MDP). The authors of (8)
proposed a method to learn and verify decision tree policies. In the
domain of deep RL, policy verification largely falls into the category of
neural network verification. The authors of (9) provided an up-to-
date survey of this area. Policy verification is commonly used after
training as a means to interpret the learned policy. In practice, policy
verification can also be used during training to ensure that training
stops only when a policy with desirable properties is obtained. How-
ever, this can be computationally demanding for policies with a large
number of parameters, and state-of-the-art methods in this area can
only verify simple properties.

In this work, we use temporal logic to express the task objective and
use its corresponding automaton to guide learning. Previous work on
using temporal logic in an RL setting includes (10) and (11), which
combined temporal logic and automaton to solve the non-Markovian
reward decision process. In (12) and (13), the authors took advantage
of the robustness degree of signal temporal logic (STL) to motivate
the learning process. The authors of (14) incorporated maximum-
likelihood IRLwith task constraints in the form of co-safe linear tem-
poral logic. In (15), the authors used a finite-state automaton (FSA)
as a safety measure that supervises the actions issued by the agent. The
authors of (16) developed a reward function based on linear temporal
logic and deterministic Rabin automaton and converted the RL prob-
lem into a nonconvex max-min optimization. Our effort mainly
focused on establishing a safe and learnable planning system that
extracts necessary context from the TL-based task specification. In
(17), the authors introduced a variant of linear temporal logic (ge-
ometric linear temporal logic) that could be converted to learnable
specification MDPs. The authors of (18) presented a technique that
compiles w-regular properties into a limit-deterministic Buchi autom-
aton, which resulted in a w-regular reward that the RL agents can learn
from. In (19), the authors introduced the rewardmachine, which closely
reassembles an automaton, and demonstrated its use on RL bench-
marks. In (20), the logic-based value iteration network that incorporates
the FSA into value iteration using demonstrations was proposed. More
distant work on learning and planning under non-Markovian rewards
were presented in (21), (22), and (23).

We did not formally verify the learned policy but instead pre-
vented violation of the task by specifying undesirable properties as
temporal logic formulas and enforced them using CBFs (24) while
minimizing interference with the decisions made by the RL agent.
The CBFs effectively added a “shield” to the learned policy with
strong safety guarantees and can be implemented with high effi-
ciency and scalability. Combining CBF with RL has been looked
at by the authors of (25) and (26), whereas the authors of (27) made
an effort to integrate temporal logic with CBF. Here, we present a nov-
el framework for combining all three elements in continuous state and
action spaces.

In comparison to many previous work on combining temporal
logic/automaton with RL in discrete environments, we put much em-
phasis on demonstrating the effectiveness of this combination in high-
dimensional robotic domains. Specifically, the contributions of our
method include (i) designing of an automaton-guided dense reward
over continuous state and action spaces, (ii) using the automaton to
simultaneously provide safety constraints for the CBF to enforce,
(iii) making the distinction between robot controllable and un-
controllable factors in the specification (hence, the reward and con-
straint design) to improve the agent’s environmental awareness,
(iv) combining a knowledge base (set of formulas of general truth)
with the task specification for high-level task satisfiability validation
as well as a better structured automaton and studying the effective-
ness of this integration, and (v) evaluating our approach on a com-
plex high-dimensional robot cooking-and-serving task. We present
one of the first attempts to learn from high-level specifications in
continuous domains while preventing task violation during both ex-
ploration and deployment.

Problem formulation and approach
Here, we considered the following problem:Given (i) a robotic system,
(ii) a high-level rich task specification, (iii) a set of safety requirements,
and (iv) general knowledge expressed in rich, comprehensible lan-
guage, generate a motion plan for (i) that satisfies (ii), (iii), and
(iv). As an example, we focused on an application in which two robots
are required to prepare and serve a hot dog (see Fig. 1).

Central to our approach is a predicate temporal logic, called trun-
cated linear temporal logic (TLTL), whose formulas provide a unify-
ing, easily understandable way to specify and combine tasks (e.g.,
“pick up the hot dog and place it on the grill”), safety requirements
(“always avoid collisions”), and general prior knowledge (facts that
are known to always be true, e.g., “you cannot pick up an object if
you are already holding one”). We converted the overall formula into
an automaton called finite-state predicate automaton (FSPA) and pro-
posed an automaton-guidedmethod for RL that creates easily explain-
able reward functions. Safety constraints are also extracted from the
automaton and enforced using CBFs. The resultant motion plan both
satisfies the task and guarantees safety.

RESULTS
In this section, we present a solution to the problem formulated above.
We first describe the solution for the general case; then, we focus on
a particular cook-and-serve application, in which two manipulators
work together to grill and serve a hot dog. Technical details, imple-
mentation notes, and experimental results can be found inMaterials
and Methods and the Supplementary Materials.

Task specification and general knowledge are temporal
logic formulas
We introduce a common formal language to describe both prior
knowledge about the world, and task specifications. This is based
on an existing predicate temporal logic, called TLTL (28). Informally,
a formula (f) in our language is made of standard logical operators,
such as conjunction (∧), disjunction (∨), and negation (¬); temporal
operators, such as eventually (F), until (U ), and next (X ); predicates,
such as f(s) > 0 ( f is a scalar function defined on the state space of the
system); and derived operators, such as finite time “always” (Gf ¼¬F¬f)
and “then” (f1 T f2 ¼ f1∧X Ff2). For example,GripperOpen(s) is a
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predicate used in the cook-and-serve application described later (see
also table S1). “Eventually GripperOpen(s)” [F GripperOpen(s)] is an
example of a simple formula using the same predicate.

The general knowledge base formulas correspond to properties
that are always true (e.g., a robot’s gripper cannot be both open and
closed simultaneously). The knowledge base can contain more com-
plicated concepts, such as obstacle avoidance, which roughly translates
to “never leave some safe region.” The purpose of the knowledge base is
to represent common truths about theworld. This allows for the knowl-
edge base to be used acrossmany possible task specifications. The use of
TLTL to define the knowledge base allows for both interpretability of
the knowledge and for the knowledge base specification set to be con-
juncted with the task specification to create a single formula.

Formulas in TLTL have dual semantics, meaning that they can
be either true or false or real valued. This means that we can quan-
tify the degree of satisfaction of a formula (it has quantitative seman-

tics). Here, we exploit these quantitative semantics to design rewards
for RL.

Automaton corresponding to TLTL formulas determines
the RL rewards
With both the knowledge base and the task specification, a graph struc-
ture can be constructed to reflect the required sequence of motions to
successfully complete (satisfy) the task. These structures are called FSPA,
and they directly capture the syntax and semantics of TLTL through
a tuple of states, transitions, guards, initial states, and final states. The
guards on the FSPA transitions are predicate Boolean formulas [in
disjunctive normal form (DNF)], with robustness (quantitative se-
mantic measure) that can be evaluated at any time. The robustness
of a TLTL formula is a metric describing how well the formula is
satisfied given a state sequence (a positive robustness value indicates
satisfaction, and a negative value indicates violation).

A: Experiment Setup

C:

B: Simulation Setup

D: Baxter environment visualization

Fig. 1. Hot dog cooking and serving task setup. (A) Experiment setup consists of a seven-DOF Jaco arm and a Baxter robot. Objects in the scene are tracked by a
motion capture system. The status of a ready-to-serve hot dog was detected using a camera running Darknet. (B) Simulation environment in the V-REP simulator setup
for training. (C and D) Information perceived by each robot during experiment (displayed in RViz). Tracked items include the three plates, the grill, and the ketchup. The
safe regions and serve region are defined by the task specification.
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The RL problem is often defined on anMDP, which is a tuple com-
posed of a state space, an action space, a reward function, and a tran-
sition function. In this case, both the reward and transition functions
are unknown initially; therefore, the information from the FSPA is
used to create a reward function, whereas the transition function is
learned through experience. To create the reward, we use a product
automaton, which combines the MDP and the FSPA, meaning that
each state in the product automaton is a pairing of FSPA and MDP
states. This allows us to use the FSPA guards as a reward function for
the RL task, meaning that we directly generate the rewards from the
high-level specification, making the reward synthesis problem funda-
mentally more formal, explainable, and tractable.

At each state in the product automaton, there exist edges with
guards that move the system to other states. In this work, we evaluate
each of the edge guards in terms of their robustness and then pick the
edge whose guard has the highest robustness. The robustness of this
edge guard is then the reward for the RL agent at this particular time
step. As the systemmoves through the product automaton, the reward
function is updated on the basis of the available outgoing edge from
the agent’s current FSPA state.

CBFs enforce safety
Beyond providing the reward function, the FSPA is also used to ensure
safe exploration and deployment of the system.Within the FSPA struc-
ture, there are trap states that have guards to explicitly denote conditions
that will violate the specification. These trap states have no transition to
get the system to an accepting final state; therefore, they are primarily
used to denote when the system has entered a state that renders the giv-
en task impossible to complete. In this work, these guards are treated as
constraints in a CBF-based approach. In the traditional CBF approach
(24), given a control system, a safety constraint, control limitations, and
a cost that involves the control, a safe optimal controller is found as a
solution to a linear or quadratic program. In this work, given a control
action determined by the RL procedure, we use a CBFmethod to find a
control that, when added to the RL control, makes the system safe while
minimizing the control interference.

Baxter and Jaco cook and serve hot dogs
To test the proposed framework, we present an experiment that uses
two robotic manipulators (a Kinova Jaco arm and a Rethink Robotics
Baxter) to perform a hot dog cooking and serving task (the simulation
and experiment setups are shown in Fig. 1). The Jaco arm was used to
prepare the hot dogs, and Baxter was used to serve the hot dog to
customers when it detected that one was ready. Most of the objects
in the scene were tracked using anOptiTrackmotion capture system.
A camera was used to identify the existence of a ready-to-serve hot
dog as shown in the top left corner of Fig. 1A. Figure 1B shows the
simulation environment constructed in the V-REP simulator (29).
Figure 1 (C and D) shows the environment the robots perceive dur-
ing the experiment. This includes all tracked objects (three plates, the
grill, and the ketchup) as well as the safe regions (the outer box that
defines the end effector’s outermost region of motion and an ellip-
soid that defines the grill’s region of collision). In addition, the Baxter
robot has a serve region that is used to determine whether there is a
customer (i.e., the green plate is detected within the serve region).

Task specification and prior knowledge
The specification for cooking, preparing, and serving a hot dog in this
experiment is given by a combination of knowledge from a general

knowledge base and a task-specific “recipe.” We begin by introducing
a template formula (a specification inTLTL), which is used as amidlevel
task definition that can be composed (because of the inductive property
of TLTL formulas) with other templates to simplify the specification for
more complicated tasks. For example, Grasped(pcurrent, pgoal) can be
defined in English as “eventually reach the goal pose (pgoal) and with
the gripper open, and eventually close the gripper, and do not close the
gripper until the goal pose is reached and with the gripper open.” The
TLTL formula for Grasped(⋅) can be found in the Supplementary
Materials, and its FSPA can be found in fig. S1A. Grasped(⋅) can be
combined with a simple knowledge base to demonstrate its effect
on the FSPA. To this end, we specify an example knowledge base
as “the gripper cannot be both open and closed at the same time”
[¬(GripperOpen(⋅) ∧ GripperClose(⋅))] and “the system state must re-
main in the safe region” [InSafeRegion(⋅)]. The task specification and
knowledge base are from the same logic, TLTL, so they can easily be
composed into a single specification using the conjunction operator.
The FSPA from the resulting specification is shown in fig. S1B. Note
two key changes from the FSPA for just the task specification alone
(in fig. S1A); first, the edge from q0 to qf has been trimmed because
the knowledge base states that the gripper cannot be both opened
and closed, and second, on each guard, the fact that the end-effector
pose needs to stay in the safe region is stipulated.

The hot dog cooking task can be expressed as “eventually turn on
the grill, then pick sausage and place on grill, then go to home position,
then wait for 5 min, then pick sausage and place on bun, then apply
ketchup, then turn off grill, then go to home position”; the hot dog
serving task can be described as “eventually serve and do not serve
until a hot dog and a customer are detected.”The FSPAs for both tasks
are shown in Fig. 2 (A and B). For the full definition of the predicates,
template formulas, task specifications, and the knowledge base used in
this experiment, refer to the Supplementary Materials. Refer also to
Materials and Methods for details on evaluating the truth value of
the edge guards and transitioning on the FSPA.

Training in simulation and executing on the real system
All of the training is performed in the V-REP simulation environment
shown in Fig. 1B, and the resultant policy is executed directly on the
real robots. This is possible because the learned policy outputs a path
that does not take into account the robot’s configuration space or dy-
namics, meaning that the reality gap is minimal and simulation-to-
real transfer is possible. Details on the training setup can be found
in Materials and Methods.

An example execution trace for the cooking and serving task can
be found in Fig. 3. Each subfigure represents a change in the predi-
cate truth value for at least one robot’s FSPA (accomplishment of a
subtask). The colored paths (a gray path for Jaco and a red path for
Baxter) in Fig. 3 show times during the execution when a transi-
tion in the FSPA has occurred (for at least one robot). Above each
path, we show the current FSPA state qi, which corresponds to Fig. 2
(A and B). We also show the guards that are satisfied. Videos of
learning and execution can be found in the SupplementaryMaterials.

Safety evaluation during training
The system is safe at any given point in time if the value of all CBFs
are greater than zero. To investigate the effectiveness of CBFs in
safeguarding the learning process, we recorded the CBF values during
training and plot their minimum values as a function of training time
in Fig. 4 (A and B). For comparison, we also trained a policy without
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enforcing CBFs (only recording the CBF values). In this case, we ter-
minated and reinitiated an episode when the agent violates a safety
specification and penalized the agent with a negative terminal reward
equal to the largest negative CBF value. The comparison cases are also
illustrated in Fig. 4 (A and B). Because the CBF value is related to
entering or leaving a safe region, we can observe that the CBFs are
successful in the prevention of safety violation during training (i.e.,
the minimum value is always greater than zero). In the case without
CBFs constraining the agent’s motion, the negative terminal reward
provides a signal for the RL agent to learn and avoid unsafe regions
(the minimum CBF value gradually increases), but safety cannot be
guaranteed throughout learning.

Comparisons of different training setups and imitation
learning baselines
Four training setups were used to study the effectiveness of the CBFs
and the knowledge base on the performance of the final policy. These
studies were divided into FSPA-guided RL without a knowledge base
or CBFs (FSPA), FSPA-guided RL with only CBFs (FSPA+CBF),

FSPA-guided RL with only knowledge base (FSPA+KB), and FSPA-
guided RL with both CBFs and a knowledge base (FSPA+CBF+KB).
All four scenarios were trained for the same amount of time with the
same training algorithm and hyperparameters.

We also compared ourmethodwith imitation learning benchmarks,
specifically with BC and generative adversarial imitation learning
(GAIL) (30). We teleoperatively controlled each robot in simulation
to collect expert demonstrations. Two hundred demonstration trajec-
tories were collected for each robot, and the OpenAI Baseline (31) im-
plementation of BC andGAILwas used to train the policies with default
hyperparameters.

Each resultant policy was executed for 30 trials with a horizon of
400 time steps. The position and orientation of the plates and the
ketchup were randomized (within reachable regions) between trials
(the position of the grill does not change). The robustness of each
collected trajectory with respect to the task specification was calcu-
lated, and the task was considered successfully completed if the ro-
bustness value was greater than 0. The average success rates are
presented in Fig. 4 (C and D).

A

B
Fig. 2. FSPA for the hot dog cooking and serving tasks. (A) HotdogCooked(s). (B) HotdogServed(s).
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Compared with the baseline FSPA-
guided RL, we can observe from Fig. 4
(C and D) that the addition of the CBFs
noticeably improved the performance
of the learned policy. This is because
by keeping the system safe during ex-
ploration, the RL agent was able to focus
on learning to satisfy the specification,
whereas in the case without CBF, it also
had to learn to avoid unsafe regions. Giv-
en that an episode terminates when safe-
ty constraints are violated, CBF allows
the RL agent to explore longer per epi-
sode, which also contributes to the final
performance.

The inclusion of the knowledge base
also increases the final success rates for
both tasks. This improvement ismore ap-
parent in the serving task compared with
the cooking task because although more
steps are necessary to complete the cook-
ing task, its FSPA structure is relatively
simple (a linear sequence)when compared
with the serving task. In the cooking task
case, the knowledge base also does not
help much in simplifying the reward
structure. The serving task, on the other
hand, consists of choices given condi-
tions, which translates to more branching
in the FSPA, meaning that the knowledge
base helps reduce the complexity of the
reward by pruning infeasible edges.

Neither BC nor GAIL was able to suc-
ceed, given the number of demonstra-
tions and the evaluation criteria for the
hot dog cooking task. In our experiments,
we noticed that the trajectories produced
by GAIL have higher similarity to the ex-
pert trajectories than those of BC. How-
ever, low tracking accuracy with respect
to the given goals prevents the robust-
ness of these trajectories from evaluat-
ing to a positive number. GAIL exhibited
a slightly higher success rate in the serving
task, whereas BC continued to fail. This
set of results show that for taskswithmore
complex structure and longer horizons,
using pure imitation learning without
extensive exploration and experience to
learn a useful policy can be challenging.

Evaluation of the learning progress
During training, the FSPA states were
randomized between episodes. In doing
so, the RL agent was able to experience
and learn at different stages of the task
without having to follow the order that
the task is carried out. This can effectively
be seen as a form of curriculum learning

Fig. 3. Example execution trace of the hot dog cooking and serving task. Each snapshot represents a change in
the FSPA (change of a predicate truth value and/or transition on the FSPA). The gray and red paths trace the steps
necessary to trigger a transition on the FSPA (for either robot) shown in Fig. 2 (A and B). The FSPA state along with
the corresponding edge guard is provided on top of each path.
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where the FSPA decomposes a complex task into simpler subtasks. Be-
cause of this nature, although the RL policy is trained end to end, we
were able to study the internals of the policy by probing different FSPA
states during the learning and evaluation process.

At fixed time intervals during training, we took the latest policy and
studied its performance at each of the FSPA states. We initialized the
policy at each FSPA state and executed it for a certain number of time
steps (100 steps for Baxter and 200 steps for Jaco). Thirty evaluation
trajectories were obtained at each FSPA state with the plates and
ketchup poses randomized between trials. The goal was to obtain the
average success rate of the RL agent at transitioning out of the current
FSPA state and the average time it takes to do so. Success here was eval-
uated by calculating the robustness of each trajectory against the dis-
junction of the outgoing edge guards (a predicate Boolean formula)
and determining whether its value is positive. In general, a positive ro-
bustness with a low transition time indicates a capable policy at that
specific FSPA state. We present the results of this probing as a labeled
heat map in Fig. 5 (A and B). In this figure, the x axis shows training
time, and the y axis is the FSPA state corresponding to Fig. 2 (A and B).
The color of each cell indicates the average number of steps required
for the agent to transition out of the current FSPA state. The cell labels
show the average success rate over the 30 evaluation trajectories. One

exception is state q0 in Fig. 5Abecause this is the starting state of Baxter’s
serving task. Transition out of this initial state does not depend on
Baxter’s actions but on whether there is simultaneously a customer and
a ready-to-serve hot dog. Baxter’s desired motion at this state is to stay
put (minimize control effort). Therefore, for this state, we neglect the
meaning of the cell color. The cell label indicates the percentage of tra-
jectories where themaximumcontrol effort is below a certain threshold.

From Fig. 5A, we can observe that learning to stay put (q0) is rel-
atively simple, whereas more effort is required to learn the pick-and-
placemotion (q1). It also shows that an efficient pick-and-place policy
that generalizes across different target poses can be learned. Look-
ing at Fig. 5B, we can see that a Reached task (q2 and q7) is the easiest
to learn, followed by the PickedAndPlaced task (q1 and q4), which
consists of a sequence of Reached, GripperOpen, and GripperClose
tasks. It takes longer to make progress in learning the GrillTurnedOn
(q0) andGrillTurnedOff (q6) tasks. Compared with the Reached and
PickedAndPlaced tasks where the reward is a distance function,
GrillTurnedOn and GrillTurnedOff provide reward only when the
grill switch is flipped, which is a much sparser reward. However, the
policy improves quickly once it has learned where the switch is be-
cause the position of the grill does not change. The KetchupApplied
task (q5) takes themost amount of time to complete because it involves

A

C D

B

Fig. 4. Performance evaluationand comparison. (A) TheminimumCBF value against training time for Jaco. At each time, the system is safe if theminimumof the CBF values is
greater than zero. The red curves present the casewhere CBFs are not enforced during training but their values are recorded for comparison. In this case, an episode endswhen the
minimumCBF value is smaller than zero and this value is given to the RL agent as a penalizing terminal reward. (B) TheminimumCBF value against training time for Baxter.
(C) Performance comparisonof the final policies for Jaco. Here, FSPA represents vanilla FSPA-guidedRL. Eachpolicy is executed toproduce30 trajectories. A trajectory satisfies the task
(success) if its robustness evaluated against its task specification is greater than zero. Average success rate is reported. (D) Performance comparison of the final policies for Baxter.
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the most number of substeps, as shown in fig. S1E. The final success
rate for the KetchupApplied task is also lower compared with the
other tasks, which is a result of the large position and orientation
changes the end effector needs to undergo to accomplish the task.

DISCUSSION
Experimental results suggest that the reward generated from the
formal specification is able to guide an RL agent to learn a
satisfying policy. Safety during exploration can be guaranteed
(given that safety is included in the specification). Our method
also promotes the general usability of RL frameworks by
providing a formal language–based user interface. Specifically,
the user only needs to interact with the framework using a rich
and high-level language, and the process of finding a satisfying
policy can be automated.

The efficacy of the proposed framework results from (i) dense
reward feedback, (ii) using the FSPA to break the task into subtasks
and being able to learn at different stages of the task by creating a cur-

riculum over the FSPA states, (iii) using
the knowledge to make the FSPA more
context aware (prune edges that are in-
feasible, etc.), and (iv) using the CBF to
prevent violation to simplify the task for
the RL agent and elongate the exploration
process (assuming an episode is termi-
nated upon task violation if CBF is not
used).

Advantages of using temporal
logic for task and
knowledge specification
Our method provides a means of conve-
niently incorporating domain knowl-
edge in a structured and interpretable
fashion. This can be a valuable tool for
boosting learning sample efficiency, es-
pecially as the task becomes more
complex. Flexibility is another merit
that our method brings. Learning can
be time and resource demanding. Given
a knowledge base of general truth, our
framework promotes rapid validation
of the task against it without having to
undergo training. The user can quickly
adjust the task if it is proven unsat-
isfiable. This somewhat resembles the
abstract reasoning that humans routine-
ly conduct.

In the domain of deep RL, analyzing
the neural network policy can be a chal-
lenge. Tools have been developed to ver-
ify properties of neural networks, but
scalability and efficiency remain areas
where more research is necessary. In our
framework, because the policy is trained
with the FSPA-induced reward and the
FSPA state is part of the policy’s input,
we can easily analyze the policy for its per-

formance on different stages of the task. As shown in Fig. 5, we can
probe the policy to observe how learning has progressed at various stages
of the task, and because the reward structure is interpretable, we can eas-
ily deduce the reason for any bottleneck during training (e.g., learning to
flip the switch is slow because of sparse reward). Having found the
bottleneck, we can then focus on training certain stages of the task by
adjusting the initialization probability of the FSPA states at the start of
each episode.

Benefits of using CBF to prevent violation of specification
Safety during exploration and deployment is paramount to the appli-
cability of learningmethods on physical systems. Our results show that
learning performance can also benefit from safe exploration even in
simulation where collision results in little consequence. This is because
guaranteeing safety through external means simplifies the task that the
RL agent has to learn while also increasing the length of exploration per
episode.

In our formulations, the CBF constraints are generated from the
FSPA. This means that the CBF is used not only to guarantee collision

A

B
Fig. 5. Learning progress evaluation at each FSPA state. (A) Baxter. (B) Jaco. The y axis shows the FSPA states
corresponding to Fig. 2 (A and B). For a fixed time interval during training, the latest policy is evaluated for its ability
to transition out of the current FSPA state. This is done by setting the FSPA state and executing the policy for a
number of time steps (100 for Baxter and 200 for Jaco). Thirty trajectories are collected for each evaluation. The cell
color corresponds to the average time for the transition to happen, and the cell labels show the success rates. q3 in
(B) is omitted because it corresponds to TimePassed(s,600), which is not learned.
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safety but also, more generally, to avoid violation of the task specifica-
tion. The CBF constraints change with the progression of the task. For
example, if given a task of “visit regions A, B, and C in this order and
do not revisit regions,” then at the beginning of the task, CBF will pre-
vent visitation of regions B andC.After regionAhas been visited, CBF
will then prevent visitation of A and C, etc. In general, RL takes care of
learning to reach the acceptance FSPA state, whereas CBF is respon-
sible for prevention of reaching the trap state.

Limitations and future work
The provided examples generate a path plan in Euclidean space with-
out considering the configuration space of the real system. As a result,
the performance of the robot depends largely on how close it is able to
track the given path. The method itself, however, can handle higher-
dimensional configuration space planning. Currently, we assume
linear dynamics, which simplifies the derivation of the CBF con-
straints. However, one of the strengths of the CBF is its ability to
incorporate general nonlinear affine dynamics. One direction of fu-
ture work is to develop a motion plan variant of the proposed
method that takes into account the robot kinematics/dynamics
and learns a policy that directly outputs joint level controls. The
effectiveness of our method may also be limited by FSPAs with
cycles (loops between automaton states that are not self-loops). This
issue can be resolved by modifying our current (greedy) reward de-
sign to be potential-based rewards (11, 32).

In our formulation, although we specify the task hierarchically
using template formulas, the resultant FSPA is nonhierarchical.
The sizes of the FSPAs in our tasks are manageable (22 nodes
and 43 edges for the cooking task and 8 nodes and 22 edges for
the serving task); in general, the size of an FSPA can grow rapidly
with the complexity of the TL formula (and knowledge bases can
be large), which, in turn, increases the complexity of the reward.
This can adversely affect learning. One approach is to maintain
multiple simpler FSPAs (for example, one for each template
formula) instead of a complex one. This approach adds discrete
dimensions to the state space (one for each FSPA) but can notably
reduce the complexity of each FSPA. Although not fully developed
in this work, we believe that the incorporation of the knowledge
base and template formulas present opportunities to extend our
framework to a wider set of capabilities, such as high-level (sym-
bolic) task planning/validation, hierarchical learning, and skill
composition.

MATERIALS AND METHODS
Preliminaries
MDP and RL
RL is an area of machine learning that focuses on finding an optimal
policy that maximizes a cumulative reward by interacting with the
environment. We start by defining an MDP (33).

Definition 1. AnMDP is defined as a tupleM = 〈S, A, pr, r〉, where
S⊆ ℝn is the state space;A⊆ ℝm is the action space (S and A can also
be discrete sets); pr : S × S × A→ [0,1] is the transition function, with
pr(st+1∣st, at) being the conditional probability of being in state st+1 ∈ S
after taking action at ∈ A at state st ∈ S; and the reward function is
r : S × A × S → ℝ, with r(st, at, st+1) being the reward obtained by ex-
ecuting action at at state st and transitioning to st+1.

We assume that the underlying time is discrete: t= 0,1,2….We use
st and at to denote the state and action at time t, respectively. An op-

timal policy p⋆ : S→A (or p⋆ : S� A→½0; 1� for stochastic policies) is
one that maximizes the expected return, that is

p⋆ ¼ arg max
p

Ep ∑
T�1

t¼0
rðst ; at ; stþ1Þ

" # !
ð1Þ

The horizon (denoted T) is defined as the maximum allowable
number of time steps of each execution of p and, hence, themaximum
length of a trajectory. In Eq. 1, Ep[⋅] is the expectation following p.
The state-action value function is defined as

Qpðs; aÞ ¼ Ep ∑
T�1

t¼0
rðst ; at ; stþ1Þ∣s0 ¼ s; a0 ¼ a

" #
ð2Þ

which is the expected return of choosing action a at state s and fol-
lowing p onward. Qp is commonly used to evaluate the quality of pol-
icy p. For problems with continuous state and action spaces such as
robotic control, Qp and p usually take the form of parameterized
function approximators. Depending on the RL method, one can opti-
mize for Qp and take greedy actions accordingly [such as Deep Q-
Network (DQN) (34)]. One can also use Eq. 1 for direct policy search
[such as policy gradient methods (35)]. Another popular approach is
to alternate between optimizingQp and p, which is referred to as actor-
critic methods [such as (36)]. In this work, we will use an actor-critic
method–proximal policy gradient (37) as our RL algorithm.
Truncated linear temporal logic
We consider tasks specified using TLTL (28). Formal definitions for its
syntax and semantics are given in the Supplementary Materials. In-
formally, TLTL is made of predicates [e.g., f (s) > 0, where f : ℝn → ℝ
is a scalar function]; the usual Boolean operators, such as ¬ (negation), ∧
(conjunction), ∨ (disjunction), ⇒ (implication), etc.; and temporal op-
erators, such as X (next), F (eventually or in the future), G (bounded
always, globally over a finite interval), and U (until). An example of a
valid TLTL formula is (we assume s ∈ ℝ) Gðs < 8Þ∧Fðs <
4Þ∧ X Fðs > 6Þ, which entails that for all times in the considered in-
terval, s < 8, and at some point in the future, s < 4, and after that, s > 6.
Another example is ðfa⇒FfbÞUfc , which means that fc becomes
eventually true, and until (before) this happens, if fa is satisfied, then
fb is eventually satisfied (fa,b,c are valid formulas).

The semantics of TLTL formulas is given over finite trajectories
in a set S, such as the ones produced by the MDP from Definition 1.
We use st:t+k to denote a sequence of states (state trajectory) from
time t to t + k, i.e., st:t+k = stst+1…st+k. TLTL has both qualitative
(a trajectory either satisfies or violates a formula) and quantitative
semantics (details are given in the Supplementary Materials). The
latter quantifies the degree of satisfaction of a formula f by a trajectory
s0:T. This measure is also referred to as robustness degree or, simply,
robustness [r(s0:T, f) maps a state trajectory and a formula to a real
number], for example (again, we assume s ∈ ℝ), r(s0:3, F(s < 4)) =
max (4 − s0,4 − s1,4 − s2). Because F(s < 4) requires s < 4 to be true at
least once in the trajectory, we take the maximum over the time horizon.
In general, robustness greater than zero (in the quantitative semantics)
is equivalent with st:t+k satisfying f (in the qualitative semantics).

The main differences between TLTL and linear temporal logic (38)
are as follows: (i) TLTL is evaluated against finite traces (hence, the
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term “truncated”), whereas linear temporal logic is over infinite traces.
(ii) TLTL is specified over predicates of MDP states compared with
atomic propositions in linear temporal logic.
Control barrier functions
Consider a discrete time affine control system

stþ1 ¼ f ðstÞ þ gðstÞat ð3Þ

where f : S→ S and g : S→ℝn×m are locally Lipschitz continuous, st ∈
S ⊆ ℝn is the state at time t, and at ∈ A ⊆ ℝm is the control input
(action) at time t. We use the same notation for the states and actions
of the control system from Eq. 3 and theMDP fromDefinition 1.We
embed the control systems generating the desired robot trajectories
and environmental dynamics into the MDP.

Consider the following set

C ¼ fs ∈ S ∣ hðsÞ≥ 0g ð4Þ
where h : S → ℝ.

A function h : S → ℝ is a discrete time exponential CBF (39, 40)
that renders C invariant along the trajectories of the system in Eq. 3
if there exist a ∈ [0,1] and at ∈ A such that

hðs0Þ > 0 ð5Þ

hðstþ1Þ þ ða� 1ÞhðstÞ > 0; ∀t ∈ Zþ ð6Þ

A controller that renders the safe set C invariant and minimizes
the control effort can be found by solving the following optimiza-
tion problem

a⋆t ¼ argmin
at∈A

‖at‖2

s:t: hðf ðstÞ þ gðstÞatÞ þ ða� 1ÞhðstÞ≥ 0

amin ≤ at ≤ amax ð7Þ

where amin and amax are control bounds.
If h(s) is affine, then the above problem is a quadratic program.

If h(s) is quadratic, then the problem is a quadratically constrained
quadratic program. Both can be solved efficiently with available
solvers such as Gurobi (41).

Formal problem formulation
We define a knowledge base as a set of predicate Boolean formulas
over MDP states that are always true within the horizon of the task.
Formally, a knowledge base K is defined as

K ¼ fy0;y1;y2;…;ykg ð8Þ

whereyi, i = 0,…, k, are predicate Boolean formulas over the state s of
an MDP. We assume that ∀s0:T, r(fK,s0:T) > 0, where fK ¼ G ∧

i¼0

k
yi. A

knowledge base is integrated into the problem formulation by add-
ing formula fK to the task specification through conjunction.

In this work, a robotic system consists of robot-related states
(end-effector pose, gripper position, etc.) and actions (end-effector
velocity) as well as environmental states that the robot can perceive
(pose of the grill, ketchup, etc.). We are now ready to formulate the
general problem that we consider here.

Given a robotic system with states S ∈ ℝn and actions A ∈ ℝm, a
knowledge base K = {y0, y1, y2, …, yn}, and a TLTL task specifi-
cation ftask over S, generate a trajectory s0:T that satisfies ftask ∧ fK.

Approach
An overview of our architecture is presented in Fig. 6. Given a knowl-
edge base fK and a task specification ftask, a feasibility check is first
performed to ensure that the task does not conflict with the knowl-
edge base [using packages such as scheck (42) and lomap (43)]. If the
task is feasible, then the specification ftask ∧ fK is transformed into an
FSPA. We then extract information from the FSPA to guide an RL
agent toward finding a satisfactory policy. To ensure safety during
exploration and deployment, we integrated a CBF into the system that
takes constraints from the FSPA and calculates a minimal interfering
action that guarantees safety of the system with respect to the task
specification. We will use a running example throughout the fol-
lowing sections. As depicted in Fig. 7A, a robot is navigating in two-
dimensional (2D) space. The states are its 2D position coordinates,
and its actions are x, y velocities. There are three regions A, B, and
C and an obstacleD. The goal is to find a policy that satisfies the spec-
ification fex ¼ ðFyA∨ FyBÞ ∧ FyC ∧ (¬yC U(yA∨yB))∧G¬yD,
which indicates “eventually visit regions A or B and eventually visit
region C, and do not visit region C before A or B has been visited,
and always avoid region D.”
Finite-state predicate automaton
The FSPA is defined as

Definition 2. An FSPA is a tuple A ¼ 〈Q; S; E;Y; q0; b; F;Tr〉 ,
where Q is a finite set of automaton states; S ⊆ ℝn is the MDP state;
E⊆Q�Q is the set of transitions (edges);Y is the input alphabet, also
called set of guards (a set of predicate Boolean formulas, where the
predicates are evaluated over S); q0 ∈Q is the initial state; b : E → Y
maps the transitions ofA to predicate Boolean formulas fromY;F ⊆Q
is the set of final (accepting) states; and Tr ⊂Q is a set of trap states.

Although b(q, q′) is a Boolean formula, it can be seen as a particular
case of a TLTL formula. Its robustness r(st:t+k, b(q, q′)) is only evaluated
at st. Therefore, we use the shorthand r(st, b(q, q′)) = r(st:t+k, b(q, q′)). At
some statesq ∈Q, there is a transition (q, q′) to a trap state q′ ∈ Tr. The
guard of (q, q′) captures all the possible situations that lead to a violation
of the specification. Aswill become clear later, we will use CBFs tomake
sure transitions to trap states are not possible.

The semantics of an FSPA are defined over finite trajectories s0:T
over S (such as the ones produced by the MDP from Definition 1).
The motivation for the semantics defined below will become clear
later when we give the definition of the FSPA-augmented MDP.
At time 0, the automaton is in state q0. The automaton evaluates
the formulas assigned to the edges that are connected to q0 [i.e.,
b(q0, q), with (q0, q) ∈ E] at s0 by calculating r(s0, b(q0, q)). If at least
one of the edges has formulas that are satisfied, then the automaton
will make a transition. If more than one edge have satisfied formulas,
the automaton will choose the edge (q0, q) that has the largest (pos-
itive) robustness r(s0, b(q0, q)), which signifies best satisfaction at
that time instant. Given that any nondeterministic finite automaton
can be translated into its deterministic counterpart at the cost of a
larger automaton, in practice, we prefer to work with a deterministic
FSPA that prevents two edge guards to be satisfied at the same time.
In the (unlikely) event that there are more than two outgoing edges
with exactly the samemaximum robustness, the automatonwill choose
one edge randomly. When the automaton moves to a state q, then the
process described above is reiterated at q. A trajectory is accepted if it
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ends in a final state ofA. An example of transitioning on an FSPA for
fex is depicted in Fig. 7 (A to C).

The FSPA resembles a traditional FSA. The main differences are
as follows: (i) predicates replace symbols on the edge guards, and
(ii) transition on the FSPA depends on the robustness of the predi-
cates at eachMDP state instead of truth values of the symbols in FSAs.
The decision to use TLTL and FSPA is because we need a formalism to
specify finite-horizon, time-dependent (non-Markovian) robotic ma-
nipulation tasks over continuous state and action spaces and be able to

define dense rewards and constraints on this formalism. Linear tem-
poral logic with FSA does not provide such capabilities. STL (44) can
be another alternative. However, STL does not have an automaton
counterpart, and a reward function defined on STL is non-Markovian
(limits the type of RL algorithms that can be used) and sparse (only a
terminal reward can be obtained because robustness of an STL
formula requires the entire trajectory to calculate).

Given a TLTL formula f over predicates in a state set S, there exists
an FSPA Af ¼ 〈Qf; S; Ef;Yϕ; qf;0; bf; Ff;Trf〉 that accepts all the

Yes

Fig. 6. Pictorial representation of the overall approach. The user-provided task specification is first checked symbolically against a knowledge base with generally
true statements for task feasibility [using a model checking tool, such as lomap (43)]. If feasible, specification ftask ∧ fK is transformed into an FSPA that provides
guidance (reward) to an RL agent that encourages satisfaction of the specification. The FSPA also provides constraints to the FSPA-guided CBF, which safeguards
the decisions made by the RL agent from violating the specification while minimally interfering with the RL agent.
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trajectories over predicates in S that satisfy f. This can be generated
with available packages like lomap (43) [refer to (45) for details on
the generation procedure]. In the following sections, we will drop the
subscript f for clarity when the context is clear.
FSPA-augmented MDP
The FSPA-augmentedMDPMA establishes a connection between the
FSPA (hence, a TLTL formula) and the standard RL problem (arrow
labeled “Guidance” in Fig. 6). A policy learned usingMA has implicit
knowledge of the FSPA through the automaton state q ∈Q.

We defineP to be a set of predicates with each of its elements p ∈P
in the form f(st) > 0 [ f : S→ℝ is referred to as the predicate function;
we assume that f(st) is bounded and refer to it as the predicate
function of p]. We classify the predicates into two categories: action-
able and nonactionable. An actionable predicate is one such that
the agent can execute actions to increase its robustness, i.e., ∃at ∈
A s.t. r(st+1, p) > r(st, p) [an example of an actionable predicate is
Grasped(⋅)]. A nonactionable predicate is one such that the agent
cannot actively effect its robustness, essentially predicates associated
with the environment [i.e., Customer(⋅), whether there is a customer].
DefineL : P→f0; 1g to be a labeling function. A predicate is actionable
if L(p) = 1 and nonactionable if L(p) = 0.

Definition 3. Given FSPA A ¼ 〈Q; S; E;Y; q0; b; F;Tr〉 and MDP
M = 〈S, A, pr, r〉, an FSPA-augmented MDP is defined as MA ¼
〈~S;A; ~pr;~r; E;Y; q0; b; F;Tr〉, where ~S⊆ S�Q is the product state
space. ~prð~stþ1∣~st ; atÞ is the transition function defined by

~prð~stþ1∣~st ; atÞ ¼

ð1=CÞprðstþ1∣st ; atÞ1ðrðst ; bðqt ; qtþ1ÞÞÞ ðqt ; qtþ1Þ ∈ E
0 otherwise

�
ð9Þ

whereC is a normalization constant and 1 :ℝ→ {0,1} is the indicator
function that returns value 1 if its input is greater than zero and re-
turns 0 otherwise. Define Wqt ¼ fqt′∣ðqt ; qt′Þ ∈ E; qt′ ≠ qt ; qt′ ∉ Trg to
be the set of non-trap FSPA states that are connected with qt and
not equal to qt. LetDðqtÞ ¼ ∨qt′∈Wqt

bðqt ; qt′Þ represent the disjunction of
all edge guards for edges ðqt ; qt′Þ ∈ E, qt′ ∈Wqt . We can write D(qt) in
its DNF

DðqtÞ ¼ ∨
n

i¼0
∧
mi

j¼0
ð:Þpijqt ð10Þ

where (¬) represents possible negations in the DNF. pijqt is the in-
dexed predicate of D(qt) in its DNF form. The reward function ~r :
~S� ~S→IR is defined as

~rð~st ;~stþ1Þ ¼

fmax
i∈½0;…;nÞ

min
j∈½0;…;miÞ

ðLðpijqt Þρðstþ1; ð:Þpijqt ÞÞ
� �

∃i; j s:t:Lðpijqt Þ ¼ 1

−‖at‖ otherwise ð11Þ

Note that in Eq. 11, st+1 is used to calculate ~r, which incorporates
the consequence of applying action at at state st. Action at does not
directly appear in the reward definition. We have found, in practice,
that minimizing control effort can improve the performance of the
learned policy, but we do not explicitly use it here.

Definition of the reward in Eq. 11 follows the robustness defini-
tion forD(qt) [min(⋅) corresponds to the robustness of the inner con-
junctive clause and max(⋅) corresponds to the robustness of the outer
disjunctive clause] while filtering out nonactionable predicates. Intui-
tively, the reward function encourages the system to exit the current
automaton state andmove on to the next non-trap state [by maximiz-
ing the robustness of the most probable outgoing edge guard at each
state, hence the satisfaction of D(qt)] and, by doing so, eventually
reaches the final state qf, which satisfies the TL specification (property
of FSPA). The labeling function L(⋅) is used to filter out the actionable
predicates in the edge guards. At a particular state, if the transition
on the FSPA depends only on environmental factors (nonactionable
predicates), then the agent is encouraged to stay put by minimizing
its actions.

For the example shown in Fig. 7 (A to C), D(q0) = (yA ∧ ¬ yD) ∨
(yB ∧ ¬yD),D(q1) =yC ∧ ¬yD. At q0, the reward in Eq. 11 guides the
robot to region A or B, whichever is closer (with higher robustness).
At q1, the reward encourages the robot to visit region C.
FSPA-guided safety constraint generation
The aim of this section is to develop a method that extracts safe sets
from the FSPA (arrow labeled “Safety constraints” in Fig. 6). At state
(st, qt), if (qt, qTr) ∈ E, then we would like to avoid activating b(qt, qTr).
That is, we need to ensure that b(qt, qTr) is always false or, in other
words, is always true [r(st, ¬ b(qt, qTr)) > 0]. Using ideas similar to
that in the reward definition, we first write b(qt, qTr) in its DNF form

bðqt ; qTrÞ ¼ ∨
n

i¼0
∧
mi

j¼0
ð:Þpijqt ð12Þ

Let

i⋆ðst ; qtÞ ¼ arg max
i∈f0;…;ng

rðst ; ∧
mi

j¼0
ð:Þpijqt Þ ð13Þ

We define the FSPA-based safe set at state qt as

CðqtÞ ¼ fst ∣ hiðst ; qtÞ〉0; hi ∈ Hðst ; qtÞg;where

Hðst ; qtÞ ¼

�r st ; ð:Þpi
⋆j
qt

� �
∣ j ∈f0;…;mi⋆g; L pi

⋆j
qt

� �
¼ 1

n o
ðqt ; qTrÞ ∈ E

∅ ðqt ; qTrÞ ∉ E

(

ð14Þ

In the above equation, i⋆ is used as a shorthand for i⋆(st, qt). At
each time step, if there is an edge connecting qt to qTr, then Eq. 13
finds the conjunctive clause in Eq. 12 with the highest robustness
(hence, most likely to be satisfied). Equation 14 then sets the negative
robustness (negation) of the actionable predicates of conjunctive
clause i⋆ as the CBFs. In the event that there are more than one con-
junctive clause with the same (highest) robustness, then all their pre-
dicates are used to define H.

It is also valid to assign the negative robustness of all (¬)pijqt in Eq. 12
as CBFs. Doing so increases the number of constraints and may be
too restrictive at times; however, it prevents violation in a global sense.
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In comparison, Eq. 14 defines local safe sets that change as the sys-
tem evolves.

The goal of the CBF is to prevent the agent from entering the trap
state. For the example in Fig. 7, at q0, the robot can violate the specifi-
cation by entering either region C orD. C(q0) is, therefore, any location
outside of C and D (areas that are not grayed out). In practice, Eq. 14
blocks out the closer of C or D to the robot at each time step. Once the
robot reachesA or B and transitions to q1, the CBF allows for enteringC
but prevents entering D.
FSPA-guided CBF
In this section, we take the output of the RL policy and the constraints
(CBF) extracted from the FSPA in the previous section to design a
shield that always keeps the system safe from violating the task spec-
ification (theCBF block in Fig. 6).Here, we divide the state space of the

MDP into two parts, S= Sr× Se, where Sr is the robot-related states (i.e.,
end-effector position and gripper position) and Se is the environment-
related states (i.e., grill switch angle, scene object poses, etc.). Because
our goal is to find a path, we abstract away the dynamics of the robot
and use a simple linear dynamics to control the motion of the robot’s
end-effector frame

srtþ1 ¼ W1s
r
t þW2ðprlðst ; qtÞ þ �atÞ ð15Þ

where W1 and W2 are constant matrices. In Eq. 15, the action con-
sists of two parts: the action provided by the RL policy prl : S→A and
the CBF action �a ∈ A. This known linear dynamics combined with
the unknown environmental dynamics form the MDP transition
function pr(⋅∣⋅,⋅). The linear dynamics is only used in the CBF and

A D

C F

EB

Fig. 7. A robot navigation example to illustrate the use of the FSPA-augmented MDP and FSPA-guided CBF. The robot moves in a 2D world with regions A, B, and
C and obstacle D. The robot’s states are its positions denoted s = probot. The robot is to satisfy the task fex ¼ ðF yA∨F yBÞ∧F yC∧ð:yC U ðyA∨yBÞÞ∧G:yD where yi =
‖probot − pi‖ < d, i ∈ {A, B, C, D}, and pi is the center coordinate of region i. (A) The robot’s initial position and automaton state, q0 (shown in light gray). The CBF blocks out
regions C and D (shown in dark gray) to prevent violation of the specification. (B) The robot visits region A as directed by the FSPA-augmented MDP reward and transitions
to q1. The CBF now opens up C but still blocks D. (C) The robot visits region C to complete the task. The edge guards in the automaton above are defined as b(q0, q0) =
¬ yA ∧ ¬ yB ∧ ¬ yC ∧ ¬ yD, b(q0, q1) = (yA ∧ ¬ yC ∧ ¬ yD) ∨ (yB ∧ ¬ yC ∧ ¬ yD), b(q0, qf) = (yA ∧ yC ∧ ¬ yD) ∨ (yB ∧ yC ∧ ¬ yD), b(q0, qTr) = yC ∨ yD, b(q1, qf) = yC ∧ ¬ yD, and
b(q1, qTr) = yD. (D) Pictorial depiction of the FSPA-guided CBF. (E) The resulting policy at q0, i.e., p(s, q0). (F) The resulting policy at q1, i.e., p(s, q1).
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not in learning the RLpolicy. Notice that the RLpolicy takes as input st
∈ S; thisway, the RL agent can learn a policy that takes into account the
unknown dynamics, whereas we use CBF to steer the resultant path
away from unsafe regions.

Given the set of CBF constraints H(st, qt) from Eq. 14, we solve
the following optimization problem for �at

�a⋆t ðst ; qtÞ ¼ arg min
�at

∣‖�at‖2

s:t:h0ðW1s
r
t þW2ðpðst ; qtÞ þ �atÞ; qtÞ þ ða� 1Þh0ðst ; qtÞ≥ 0

⋮

hiðW1s
r
t þW2ðpðst ; qtÞ þ �atÞ; qtÞ þ ða� 1Þhiðst ; qtÞ≥ 0

�amin ≤ �a≤ �amax ð16Þ

where hi ∈ H.
In our experiments, given that we are generating a path by control-

ling the robot’s end-effector frame pee, we assume that collision is only
position dependent and independent of orientation. Let pee ¼ ðplee; poeeÞ
(where plee is the 3D position and poee is the quaternion of the robot’s
end-effector frame). The linear dynamics in Eq. 15 have states sr ¼
ðplee; gÞ where g ∈ [0,1] is the robot’s gripper position (0 for fully open
and 1 for fully closed). The CBF calculated actions �a ¼ ð :plee;

:gÞ include
the linear velocities of the end-effector frame as well as the open/closed
velocity of the gripper. Let arl ¼ prlðstÞ ¼ ðalrl; aorl; a

g
rlÞ, where alrl and

aorl are the end effector’s linear and angular velocities and agrl is the
gripper velocity output by the RL policy. ðalrl; a

g
rlÞ is then included

in Eq. 15 as the RL component.Having calculated �a⋆, the next position
on the path can be numerically integrated using actions �a⋆ þ ðalrl; a

g
rlÞ

and the current positionplee. The next orientation (quaternion) can be
obtained byexpððDtaorlÞ=2Þ⋆poee, where ⋆ denotes the quaternion inner
product and Dt is the time step.

The effect of the FSPA-guided CBF is pictorially depicted in Fig. 7D.
Here, the agent’s current state is at the middle of the ellipse, and the RL
action aims to bring the agent to the boundary where return is highest
while CBF keeps the agent within the safe region in a minimally in-
terfering way (hence, the objective in Eq. 16).

An illustration of the final policy for our running example is pro-
vided in Fig. 7 (E and F). Figure 7E shows the policy at q0.We can see
that the policy guides the robot toward A or B (whichever is closer
to its current position) while avoiding C and D. Once A or B is
reached (transition to q1 occurs on the FSPA), the policy shown in
Fig. 7F takes the agent to C while avoiding D, hence satisfying the
specification.
Training setup and experiment details
Training is performed solely in simulation using the V-REP simulation
environment (Fig. 1B). Given that the learned policy outputs a path in
Euclidean space (no robot or environmental dynamics involved),
simulation-to-real transfer can be achieved with accuracy.

The state of the system S⊆ℝ45 consists of pee, the 7D end-effector
pose (position and quaternion); g ∈ [0,1], the 1D gripper state, where
g = 0 is fully open and g = 1 is fully closed; qs ∈ ℝ, the angle of grill
switch, in which a value of greater than p/6 is considered grill turned
on and 0 is turned off; probhr ∈ [0,1] is the probability of a ready-to-
serve hot dog provided by an object detector; and Po = {pgrill, pketchup,
pred, pblue, pgreen} is the set of poses of all tracked items in the scene
(red, blue, and green are the color of the tracked plates). We do not

directly track the pose of the hot dog or its components (sausage and
bun), but assume that we know their pose relative to the tracked
objects (know their initial pose and where they are placed during
the task).

Weuse proximal policy optimization (37) as the RL algorithm.Our
policy is a feed-forward neural network with four hidden layers. The
hidden layers have decreasing number of ReLU units from 400 to 100.
We use the same architecture for the value function. The episode ho-
rizon is 500 for the hot dog cooking task and 300 for the serving task.
Each policy and value update consists of five epochs on a trajectory
batch of size 50 using a minibatch of 128 experience tuples. A learning
rate of 3e−4 is used.

Randomization is important for the learned policy to generalize. At
initialization of each episode, we randomize the poses of the ketchup
and the three plates. The initial configuration of the robot is kept fixed,
but the FSPA state is randomized to promote exploration at later stages
of the task without having to first learn to complete early stages. For the
serving task, the existence of a ready-to-serve hot dog in the scene and a
customer is also randomized to help Baxter learn to make the right
decisions.

The OptiTrack motion capture system was used to track object
poses. A Logitech HD webcam running Darknet (46) was used for
hot dog detection. Training in the simulated environment was per-
formed on a Google Cloud n1-standard-8 instance running Ubuntu
16.04 [eight virtual central processing units (CPUs) with 30-gigabyte
memory]. The hot dog cooking task was trained for 6 hours, and the
serving task was trained for 3 hours. Experiment on the physical system
was performed on aCyberPower PCwith Intel i7 8 core CPU (4.2GHz)
and 31-gigabyte memory.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/37/eaay6276/DC1
Text
Fig. S1. FSPA for example Grasp task.
Fig. S2. FSPA for template formulas.
Table S1. Predicate definitions.
Movie S1. Demonstration of proposed technique in simulation.
Movie S2. Execution of learned policy on the physical robots.
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