
A Control Architecture for Provably-Correct Autonomous Driving

Erfan Aasi1, Cristian Ioan Vasile2 and Calin Belta1

Abstract— This paper presents a novel two-level control
architecture for a fully autonomous vehicle in a deterministic
environment, which can handle traffic rules as specifications
and low-level vehicle control with real-time performance. At
the top level, we use a simple representation of the environment
and vehicle dynamics to formulate a linear Model Predictive
Control (MPC) problem. We describe the traffic rules and
safety constraints using Signal Temporal Logic (STL) formulas,
which are mapped to mixed integer-linear constraints in the
optimization problem. The solution obtained at the top level
is used at the bottom-level to determine the best control
command for satisfying the constraints in a more detailed
framework. At the bottom-level, specification-based runtime
monitoring techniques, together with detailed representations of
the environment and vehicle dynamics, are used to compensate
for the mismatch between the simple models used in the
MPC and the real complex models. We obtain substantial
improvements over existing approaches in the literature in the
sense of runtime performance and we validate the effectiveness
of our proposed control approach in the simulator CARLA.

I. INTRODUCTION

Recent advances in computational software and electronic
devices have led to development of several automated safety
features for modern vehicles over the last few years, e.g.,
Adaptive Cruise Control [1], and lane keeping systems [2].
However, the dynamically changing nature of urban driving
environments, and necessity of obeying a diverse set of
traffic rules, limit the performance of these safety systems
to relatively low-complexity driving scenarios.

To overcome this problem, a variety of control and plan-
ning algorithms have been proposed, some of which are
based on Model Predictive Control (MPC) [3]. In MPC,
models of the autonomous vehicle (referred to as ego), traffic
and environment at the current state are used to predict the
future behavior of the traffic participants over the MPC’s
finite horizon. The future-prediction property, together with
the capability of systematically handling constraints, have
made MPC a popular control approach for self-driving cars
[4], [5], [6] [7]. In [8] and [9], the authors formulated
MPC problems for providing safe motions, with the goal of
minimizing the required control intervention in the human
driver’s inputs. Uncertainty in the driver’s behavior was
investigated in the predictive control algorithms proposed
by [10] and [11]. In [12], the authors presented predictive
control methods for path following on slippery roads based
on linear time varying dynamic models. These approaches

*This work was partially supported by the NSF under grant IIS-1723995
and IIS-2024606 at Boston University.

1Erfan Aasi and Calin Belta are with Department of Mechanical
Engineering, Boston University, Boston, MA 02215, USA
eaasi@bu.edu,cbelta@bu.edu

2Cristian Ioan Vasile is with the Mechanical Engineering and Me-
chanics Department, Lehigh University, Bethlehem, PA 18015, USA
cvasile@lehigh.edu

are computationally expensive. Any increase in the com-
plexity of the models (ego’s dynamics, traffic, environment,
uncertainty) leads to an explosion in the runtime. As a result,
these approaches cannot handle real traffic scenarios.

There has been a growing trend recently to account for
traffic complexities involving human drivers [13], [14], and
rules of the road [15], [16], [17], [18]. For the later, temporal
logics [19] were proposed to formalize the rules of the
road. MPC problems with Linear Temporal Logic (LTL)
constraints have been investigated in [20], [21]. In [22] and
[23] control strategies have been proposed for discrete-time
systems subject to Signal Temporal Logic (STL) formulas
[24], which were encoded as Mixed-Integer Linear Con-
straints (MILCs) in an MPC framework. Even though such
problems can be solved relatively fast, existing approaches
generally do not satisfy real-time performance requirements.

In this paper, we consider rules of the roads expressed us-
ing STL formulas, together with collision avoidance require-
ments, and a cost function that penalizes, e.g., acceleration
or heading changes. We use runtime monitoring [25], [26]
to alleviate computational burden associated with control via
complex dynamics, models, and constraints. We specifically
focus on meeting the runtime performance criteria. The
problem we are tackling is difficult even in the deterministic
regime, due to computational complexity arising from the
large number of constraints. We propose a two-level control
scheme, which solves the control problem at the top level
with simple models and checks the correctness of the solu-
tions at the bottom level against complex models (see Fig. 1).

At the top level, based on a successive on-line linearization
of a simple bicycle model and a simple representation
of the environment, an MPC framework with a quadratic
objective function is formulated. At this level, the STL
specifications are encoded as mixed-integer linear constraints
and imposed in the optimization problem, which leads to
a Mixed-Integer Quadratic Programming (MIQP) problem.
The obtained optimal controller is used in the bottom level
controller to find the best control input for satisfying the
traffic rules in a more detailed framework, by applying
runtime monitoring on the fly over the trajectories of ego.
Through computational experiments performed in the urban
traffic simulator CARLA, we show significant performance
benefits of the proposed method, in terms of runtime and
solution quality, against existing NMPC approaches.

II. PROBLEM STATEMENT

We consider discrete-time continuous-space models for the
dynamics of the vehicles in the environment. We assume
uniform discretization intervals ∆t (each time step t is an
integer multiple of ∆t). Ego is required to follow a reference
path denoted by R between an initial and a final point.

2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

978-1-6654-4197-1/$31.00 ©2021 AACC 2913

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

(a) High-level controller

(b) Low-level controller

Fig. 1. Overview of the proposed method: (a) high-level controller based
on MIQP, (b) low-level controller based on runtime monitoring

The MPC’s finite horizon consists of H time steps, and the
total finite number of time steps of the vehicle’s operation is
denoted by T , which is unknown. All of the vector variables
are shown in bold and the Euclidean norm of a vector x is
denoted by ||x||.

1) Dynamic Model of Ego: The state vector of ego
consists of the position of the vehicle (Xt, Yt) in the absolute
coordinate frame of the environment, its heading (yaw angle)
ψt and its velocity vector (Ẋt, Ẏt) of magnitude vt =
‖(Ẋt, Ẏt)‖. The control input is denoted by ut = [δt, γt]

>,
where δt ∈ [δmin, δmax] is the steering angle and γt ∈
[−1, 1] is the standard throttle (γ > 0) and braking (γ < 0)
input. The model of ego is given by

ζt+1 = f(ζt,ut), (1)

where f is specified in Sections III-A.1 and III-B.1.
2) Model of Environment: The environment consists of

lanes, traffic signs, and traffic participants such as vehicles,
pedestrians and bicyclists. For simplicity, we assume that all
traffic participants are vehicles, but our method is applicable
to general urban driving environments with any type of traffic
participants. We assume the sensors and cameras of ego
detect and provide necessary information about traffic signs
and other vehicles in a specific nearby radius, denoted by
rnear (details in Sections III-A.2 and III-B.2).

3) Reference Path: We assume a reference path R is
provided to ego, which is an untimed finite sequence of
M points Pi: R = {P1, ..., PM}, where each Pi specifies
a position (Xr,i, Yr,i) and a heading ψr,i. We assume the
positions are in the middle of the lanes and they are equally
spaced from each other (see Fig. 2).

4) Objective Function: Ego is required to follow the
reference path as closely as possible. The objective function
Fobj(.) at each time step accounts for ego’s control inputs,
the comfort of the driver determined by changes in the
inputs, and tracking error with respect to the reference path.
At each time step t, given the state of ego ζt and the
reference path R, we consider the trajectory error term as
et = E(R, ζt), where the function E computes the Euclidean
distance between current position of ego and the nearest
position on the path R. Thus, we formulate the objective
function as

Fobj(ut,ut−1, et) = ‖ut‖2 + ‖ut − ut−1‖2 + e2t . (2)

5) Traffic Rules: In this paper, we capture traffic rules
using STL formulae [27] over predicates p in the state ζt
of system (1). Informally, STL formulas φ are formed using
Boolean connectives, such as ¬ ∧ ∨, and temporal operators,
such as U[a,b] (until), �[a,b] (always) and ♦[a,b] (eventually).
The semantics of STL formulas is interpreted over state
trajectories ζt. We use ζt |= φ to denote that ζt satisfies φ at
time t. For example, ζt |= �[a,b]φ means that φ is satisfied
for all times in the interval [a, b] along ζt; ζt |= ♦[a,b]φ
means that φ is satisfied for some time in the interval [a, b].

We consider collision avoidance as a traffic rule. Moreover,
we do not explicitly require the vehicle to stay in lane - we
assume this constraint is satisfied as the vehicle follows the
reference path, which is made of points in the middle of
lanes. We denote the finite set of STL traffic rules by Φ. We
use Φactive,t ⊆ Φ to denote the subset of active traffic rules
at time step t.

Consider for example the collision avoidance constraint,
where ego is required to avoid collisions with the other
vehicles in the environment at all times. This traffic rule
can be formulated as �[0,H] (collision avoidance), where
(collision avoidance) indicates that ego does not collide
with any other vehicle, over the MPC’s horizon H . In
Sections III-A.2 and III-B.2 we explain how we check value
of this predicate in each level of the proposed controller.

6) Problem Formulation: Given the environment of ego,
its dynamic model (1), the reference path R, and the set of
traffic rules Φ, find a control sequence u∗1:T such that:

u∗1:T = arg min
u1:T

T∑
k=1

Fobj(uk,uk−1, ek) (3)

s.t. ζk+1 = f(ζk,uk), ek = E(R, ζk), ζk |= φ,

∀φ ∈ Φactive,k, k = 1, ..., T

At each time step k we need the total computation time of
updating the control command to be less than the time step
∆t between discrete times k and k+1. Otherwise, the delays
in applying the control inputs can lead to instability of the
system and late reaction to outside events (see e.g., [28]). In
this paper, we require the solution of (3) to be computed in
less than ∆t = 0.1 seconds (10Hz). This rate is a common
requirement for low-speed urban driving.

III. SOLUTION

We propose a two-level controller for driving the au-
tonomous vehicle from its initial state to the goal (Fig. 1) and
satisfying the runtime performance requirement. At the high
level we formulate a MPC problem, which uses a simple
representation of ego’s dynamic model and its environment
to compute the optimal control input at each time step. At
this level, the set of traffic rules that ego must satisfy are
imposed as mixed-integer linear constraints to the MPC.
The optimal control from the high-level controller is the
used in the low-level to forward simulate the trajectory ego
in a complex model of ego and the environment. STL-
based runtime monitoring is used in this level to verify the
correctness of ego’s behavior. In the following, we detail
each layer of the controller.

2914

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

A. High-level Controller
In this level we use a simple bicycle dynamic model for

ego and simple representations for traffic participants, to
formulate a MPC problem with planning horizon H and with
a quadratic cost function J . Traffic rules are translated to
MILCs and the active rules at each time step are imposed to
MIQP optimization problem.

1) Simplified Vehicle Model: We consider a kinematic
bicycle model as a simplified model for ego:

[Ẋ, Ẏ , ψ̇, v̇]> = [v cosψ, v sinψ,
v

lf
tan δ, a]> (4)

where lf is the distance from center of the mass to the
front axle, and a is the acceleration (or deceleration) of
the car. Generally there is a complicated relationship be-
tween the acceleration (or deceleration) of a vehicle and
the applied throttle (or braking) γ. Here we assume there
is an (approximate) map to convert between them and in the
simulation results in Section IV, we estimate this mapping
by benchmark data. In (4) we have assumed only the front
wheel’s steering δf affects the orientation of the car and for
simplicity we have shown δf by δ. If we denote the state
vector of simplified vehicle model at time step t by ζst =
[Xt, Yt, ψt, vt]

> and the input vector by ut = [δt, γt]
>, the

time-discrete, linearized version of (4) is ζst+1 = fs(ζst ,ut).
2) Simplified Environment Model: Other vehicles in the

environment are indexed by i ∈ I = {1, ..., N}, and the
position of the ith vehicle at the time step t is denoted by
(Xi,t, Yi,t). We assume at each time step t, the sensors of ego
are able to estimate the velocity and heading of the nearby
vehicles, to predict their future trajectories over the period
[t, t + H]. We use simple bicycle model in (4) to predict
the trajectories of other vehicles assuming constant velocity
and heading over the horizon H . There are no reference paths
for other vehicles. However, we assume that they obey traffic
rules and perform simple collision avoidance.

The set of vehicles closer than rnear to ego at time
step t is denoted by Inear,t ⊂ I , i.e., Inear,t = {i ∈
I | ‖(Xt, Yt) − (Xi,t, Yi,t)‖ ≤ rnear}. To simplify ego’s
environment representation, we consider all vehicles in the
environment as point-masses. To avoid collisions, the Eu-
clidean distance between ego and nearby vehicles must
be bigger than a safe distance Dsafe. However, quadratic
non-convex constraints are difficult to impose and lead to
higher runtime for the algorithm. Therefore, we approxi-
mate the Euclidean norm with the 1-norm, and define the
(collision avoidance) predicate in the collision avoidance
rule by ∀i ∈ Inear,t : |Xt − Xi,t| + |Yt − Yi,t| ≥ Dsafe.
This requirement ensures collision avoidance, as the 1-norm
upper bounds the Euclidean norm, and it can be imposed as
a linear constraint to the optimization problem.

3) Rules of the Roads: Given the set of active traffic con-
straints Φactive,t at time step t, we use the techniques from
[22], [23] to translate the STL specifications to MILCs and
impose them in the MPC problem over the time horizon H .
If any of active STL specifications has a time horizon longer
than the MPC’s planning horizon, we keep track and adjust
the involved signals in that specification to have a correct
notion of receding horizon control for that specification.

4) MPC Formulation: At each time step t, based on the
current state and goal position of ego, a desired trajectory
to follow over the period [t, t + H] is extracted from the
reference path, in the form of H waypoints (see Fig. 2).
In more detail, each of the waypoints consists of the desired
position (Xdes,t, Ydes,t) and desired heading ψdes,t matching
one of the points Pi in the reference path, together with
desired speed vdes,t. Based on the sensor outputs of ego,
the desired speed is adjusted with respect to the situation
of ego at each time step. Note that in the desired trajectory
of the MPC framework, the dynamic model of ego is not
considered, which means the desired trajectory may not be
dynamically feasible to follow at all time steps of the MPC
horizon. We denote the desired waypoint at time step t by
ωt = [Xdes,t, Ydes,t, ψdes,t, vdes,t], and the desired trajectory
to follow at time step t by the sequence [ωt,ωt+1, ...,ωt+H].

Fig. 2. Representation of reference path and desired trajectory. Following
the traffic rules, the desired speed for the waypoint ω2 and after will be
considered 30 km/h.

We consider a quadratic objective function at each time
step of the MPC framework, composed of three terms: a
control penalty, a step-to-step control change penalty, and
the trajectory tracking error. Hence for the cost function J
of the MPC problem we have:

J (ζst ,ut,ut−1) = ‖ut‖2 +‖ut−ut−1‖2 +‖ζst −ωt‖2 (5)

And we can formulate the optimization problem as:

u∗t: t+H−1 = arg min
ut: t+H−1

t+H−1∑
k=t

J (ζsk,uk,uk−1) (6)

s.t. ζsk+1 = fs(ζsk,uk), ζsk |= φ ∀φ ∈ Φactive,k,

k = t, ..., t+H − 1

where u∗t: t+H−1 = [u∗t , ...,u∗t+H−1] is the optimal control
sequence over the planning horizon of the MPC. If the MPC
problem gets infeasible in a particular time step, we consider
the optimal solution from the last time step and pass it to
the low-level controller.

B. Low-level Controller
In this level (Fig. 1(b)), we use the solution of the high-

level controller to simulate the future trajectory of ego, over
the planning horizon of the MPC. The main objective of this
level is to make corrections to the performance of ego with
respect to the cost function (5), based on the detailed models
that describe ego and environment. Runtime monitors are
constructed from the active traffic constraints and applied to
the vehicle’s trajectory to verify correctness of its behavior.

1) Detailed Vehicle Model: The detailed model used in
this level is the four-wheel vehicle model, similar to the one
used in [12], with the nonlinear Pacejka model for computing
the tire forces [29], and with the same notation as the one

2915

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

used in the general bicycle model in (4). We consider the
state vector of ego in the detailed dynamic model at time
step t as ζdt = [Xt, Yt, ẋt, ẏt, ψt, ψ̇t]

>, where ẋ and ẏ are
the velocity components with respect to the local coordinate
system in the car body frame and ψ̇ is the rate of change of
the heading angle. If we denote the control input by ut =
[δt, γt]

>, then the discrete-time version of the detailed model
can be described as ζdt+1 = fd(ζdt ,ut).

2) Detailed Environment Model: In detailed model of
environment, we consider the bounding boxes of vehicles
for checking the collision avoidance constraints. The axis-
aligned bounding box of the nearby vehicle i at time step t is
denoted by BBi,t, and we define BBnear,t =

⋃
i∈Inear,t

BBi,t

as the union of bounding boxes of nearby vehicles. The
bounding box of ego itself is denoted by BBt. We can
verify the satisfaction of collision avoidance constraints
by checking the intersection between the bounding boxes.
Hence, in the low-level controller we consider the predi-
cate (collision avoidance) true at time step t if BBt ∩
BBnear,t = ∅, where we use notation of Section II-.2.

3) Runtime Monitoring: We use runtime monitoring tech-
niques from [30] to verify the satisfaction of the active
traffic constraints, in the detailed setting, i.e., complex ego
dynamic model and detailed environment model as defined
above. We simulate the trajectory of the vehicle in the
detailed framework over the MPC horizon, and then use
the constructed monitors to verify the satisfaction of the
traffic rules. We first examine the optimal control uopt from
the high-level controller, and if it satisfies all constraints,
it is applied on the vehicle; otherwise, we try near-optimal
control inputs that are randomly sampled from the r-ball
C = {u | ‖u−uopt‖ ≤ r} around the optimal control in the
control space, for a small positive value r. We continue the
above procedure until the simulated trajectory of the vehicle
with a control from region C satisfies all constraints.

If the controller cannot find the best control input within
the sampling threshold of the low-level, we apply full braking
to the vehicle. Handling infeasibility is a big issue in the field
of self-driving cars. We chose full-breaking, because we are
interested in urban driving, where the most sensible action
is to stop. This is the recommended course of action by law
in case a driver does not know what to do.

IV. RESULTS

The performance and capabilities of our proposed control
method are validated through four urban-driving simulation
scenarios. We have used CARLA [31] in Python, which
is an open-source autonomous driving simulator that uses
highly-detailed models for the traffic participants and urban
environments. We use Gurobi package [32] for solving the
MPC problem in the high-level controller. In all scenarios
ego must follow a reference path as close as possible, but also
satisfy a set of traffic rules, which we detail for each scenario.
In the simple representation the scenarios, the reference path
is shown by a red line that connects the initial point A
to the goal point B. To measure the runtime performance
of our control algorithm, we have used frequency of the
system’s clock, which represents the rate of the control loop
and environment update. This quantity is expressed in Frame

Per Second (FPS) in our figures. In all simulations we set
the parameters as follow: H = 10, lf = 2.11m, rnear =
10m, r = 0.3m, Dsafe = 1m, and time step ∆t = 0.1 s.

1) Comparison scenario: To show the performance of
our control algorithm compared to the existing works in the
literature based on NMPC, we have designed a scenario
where the vehicle has to follow a reference path in a
curved road with different speed limit signs along it (Fig.
3(a)). We first formulated the NMPC problem with the

(a)

0 5 10 15 20 25 30
Time (s)

0

10

20

30

40

50

60

Fr
am

e
pe

r
se

co
nd

(H
z)

Our method
NMPC method

(b)

Fig. 3. (a) Simple representation of the comparison scenario (b) FPS of
our control method compared to the NMPC approach

detailed dynamic model used in the bottom-level of our
algorithm, but the runtime performance of this method was
less than 5HZ on average and it led to instability of the
controller. Then for having results that are comparable with
our algorithm, we formulated the NMPC controller with a
simple bicycle model, and here we present the figures for the
second approach. Also we implemented our control approach
and the NMPC method with the same planning horizon,
same reference path, and the same cost function for the
optimization problem. As shown in Fig. 3(b), our proposed
method based on FPS, is much faster than the NMPC.

In Fig. 4 the error of each algorithm’s trajectory with
respect to the reference path is plotted over time, which
shows our algorithm follows the reference path with smaller
error on average, compared to the NMPC method. Maximum
tracking error of our controller is 0.29m, while this value
for the NMPC implementation is 0.93m. Finally in Fig. 5
the speed profiles of the algorithms are presented, where the
maximum speed limits are shown by dash lines. Overall,
we believe that the NMPC problem is more likely to get
stuck in the locally-optimal solutions, than our quadratic
programming problem with MILCs, and that can adversely
affect the performance of the NMPC approach.

0 5 10 15 20 25 30
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
aj

ec
to

ry
er

ro
r

(m
)

(a) Our method’s error

0 5 10 15 20 25 30
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Tr
aj

ec
to

ry
er

ro
r

(m
)

(b) NMPC method’s error

Fig. 4. Trajectory errors with respect to the reference path

2) Traffic rules scenario: This scenario shows how well
our algorithm satisfies the traffic rules. In this scenario while
the vehicle is following the reference path, it reaches a stop

2916

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25
Time (s)

0

20

40

60

80

100

S
pe

ed
(k

m
/h

)
Real
Limit

(a) Our method’s speed profile

0 5 10 15 20 25 30
Time (s)

0

20

40

60

80

100

S
pe

ed
(k

m
/h

)

Real
Limit

(b) NMPC method’s speed profile

Fig. 5. Speed profiles of the algorithms. Our algorithm reaches higher
legal speeds on average, compared to the NMPC implementation.

sign and a traffic light (Fig. 6(a)), and has to adjust its
velocity to satisfy the rules. Fig. 6(b) shows that overall, our
controller maintains a fast performance during its operation.

(a)

0 10 20 30 40 50 60
Time (s)

0

10

20

30

40

50

60

Fr
am

e
pe

r
se

co
nd

(H
z)

(b)

Fig. 6. (a) Simple representation of traffic rules scenario, (b) FPS of our
controller.

In Fig. 7(a) the speed profile of the vehicle is presented
together with the traffic light’s state over time in Fig. 7(b)
that shows the fast performance of ego with respect to the
events happening in its environment. In Fig. 7(a), when ego
detects the stop sign at time 11.2s, it starts decreasing its
velocity to stop near the stop sign at time 11.9s. Afterwards,
it detects the red light at time 21.7s, and stops at time 22.1s.
Its velocity is zero until it detects the green light at time
52.8s, when it starts moving again.

(a) (b)

Fig. 7. (a) Speed profile of ego, and (b) traffic light’s state over time

3) Safety scenario: This scenario shows how the low-
level controller compensates for the mismatch between the
real world and the simple models in the high-level controller,
to ensure safety. In Fig. 8(a) a simple representation of the
scenario is shown, where there are 160 other vehicles in
the environment and the blue arrows show their direction
of motion. In Fig. 8(b) the runtime speed of our controller,
with and without applying the runtime monitoring, is rep-
resented. We see the average frame per second rate in the
”with monitor” case is less than the ”without monitor” one.
This is reasonable, because low-level controller considers

more complicated models, with more constraints, and in
”with monitor” implementation it decreases runtime speed
on average.

(a)

0 5 10 15 20 25 30 35 40
Time (s)

0

10

20

30

40

50

60

Fr
am

e
pe

r
se

co
nd

(H
z)

Without monitor
With monitor

(b)

Fig. 8. (a) Simple representation of safety scenario (b) FPS of the controller,
with and without monitoring

The main purpose of this scenario is to show the role of
low-level controller to ensure safety, and it is presented in
Fig. 9. The minimum distance of ego from nearby vehicles is
plotted over time in both cases, with and without monitoring.
Bounding boxes of all vehicles have same length (4.22m)
and width (1.8m); therefore, if two vehicles in the same
(parallel) lane(s) get closer than 4.22m (1.8m), a collision has
happened between them. In this scenario, in both of ”with
monitor” and ”without monitor” cases and around the times
∼6s and ∼19s, ego detects its nearest nearby vehicle in the
parallel lane, and their distance is bigger than 3.5m, which
means no collision happens. Around the time 32s, ego detects
another stationary vehicle in the same lane, and ego decreases
speed to stop behind it. We see that in the ”without monitor”
case, the distance between the vehicles gradually gets less
than 4.22m and eventually a collision occurs between them,
while in the ”with monitor” case ego maintains the distance
bigger than 4.22 m. Hence, the low-level runtime monitoring
helps to ensure safety for ego.

0 5 10 15 20 25 30 35 40
Time (s)

1

2

3

4

5

6

M
in

di
st

an
ce

fr
om

ot
he

r
ve

hi
cl

es
(m

)

Vehicle in another lane

Vehicle in same lane

Collision

Without monitor
With monitor

Fig. 9. Minimum distance between ego and its nearby vehicles over time.

4) Scalability scenario: This scenario shows how our
proposed control method scales with the number of nearby
vehicles. In Fig. 10(a) a simple representation of the scenario
is provided, where there are 121 other vehicles in the
environment and we set rnear = 40 m. In Fig. 10(b) and
10(d), the frame per second rate and the number of nearby
vehicles that ego detects, are plotted over time. We see that
during most of the runtime of the scenario, the vehicle detects
on average more than 6 vehicles, and close to the time 36s, it
detects 18 vehicles and predicts their future trajectories in a
detailed framework, which drops the FPS to its lowest value
of 4Hz. In Fig. 10(c), the minimum distance of ego relative

2917

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

to its nearby vehicles is presented over time and it verifies
that ego always keeps a safe distance from nearby vehicles.

(a)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

25

Fr
am

e
pe

r
se

co
nd

(H
z)

Minimum runtime speed

(b)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

M
in

di
st

an
ce

fr
om

ot
he

r
ve

hi
cl

es
(m

)

(c)

0 10 20 30 40 50 60
Time (s)

0

5

10

15

20

N
um

be
r

of
ne

ar
by

ve
hi

cl
es

Maximum number
of nearby vehicles

(d)

Fig. 10. (a) Simple representation of scalability scenario, (b) FPS of
algorithm over time, (c) minimum distance from nearby vehicles, (d) number
of nearby vehicles that have been detected

V. CONCLUSION AND FUTURE WORK

This paper presents a two-level control approach for
fully autonomous vehicles. In the high-level controller we
formulate a MPC problem with MILCs, based on simple
models for ego and the environment. Then, specification-
based runtime monitoring techniques are used in the low-
level controller to check the correctness of ego’s trajectories
against complex models. Our control is over both steering
and throttle/braking of ego and we obtain substantial perfor-
mance improvements, in terms of quality and runtime, over
existing NMPC approaches.

REFERENCES

[1] A. Vahidi and A. Eskandarian, “Research advances in intelligent
collision avoidance and adaptive cruise control,” IEEE transactions on
intelligent transportation systems, vol. 4, no. 3, pp. 143–153, 2003.

[2] J.-F. Liu, J.-H. Wu, and Y.-F. Su, “Development of an interactive lane
keeping control system for vehicle,” in 2007 IEEE Vehicle Power and
Propulsion Conference, pp. 702–706.

[3] E. F. Camacho and C. B. Alba, Model predictive control. Springer
Science & Business Media, 2013.

[4] R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of au-
tonomous mobility-on-demand systems,” in 2016 IEEE International
Conference on Robotics and Automation, pp. 1382–1389.

[5] S. J. Anderson, S. C. Peters, T. E. Pilutti, and K. Iagnemma, “An
optimal-control-based framework for trajectory planning, threat assess-
ment, and semi-autonomous control of passenger vehicles in hazard
avoidance scenarios,” International Journal of Vehicle Autonomous
Systems, vol. 8, no. 2-4, pp. 190–216, 2010.

[6] T. Faulwasser, B. Kern, and R. Findeisen, “Model predictive path-
following for constrained nonlinear systems,” in Proceedings of the
48h IEEE Conference on Decision and Control held jointly with 2009
28th Chinese Control Conference, pp. 8642–8647.

[7] T. Weiskircher, Q. Wang, and B. Ayalew, “Predictive guidance and
control framework for (semi-) autonomous vehicles in public traffic,”
IEEE Transactions on control systems technology, vol. 25, no. 6, pp.
2034–2046, 2017.

[8] W. Schwarting, J. Alonso-Mora, L. Pauli, S. Karaman, and D. Rus,
“Parallel autonomy in automated vehicles: Safe motion generation
with minimal intervention,” in 2017 IEEE International Conference
on Robotics and Automation, pp. 1928–1935.

[9] S. M. Erlien, S. Fujita, and J. C. Gerdes, “Shared steering control using
safe envelopes for obstacle avoidance and vehicle stability,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp.
441–451, 2015.

[10] A. Gray, Y. Gao, J. K. Hedrick, and F. Borrelli, “Robust predictive
control for semi-autonomous vehicles with an uncertain driver model,”
in 2013 IEEE Intelligent Vehicles Symposium, pp. 208–213.

[11] C. Liu, A. Carvalho, G. Schildbach, and J. K. Hedrick, “Stochastic
predictive control for lane keeping assistance systems using a linear
time-varying model,” in 2015 American Control Conference. IEEE,
pp. 3355–3360.

[12] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoid-
ance on low curvature roads,” in 16th international IEEE conference
on intelligent transportation systems, 2013, pp. 378–383.

[13] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016.

[14] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus,
“Social behavior for autonomous vehicles,” Proceedings of the Na-
tional Academy of Sciences, vol. 116, no. 50, pp. 24 972–24 978, 2019.

[15] J. Karlsson, C.-I. Vasile, J. Tumova, S. Karaman, and D. Rus, “Multi-
vehicle motion planning for social optimal mobility-on-demand,” in
2018 IEEE International Conference on Robotics and Automation, pp.
7298–7305.

[16] J. Tumova, G. C. Hall, S. Karaman, E. Frazzoli, and D. Rus, “Least-
violating control strategy synthesis with safety rules,” in Proceedings
of the 16th international conference on Hybrid systems: computation
and control, 2013, pp. 1–10.

[17] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scltl motion planning for mobility-on-demand,” in 2017 IEEE
International Conference on Robotics and Automation, pp. 1481–1488.

[18] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli, “Liability, ethics, and culture-aware behavior
specification using rulebooks,” in 2019 International Conference on
Robotics and Automation. IEEE, pp. 8536–8542.

[19] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[20] X. Ding, M. Lazar, and C. Belta, “Ltl receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, pp. 399–408,
2014.

[21] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Transactions on Automatic Control,
vol. 57, no. 11, pp. 2817–2830, 2012.

[22] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[23] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton). IEEE, pp. 772–779.

[24] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[25] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification, 2018, pp. 135–175.

[26] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A.
Seshia, “Robust online monitoring of signal temporal logic,” Formal
Methods in System Design, vol. 51, no. 1, pp. 5–30, 2017.

[27] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[28] J. Baillieul and P. J. Antsaklis, “Control and communication challenges
in networked real-time systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 9–28, 2007.

[29] H. Pacejka, Tire and vehicle dynamics. Elsevier, 2005.
[30] D. Ulus, “Online monitoring of metric temporal logic using sequential

networks,” arXiv preprint arXiv:1901.00175, 2019.
[31] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:

An open urban driving simulator,” arXiv preprint:1711.03938, 2017.
[32] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.

[Online]. Available: http://www.gurobi.com

2918

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:15:52 UTC from IEEE Xplore. Restrictions apply.

