
308 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

A Formal Methods Approach to Pattern Recognition
and Synthesis in Reaction Diffusion Networks

Ezio Bartocci, Ebru Aydin Gol, Member, IEEE, Iman Haghighi , Student Member, IEEE,
and Calin Belta, Senior Member, IEEE

Abstract—We introduce a formal framework for specifying, de-
tecting, and generating spatial patterns in reaction diffusion net-
works. Our approach is based on a novel spatial superposition
logic, whose semantics is defined over the quad-tree representation
of a partitioned image. We demonstrate how to use rule-based clas-
sifiers to efficiently learn spatial superposition logic formulas for
several types of patterns from positive and negative examples. We
implement pattern detection as a model-checking algorithm and
we show that it achieves very good results on test data sets which
are different from the training sets. We provide a quantitative se-
mantics for our logic and we develop computational framework
where our quantitative model-checking algorithm works in syn-
ergy with a particle swarm optimization technique to synthesize
the parameters leading to the formation of desired patterns in re-
action diffusion networks.

Index Terms—Formal verification and synthesis, pattern recog-
nition and formation, reaction diffusion networks.

I. INTRODUCTION

S PATIAL pattern formation is central to the understanding of
how complex organisms develop and how self-organization

arises out of locally interacting dynamical systems. Examples
of spatial patterns are ubiquitous in nature: from the stripes of
a zebra and the spots on a leopard to the filaments (Anabaena)
[1], squares (Thiopedia rosea), and vortex (Paenibacillus) [2]
formed by single-cell organisms.

Pattern formation is not only at the very origin of morpho-
genesis and developmental biology, but it is also at the core
of technologies, such as self-assembly, tissue engineering, and
amorphous computing. Even though the study of spatial patterns
has kindled the interest of several communities, such as biology,
computer science, and physics, the mechanisms responsible for
their formation are not yet well understood.

Manuscript received January 4, 2016; revised June 9, 2016; accepted August
25, 2016. Date of publication September 13, 2016; date of current version
March 16, 2018. This work was supported in part by ONR under Grant ONR
N00014-14-1-0554, in part by the National Science Foundation under Grant
CBET-0939511, in part by the Austrian FFG project HARMONIA (no. 845631),
in part by the Austrian FWF-funded (no. S 11405-N23) SHiNE project, and in
part by the EU ICT COST Action IC1402 on Runtime Verification beyond
Monitoring (ARVI). Recommended by Associate Editor Rafael Fierro.

E. Bartocci is with the Institute of Computer Engineering, Vienna University
of Technology, Vienna, Austria (e-mail: ezio.bartocci@tuwien.ac.at).

E. Aydin Gol is with the Department of Computer Engineering, Middle East
Technical University, Ankara Turkey (e-mail: ebrugol@metu.edu.tr).

I. Haghighi and C. Belta are with the Division of Systems Engineering, Boston
University, Boston, MA, USA (e-mail: haghighi@bu.edu; cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCNS.2016.2609138

Pattern recognition is usually considered as a branch of ma-
chine learning [3] where patterns have a statistical characteriza-
tion [4] or they are described through a structural relationship
among their features [5]. Even though pattern recognition has
been successful in several application areas [6], it still lacks
of a formal foundation and a suitable high-level specification
language that can be used to specify patterns in a concise and
intuitive way and to reason about them in a systematic way.

In particular, we are interested in the following questions. Can
patterns be specified in a formal language with well-defined syn-
tax and semantics? Can we develop algorithms for pattern detec-
tion from specifications given in such a language? Given a large
collection of locally interacting agents, can we design parameter
synthesis rules, control and interaction strategies guaranteeing
the emergence of global patterns? In this paper, our goal is to
provide some preliminary answers to such questions by draw-
ing inspiration from the field of computer aided verification and
model checking [7], [8].

We address the following problem: Given a network of locally
interacting dynamical systems, and given sets of positive and
negative examples of a desired pattern, find parameter values
that guarantee the occurrence of the pattern in the network at
steady state. Our approach leverages on a novel spatial super-
position logic, called tree spatial superposition logic (TSSL),
whose semantics are defined over quad trees of partitioned im-
ages. In our setting, a pattern descriptor is a TSSL formula and
detecting the existence of a pattern in an image is a model-
checking problem. We can either manually specify the pattern
using the TSSL syntax or we can employ machine-learning tech-
niques using rule-based classifiers to infer such a formula from
given sets of positive and negative examples. We also develop a
computational framework where our model-checking algorithm
works in synergy with a particle swarm optimization technique
to synthesize the parameters leading to patterns of interest in
reaction diffusion systems.

The optimization fitness function is given by a measure of sat-
isfaction induced by the quantitative semantics that we define
for the logic. The positive and negative signs of this measure are
sound w.r.t. the satisfaction or violation of the formula, while
the absolute value represents “how far” an image is from a
desired pattern. We provide examples demonstrating that TSSL
formulas can encode, for some commonly encountered patterns,
very good classifiers. Furthermore, we compared TSSL formu-
las with traditional linear classifiers, and in all of the examples,
the classification rate of the TSSL formula was the highest (more

2325-5870 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1037-1046

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 309

than 95%). In the examples, we focus on the Turing reaction dif-
fusion network [9], and show that pattern-producing parameters
can be automatically generated with our method. However, the
overall computational approach can, in principle, be applied to
any network of locally interacting systems.

The rest of this paper is organized as follows. In Section II, we
discuss related work. In Section III, we formulate the problem
and outline our approach. We define the syntax and semantics
of TSSL in Section IV. A machine-learning technique to learn
TSSL formulas from positive and negative examples of desired
patterns is developed in Section V. The solution to the pattern
generation problem is presented in Section VI as a supervised,
iterative procedure that integrates quantitative model checking
and optimization. We conclude with final remarks and directions
for future work in Section IX.

II. RELATED WORK

Pattern recognition is a well-established technique in machine
learning. Given a data set and a set of classes, the goal is to assign
each data to one class, or to provide a “most likely” matching of
the data to the classes. The two main steps in pattern recognition
are: 1) to extract distinctive features [10]–[13] with relevant
information from a set of input data representing the pattern
of interest and 2) to build, using one of the several available
machine-learning techniques [14], an accurate classifier trained
with the extracted features. The descriptor chosen in the feature
extraction phase depends on the application domain and the
specific problem.

This work is related to pattern recognition in computer vi-
sion, where these descriptors may assume different forms. Fea-
ture descriptors, such as textons [10] and histograms of oriented
gradients (HoG) [11], are concerned with statistical informa-
tion of color distributions of intensity gradients and edge direc-
tions. The scale-invariant feature transform (SIFT), proposed
by Lowe in [13], is based on the appearance of an object at
particular interest points, and is invariant to image scale and
rotation. The shape context [12] is another feature descriptor
intended to describe the shape of an object by the points of its
contours and the surrounding context.

In this paper, we establish a connection between verification
and pattern recognition. Both classical verification [15]–[19]
and pattern recognition techniques aim to verify (and possibly
quantify) the emergence of a behavioral pattern. We propose
logic formulas as pattern descriptors and verification techniques
as pattern classifiers. The logical nature of such descriptors al-
lows to reason about patterns and to infer interesting properties,
such as spatial periodicity and self-similar (fractal) texture. Fur-
thermore, combining different pattern descriptors using modal
and logical operators is quite intuitive.

This paper is inspired by the original work on morphogenesis
by Turing [9], and is closely related to [20]. In the latter refer-
ence, the authors introduced a linear spatial superposition logic
(LSSL), whose formulas were interpreted over quad-tree image
partitions. The existence of a pattern in an image corresponded
to the existence of a path in the corresponding tree from the root
to the leaf corresponding to a representative point in the image.
As a consequence, the method was shown to work for spirals,

for which the center was chosen as the representative point. The
logic proposed here is more general as it does not depend on
the choice of such a point and captures the pattern “globally”.
For example, the patterns considered in this paper cannot be
expressed in LSSL, because they rely on a tree representation
rather than a path representation.

As opposed to [20], we also define a quantitative semantics
for the logic, which can be seen as a “distance” to satisfac-
tion given an image and a formula. We use this distance as a
fitness function in an optimization problem to search for pattern-
producing parameters in a system. This quantitative semantics
and the discounted model checking on a computational tree are
inspired from [21], with the notable difference that we do not
need a metric distance, but rather a measure of satisfiability.
Such measures have also been used in [15]–[19]. While such
measures exist for classical classifiers such as support vector
machines (SVM) [3], Fisher linear discriminants (FLD) [3],
and Kozinec’s hyperplane [22]in the form of the distance from
an image to the classifying hyperplane in the feature space,
we show (through numerical experiments) that the measure in-
duced by the quantitative semantics of TSSL is better suited for
optimization algorithms.

This paper is also related to the vast literature on consensus
protocols (see [23]–[25]). As in these works, here we consider
a network of locally interacting dynamical systems, and we
are interested in achieving a desired, emergent global behavior.
However, as opposed to most works in this area, the global be-
havior we consider is a spatially distributed pattern, rather than
an agreement on some quantity. Moreover, rather than showing
that some global behavior emerges from given local interactions,
we design a top-down approach in which we prescribe the global
behavior and then synthesize the local dynamics achieving it.

Part of the material from this paper appeared in the Proceed-
ings of the IEEE Conference on Decision and Control (CDC)
2014 [26], where most of the theoretical results were presented
without proofs. In addition to the technical details, this paper
includes:

1) a notion of max distance between two quad transition
systems (see Definition 9) in Section IV;

2) a theorem on the correctness of the TSSL qualitative se-
mantics w.r.t. the quantitative semantics given two quad
transition systems with a given max distance (Theorem 2)
in Section IV;

3) a comparison of the classification and quantification ca-
pabilities offered using TSSL w.r.t. the traditional linear
classifiers in Section VII;

4) a new version of TSSL with basic propositions expressing
constraints over higher statistical moments and an exam-
ple on the improved effectiveness for pattern synthesis in
Section VIII.

III. PROBLEM FORMULATION

Notation: We use R, R+ , N, and N+ to denote the set of
real numbers, non-negative reals, integer numbers, and non-
negative integers, respectively. For any c ∈ R and set S ⊆ R,
S>c := {x ∈ S | x > c}, and for any a, b ∈ R, S[a,b] := {x ∈
S | a ≤ x ≤ b}.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

310 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

A reaction diffusion network S is modeled as a spatially
distributed and locally interacting K × K rectangular grid of
identical systems, where each location (i, j) ∈ N[1,K] × N[1,K]
corresponds to a system

Si,j :
dx

(n)
i,j

dt
= Dn (u(n)

i,j −x
(n)
i,j) + fn (xi,j ,R), n = 1, . . . , N,

(1)
where xi,j = [x(1)

i,j , . . . , x
(N)
i,j] is the N -dimensional state vector

of system Si,j , which captures the concentrations of all species
of interest. Diffusion coefficients D = [D1 , . . . , DN] ∈ RN

+
and reaction constants R ∈ RP − N are the parameters of a
system S. The local dynamics fn : RN

+ × RP − N → R are
defined by R for each of the species n = 1, . . . , N . Note
that the parameters and dynamics are the same for all sys-
tems Si,j , (i, j) ∈ N[1,K] × N[1,K] . The diffusion coefficient is
strictly positive for diffusible species and it is 0 for nondiffusible
species. Finally ui,j = [u(1)

i,j , . . . , u
(N)
i,j] is the input of system

Si,j from the neighboring systems

u
(n)
i,j =

1
|νi,j |

∑

v∈νi , j

x(n)
v ,

νi,j denotes the set of indices of systems adjacent to Si,j .
Given a parameter vector p = [D,R] ∈ RP , we use S(p) to

denote an instantiation of a reaction diffusion network. We use
x(t) ∈ RK×K×N

+ to denote the state of systemS(p) at time t, and

xi,j (t) ∈ RN
+ to denote the state of system S

(p)
i,j at time t. While

the model captures the dynamics of concentrations of all species
of interest, we assume that a subset {n1 , . . . , no} ⊆ {1, . . . , N}
of the species is observable through

H : RK×K×N
+ → RK×K×o

[0,b] : y = H(x),

for some b ∈ R+ . For example, a subset of the genes in a gene
network is tagged with fluorescent reporters. The relative con-
centrations of the corresponding proteins can be inferred by
using fluorescence microscopy.

We are interested in analyzing the observations generated by
system (1) in steady state. Therefore, we focus on parameters
that generate steady-state behavior, which can be easily checked
through a running average

K∑

i=1

K∑

j=1

N∑

n=1

| x
(n)
i,j (t) − x

(n)
i,j |< ε, (2)

where x
(n)
i,j =

∫ t

t−T x
(n)
i,j (τ)dτ/T for a sufficiently large T ≤ t.

The system is said to be in steady state at time t̄, if (2) holds
for all t ≥ t̄. In the rest of this paper, we will simply call the
observation of a trajectory at steady state as the observation of
the trajectory, and denote it as H(x(t̄)).

Example 1: We consider a 32 × 32 reaction diffusion net-
work with two species (i.e., K = 32, N = 2)

dx
(1)
i,j

dt
= D1

(
u

(1)
i,j − x

(1)
i,j

)
+ R1x

(1)
i,j x

(2)
i,j − x

(1)
i,j + R2 ,

dx
(2)
i,j

dt
= D2

(
u

(2)
i,j − x

(2)
i,j

)
+ R3x

(1)
i,j x

(2)
i,j + R4 . (3)

Fig. 1. Observations generated by system (3) with parameters R and a) D1 ;
b) D2 ; and c) D3 from Example 1 (the concentration of species 1 is represented
with shades of red). The steady-state observations produce: 1) large spots (LS);
2) fine patches (FP); and 3) small spots (SS).

The system is inspired from Turing’s reaction diffusion system,
which is presented in [27] as a model of the skin pigments of an
animal. At a cell (location (i, j)), the concentration of species 1
x

(1)
i,j depends on the concentration of species 1 in this cell and

in its neighbors (if D1 > 0), and the concentration of species
2 in this cell only, that is, x

(2)
i,j . Similarly, x

(2)
i,j depends on the

concentration of species 2 in this cell and in its neighbors (if
D2 > 0), and x

(1)
i,j (if R3 �= 0). We assume that species 1 is

observable through the mapping H : R32×32×2
+ → R32×32

[0,1]

y = H(x), where yi,j =
x(1)

i,j

maxm,n x(1)
m,n

.

We simulate the system from random initial conditions with pa-
rameters R = [1,−12,−1, 16] , and different diffusion parame-
ters D1 = [5.6, 24.5], D2 = [0.2, 20], and D3 = [1.4, 5.3]. The
observed concentrations of species 1 at different time points are
shown in Fig. 1. At time t = 50, all trajectories are in steady
state. Note that, in all three cases, the spatial distribution of the
steady-state concentrations of species 1 has some regularity, that
is, it forms a “pattern”. We will use large spots (LS), fine patches
(FP), and small spots (SS) to refer to the patterns corresponding
to D1 , D2 , and D3 , respectively.

In this paper, we consider the following problem:
Problem 1: Given a reaction diffusion network S as de-

fined in (1), a finite set of initial conditions X0 ⊂ RK×K×N ,
ranges of the design parameters P = P1 × . . . × PP , Pi ⊂
R, i = 1, . . . , P , a set of steady-state observations Y+ =
{yi}i=1,...,N + that contain a desired pattern, a set of steady-
state observations Y − = {yi}i=1,...,N − that do not contain
the pattern, find parameters p∗ ∈ P such that the trajectories
of system S(p∗) originating from X0 are guaranteed to produce
observations that contain the desired pattern.

To solve Problem 1, we need to perform two steps:
1) Design a mechanism that decides whether an observation

contains a pattern.
2) Develop a search algorithm over the state space of the

design parameters to find p∗.
The first step requires the definition of a pattern descriptor.

With this goal, we develop a new spatial logic over spatial-
superposition trees obtained from the observations, and treat
the decision problem as a model-checking problem. The new
logic and the superposition trees are explained in Section IV.
Then, finding a pattern descriptor reduces to finding a formula

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 311

Fig. 2. Quad-tree representation (b) of a matrix (a).

of the new logic that specifies the desired pattern. We employ
machine-learning techniques to learn such a formula from the
given sets of observations Y + and Y − .

The second step is the synthesis of parameters p∗ such that the
observations produced by the corresponding reaction diffusion
network S(p∗) satisfy the formula learned in the first step. To
this end, we introduce quantitative semantics for the new logic,
which assigns a positive valuation only to the superposition trees
that satisfy the formula. This quantitative valuation is treated as
a measure of satisfaction, and is used as the fitness function
in a particle swarm optimization (PSO) algorithm. The choice
of PSO is motivated by its inherent distributed nature, and its
ability to operate on irregular search spaces, that is, it does not
require a differentiable fitness function. Finally, we propose a
supervised, iterative procedure to find p∗ that solves Problem 1.
The procedure involves iterative applications of steps one and
two, and an update of the set Y − until a parameter set that
solves Problem 1 is found, such that the corresponding steady-
state observations match the desired patterns defined by the user.

IV. TREE SPATIAL SUPERPOSITION LOGIC

A. Quad-Tree Spatial Representation

We represent the observations of a reaction diffusion net-
work as a matrix Ak,k of 2k × 2k elements ai,j with k ∈ N>0 .
Each element corresponds to a small region in the space and
is defined as a tuple ai,j = 〈a(1)

i,j , · · · , a
(o)
i,j 〉 of values repre-

senting the concentration of the observable species within an
interval a

(c)
i,j ∈ [0, b], with b ∈ R + . Given a matrix Ak,k , we

use Ak,k [is , ie ; js , je] to denote the submatrix formed by select-
ing the rows with indices from is to ie and the columns with
indices from js to je .

Definition 1: A quad-tree Q = (V,R) is a quaternary tree
[28] representation of Ak,k where each vertex v ∈ V represents
a submatrix of Ak,k and the relation R ⊂ V × V defines the
four children of each node v that is not a leaf. A vertex v is a
leaf when all elements of the submatrix that it represents have
the same values.

Fig. 2 shows an example of a quadtree, where node v0 rep-
resents the entire matrix; child v1 represents the submatrix
{1, · · · , 2k−1} × {1, · · · , 2k−1}; child v7 represents the sub-
matrix {2k−2 + 1, · · · , 2k−1} × {2k−2 + 1, · · · , 2k−1}; etc. In
Fig. 2, we also label each edge in the quad tree with the direc-
tion of the submatrix represented by the child: north west (NW),
north east (NE), south west (SW), south east (SE).

Algorithm: Building Quad Transition System.

Input: Matrix Ak,k of 2k × 2k of elements ai,j = 〈a(1)
i,j ,

· · · , a
(o)
i,j 〉, its quad tree Q = (V,R), the root

v0 ∈ V , and a labeling function LQ : R → D =
{NW,NE,SE, SW}

Output: Quad transition system QT S = (S, sι , τ,Σ, [.], L)
1: Σ := {m1 , · · · ,mo} � Initialize the set of variables

Σ of QT S .
2: τ = ∅ � Initialize the set τ of the transition relation τ

of QT S .
3: S := {sι} � Initialize the set of states S of QT S .
4: TS := {〈sι , {v0}〉}

� Each tuple in TS contains a state in S and a set of
vertices in V.

5: LF := {v ∈ V | � ∃t ∈ V : (v, t) ∈ R} � LF is the set
of leaves of Q

6: PLF := {Pi ⊆ LF, 1 ≤ i ≤ n|Pi �= ∅ ∧ ∀va , vb ∈ Pi,
∀vc ∈ Pj �=i , va ≡ vb ∧ va �≡ vc}

� PLF is a partition of LF with equivalent leaves.
7: for each P̂ ∈ PLF do

� For each partition element, create a state s′ with a
self-loop and
� a transition to the state sι if P̂ contains a child of v0 .

8: add new state s′ to S and a tuple 〈s′, P̂ 〉 to TS
9: τ := τ ∪ {(s′, s′)} ∪ {(s, s′) : 〈s, V S〉 ∈ TS,

∃v ∈ V S,∃v′ ∈ P̂ : (v, v′) ∈ R}
10: end for
11: FS := {v ∈ V |(v0 , v) ∈ R}\LF

� explore the children of v0 that are not leaves.
12: while FS �= ∅ do � FS contains the frontier vertices

to be explored.
13: LFS := {v ∈ FS | ∀v′ ∈ V : (v, v′) ∈ R :

∃〈s, V S〉 ∈ TS ∧ v′ ∈ V S}
14: PLFS := {Pi∈I ⊆ LFS|I �= ∅, Pi �= ∅,∀va , vb ∈ Pi,

∀vc ∈ Pj �=i , va ≡ vb ∧ va �≡ vc}
15: for each P̂ ∈ PLFS do
16: add new state s′ to S and a tuple 〈s′, P̂ 〉 to TS
17: τ := (

⋃
s:〈s,V S 〉∈T S :∃v∈P̂ ,∃v ′∈V S,(v ,v ′)∈R (s′, s)) ∪ τ

18: if ∃v ∈ P̂ ∧ ∃〈s, V S〉 : ∃v′ ∈ V S ∧ (v′, v) ∈ R then
19: τ := τ ∪ {(s, s′)}
20: end if
21: end for
22: for each v̂ ∈ FS\LFS do
23: add new state s′ to S and a tuple 〈s′, {v̂}〉 to TS
24: τ := (

⋃
s:〈s,V S 〉∈T S :∃v ′∈V S,(v̂ ,v ′)∈R (s′, s)) ∪ τ

25: if ∃〈s, V S〉 : ∃v′ ∈ V S ∧ (v′, v̂) ∈ R then
26: τ := τ ∪ {(s, s′)}
27: end if
28: end for
29: FS := {v ∈ V | ∃v̄ ∈ FS, (v̄, v) ∈ R}\LF
30: end while
31: define func [.] as [s̄](mc̄) := μc̄(vs̄), c̄ ∈ {1, · · · , o},

vs̄ ∈ V S : 〈s̄, V S〉 ∈ TS
32: define func L as L(s, t) := (t = s)?D :⋃

ṽ∈ ˜V S ,v̄∈ ¯V T :〈s, ˜V S 〉,〈t, ¯V T 〉∈T S,(ṽ ,v̄)∈R LQ(ṽ, v̄)
33: return S, sι , τ,Σ, [.], L

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

312 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Definition 2: We define the mean function μc : V → [0, b]
for submatrixAk,k [is , ie ; js , je] represented by the vertex v ∈ V
of the quad tree Q = (V,R) as follows:

μc(v) =
1

(ie − is + 1)(je − js + 1)

∑

i,j∈{is ,··· ,ie }×{js ,··· ,je }
a

(c)
i,j

The function μc is the sample mean and an estimation for the
expected value for an observable variable with index c, 1 ≤ c ≤
o in a particular region of the space represented by the vertex v.

Definition 3: Two vertices va , vb ∈ V are said to be equiv-
alent when the mean function applied to the elements of the
submatrices that they represent produce the same values

va ≡ vb ⇐⇒ μc(va) = μc(vb),∀c, 1 ≤ c ≤ o

We use the mean of the concentration of the observable
species as a spatial abstraction (superposition) of the observa-
tions in a particular region of the system, avoiding enumeration
of the observations of all locations. This approach is inspired
by [20] and [29], where the authors aim to combat the state-
explosion problem that would stem otherwise.

Proposition 1: Given a vertex v ∈ V of a quad tree Q =
(V,R) and its four children vN E , vN W , vSE , vSW , the follow-
ing property holds:

μc(v) =
μc(vN E) + μc(vN W) + μc(vSE) + μc(vSW)

4

Proof: The proof can be easily derived by expanding the
terms of Definition 2. �

Proposition 2: The number of vertices needed for the quad-
tree representation Q = (V,R) of a matrix Ak,k is upper
bounded by

∑k
i=0 22i .

Proof: The proof follows from the fact that the worst case
scenario is when all of the elements have different values. In this
case, the cardinality of the set V is equal to the cardinality of
a full and complete quaternary tree. For example, to represent
the matrix A3,3 , it would require a max number of vertices
|V | ≤ 1 + 4 + 16 + 64 = 85. �

B. Quad Transition System

We now introduce the notion of quad transition system that
extends the classical quad-tree structure, allowing for a more
compact exploration for model checking.

Definition 4: A Quad transition system (QTS) is a tuple
QT S = (S, sι , τ,Σ, [.], L), where

1) S is a finite set of states with sι ∈ S the initial state;
2) τ ⊆ S × S is the transition relation. We require τ to be

nonblocking and bounded branching:
a) ∀s ∈ S,∃t ∈ S : (s, t) ∈ τ ;
b) ∀s ∈ S, if T (s) = {t : (s, t) ∈ τ} is the set of all

successors of s, then the cardinality |T (s)| ≤ 4;
3) Σ is a finite set of variables;
4) [.] is a function [.] : S → (Σ → [0, b]) that assigns to each

state s ∈ S and a variable m ∈ Σ a rational value [s](m)
in [0, b] with b ∈ R + ;

5) L is a labeling function for the transition L : τ → 2D

with D = {NW,NE,SE, SW} and with the property

Fig. 3. (a) A checkerboard pattern as a matrix of pixels, (b) the quad-tree
representation, and (c) the derived quad transition system, where B and W
denote black and white, respectively.

that ∀(s, t), (s, t′) ∈ τ , with t �= t′ it holds that L(s, t) ∩
L(s, t′) = ∅, ⋃∀t∈S :(s,t)∈τ L(s, t) = D.

The BUILDINGQUADTRANSITIONSYSTEM algorithm shows
how to generate a QTS starting from a quad-tree represen-
tation Q = (V,R) of a matrix Ak,k and a labeling function
LQ : R → D. After an initialization phase (line 1–4), the algo-
rithm starts to partition the set of equivalent leaves (line 5–6).
Then, for each element in the partition, it creates a QTS state
with a self-loop transition (line 7–10) and a transition from the
initial state if the element represents a root’s child node in the
quad tree. Then, it explores all nonleaf quad-tree nodes in a
breadth-first fashion and adds new states and transitions to QTS
accordingly (line 12–30). Equivalent quad-tree nodes are repre-
sented only by a single state in the QTS. The resulting QTS is
more compact than the initial quad tree.

Proposition 3: The transition relation of the QTS QT S =
(S, sι , τ,Σ, [.], L) generated by the BUILDINGQUADTRANSI-
TIONSYSTEM algorithm always has a least fixed point, that is
∃s ∈ S : T (s) = {s}.

Proof: This property holds because the algorithm BUILD-
INGQUADTRANSITIONSYSTEM generates one (if the quad tree
has only one vertex) or more (if the quad tree has multiple
leaves) states with only a self-loop transition. �

Definition 5 (Labeled Paths): Given a set B of labels repre-
senting the spatial directions, a labeled path (lpath) of a QTS
Q is an infinite sequence πB = s0s1s2 · · · of states such that
(si, si+1) ∈ τ ∧ L(si, si+1) ∩ B �= ∅, ∀i ∈ N. Given a state s,
we denote LPathsB (s) the set of all labeled paths starting in s,
and with πB

i the ith element of a path πB ∈ LPathsB (s). For
example, in Fig. 3, LPaths{N W,SE }(sι) = {sιs1s2s2 · · · }.

C. TSSL Syntax and Semantics

Definition 6 (TSSL Syntax): The syntax of TSSL is defined
as follows:

ϕ :: = � | ⊥ | m ∼ d | ¬ϕ | ϕ1 ∧ ϕ2 | ∃B © ϕ |∀B

© ϕ |∃B ϕ1 Uk ϕ2 |∀B ϕ1 Uk ϕ2

with ∼∈ { ≤ , ≥}, d ∈ [0, b], b ∈ R + , k ∈ N>0 , B ⊆ D :
B �= ∅, and m ∈ Σ, with Σ the set of variables.

From this basic syntax, one can derive other two temporal
operators: the exist eventually operator ∃B Fk , the forall eventu-
ally operator ∀B Fk , the exist globally operator ∃B Gk , and the
forall globally operator ∀B Gk defined such that

∃B Fkϕ := ∃B� Uk ϕ ∃B Gk ϕ := ¬∀B Fk¬ϕ.

∀B Fkϕ := ∀B� Uk ϕ ∀B Gk ϕ := ¬∃B Fk¬ϕ.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 313

TSSL resembles the classic CTL logic [30], with the main dif-
ference being that the next and until are not temporal, but spatial
operators meaning a change of resolution (or zoom in). The set
B selects the spatial directions in which the operator is allowed
to work and the parameter k limits the until (like-bounded until
in-bounded model checking [31]) to operate on a finite sequence
of states. In the following text, we provide the TSSL qualitative
semantics that, given a spatial model and a formula representing
the pattern to detect, provides a yes/no answer.

Definition 7 (TSSL Qualitative Semantics): Let Q = (S, sι ,
τ,Σ, [.], L) be a QTS, thenQ satisfies a TSSL formula ϕ, written
Q |= ϕ, if and only if Q, sι |= ϕ, where un. eqn. shown at the
bottom of the page.

Example 2: Checkerboard Pattern: The checkerboard pat-
tern from Fig. 3(a) can be characterized with the following
TSSL formula (B∗ = {SW,NE,NW,SE}):

∀B ∗ © ((∀{SW,N E } © (m ≥ 1)) ∧ (∀{N W,SE } © (m ≤ 0))).

The “eventually” operator can be used to define all possible
checkerboards of different sizes less or equal than 42 as follows:

∀B ∗F1((∀{SW,N E } © (m ≥ 1)) ∧ (∀{N W,SE } © (m ≤ 0)))

The qualitative semantics is useful to check if a given spatial
model violates or satisfies a pattern expressed in TSSL. How-
ever, it does not provide any information about how much the
property is violated or satisfied. This information may be useful
to guide a simulation-based parameter exploration for pattern
generation. For this reason, we equip our logic also with a quan-
titative valuation that provides a measure of satisfiability in the
same spirit of [17]. Since the valuation of a TSSL formula with
spatial operators requires traversing and comparing regions of
space at different resolution, we apply a discount factor of 1

4 on
the result each time a transition is taken in QTS. We choose this
value to reflect that each node represents a partition of the space
that is 1

4 smaller than its predecessor. In the following text, we
provide the definition of the TSSL quantitative semantics nec-
essary to measure the satisfaction of a TSSL specification over
a given QTS. We show that the sign of this measure indicates ei-
ther the fulfilment (positive sign) or the violation (negative sign)
of a given specification. We then provide a notion of distance
between QTSs, showing the relation between this distance and
the TSSL qualitative and quantitative semantics.

Definition 8 (TSSL Quantitative Semantics): Let Q = (S,
sι , τ,Σ, [.], L) be a QTS. The quantitative valuation [[ϕ]] : S →

[−b, b] of a TSSL formula ϕ is defined as follows:

[[�]](s) = b

[[⊥]](s) = −b

[[m ∼ d]](s) = (∼ is ≥) ? ([s](m) − d) : (d − [s](m))
[[¬ϕ]](s) = −[[ϕ]](s)

[[ϕ1 ∧ ϕ2]](s) = min([[ϕ1]](s), [[ϕ2]](s))

[[∃B © ϕ]](s) =
1
4

max
πB ∈LP athsB (s)

[[ϕ]](πB
1)

[[∀B © ϕ]](s) =
1
4

min
πB ∈LP athsB (s)

[[ϕ]](πB
1)

[[∃B ϕ1 Uk ϕ2]](s) = supπB ∈LP athsB (s){min(
1
4i

[[ϕ2]](πB
i),

inf
{

1
4j

[[ϕ1]](πB
j) | j < i}) | 0 < i ≤ k}

}

[[∀B ϕ1 Uk ϕ2]](s) = infπB ∈LP athsB (s){min(
1
4i

[[ϕ2]](πB
i),

inf
{

1
4j

[[ϕ1]](πB
j) | j < i}) | 0 < i ≤ k}

}

Theorem 1 (Soundness): Let Q = (S, sι , τ,Σ, [.], L) be a
QTS, s ∈ S a state of Q, and ϕ a TSSL formula. Then, the
following properties hold for the two semantics:

[[ϕ]](s) > 0 =⇒ Q, s |= ϕ [[ϕ]](s) < 0 =⇒ Q, s �|= ϕ

Proof: The proof can be derived by structural induction on
the operational semantics. �

Remark 1: Theorem 1 provides the basis of the techniques
for the parameter synthesis discussed in the following sections.
[[ϕ]](s) enables the process of quantitative valuation of a TSSL
formula ϕ over a QTS by performing the recursive computation
presented in Definition. 8. The computational cost is linear in
the QTS size and polynomial in the length of the formula. It
is worth noting that in the case [[ϕ]](s) = 0, it is not possible
to infer whether Q violates or satisfies a TSSL formula ϕ and
only in this particular case we need to resort to the qualitative
semantics for determining it.

We now introduce a notion of distance between two given
QTSs. This measure quantifies, by recursively exploring the
corresponding pair of nodes of two QTSs, the max absolute
difference between the evaluation of the variables in the pair
of nodes discounted by a factor 1/4k . The term k is the recur-
sion level of the explored pair of nodes. A higher level leads to
smaller partitions of the space that the pair of nodes represent.
Consequently, their max absolute difference is less important.

Q, s |= �
Q, s |= m ∼ d
Q, s |= ¬ϕ
Q, s |= ϕ1 ∧ ϕ2
Q, s |= ∃B © ϕ
Q, s |= ∀B © ϕ
Q, s |= ∃B ϕ1 Uk ϕ2

Q, s |= ∀B ϕ1 Uk ϕ2

and
⇔
⇔
⇔
⇔
⇔
⇔

⇔

Q, s �|= ⊥
[s](m) ∼ d
Q, s �|= ϕ
Q, s |= ϕ1 ∧Q, s |= ϕ2
∃s′ : ((s, s′) ∈ τ ∧ L(s, s′) ∩ B �= ∅),Q, s′ |= ϕ
∀s′ : ((s, s′) ∈ τ ∧ L(s, s′) ∩ B �= ∅),Q, s′ |= ϕ
∃πB ∈ LPathsB (s) : ∃i, 0 < i ≤ k :

(Q, πB
i |= ϕ2) ∧ (∀j < i, (Q, πj |= ϕ1))

∀πB ∈ LPathsB (s) : ∃i, 0 < i ≤ k :
(Q, πB

i |= ϕ2) ∧ (∀j < i, (Q, πj |= ϕ1))

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

314 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Since the nodes correspond to partitions of the space, the max
distance computes the overall worst discrepancy between cor-
responding partitions of the space.

Definition 9 (QTS Max Distance): The max distance of
two QTSs Q(1) = (S(1) , s

(1)
l , τ (1) ,Σ, [.](1) , L(1)) and Q(2) =

(S(2) , s
(2)
l , τ (2) ,Σ, [.](2) , L(2)) is defined as

d∞(Q(1) , Q(2)) = n∞(s(1)
l , s

(2)
l , 0)

where n∞ : S × S × N → [0, b] is the max distance between
states of different QTSs such that

n∞(s(1) , s(2) , k) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4k

max
[m∈Σ]

|[s(1)](1)(m) − [s(2)](2)(m)|
if (s(1) , s(1)) ∈ τ (1) ∧ (s(2) , s(2)) ∈ τ (2)

max
[(s̃(1) ,s̃(2))∈S ∗]

n∞(s̃(1) , s̃(2) , k + 1)otherwise

S∗ = {(s̃(1) , s̃(2))|s̃(1) ∈ S(1) , s̃(2) ∈ S(2)∧
L(1)(s(1) , s̃(1)) ∩ L(2)(s(2) , s̃(2)) �= ∅}

It is worth noting that if two pictures are the same, but they
have a different number of pixels, then their QTS representations
will be equivalent and their max difference will be zero.

We now introduce a second theorem, showing the correctness
of the qualitative semantics w.r.t. the quantitative semantics.
According to this theorem, if the max distance between two
QTSs is less than the quantitative valuation of a TSSL formula
ϕ over the first QTS satisfying ϕ, then we also know that the
other QTS satisfies ϕ.

Theorem 2 (Correctness): Given a TSSL formula ϕ and
two QTSs Q(1) = (S(1) , s

(1)
l , τ (1) ,Σ, [.](1) , L(1)) and Q(2) =

(S(2) , s
(2)
l , τ (2) ,Σ, [.](2) , L(2)) and two states s(1) ∈ S(1) and

s(2) ∈ S(2) . If Q(1) , s(1) satisfies the formula ϕ and the max
distance n∞(s(1) , s(2) , 0) is less than the quantitative evaluation
[[ϕ]](s(1)) of ϕ over Q(1) then also Q(2) , s(2) satisfies the same
formula ϕ. Formally

Q(1), s(1) |= ϕ ∧ n∞(s(1), s(2), 0) < [[ϕ]](s(1)) ⇒ Q(2), s(2) |= ϕ

Proof: (Sketch) We can distinguish the following cases:
case ϕ := �: in this case, the theorem is true following the

definition of the qualitative semantics (see Definition 7) for
which Q(1) , s(2) and Q(2) , s(2) satisfy �.

case ϕ := m ≥ d:
In this case, we have:
a) n∞(s(1) , s(2) , 0) < [[ϕ = m ≥ d]](s(1)) (see hypothesis);
b) [[m ≥ d]](s(1)) = [s(1)](1)(m) − d (Def. 8);
c) [s(1)](1)(m) − n∞(s(1) , s(2) , 0) − d > 0 [from a) and b)];
d) |[s(1)](1)(m) − [s(2)](2)(m)| ≤ n∞(s(1) , s(2) , 0) (Def. 9);

if we substitute n∞(s(1) , s(2) , 0) with |[s(1)](1)(m) −
[s(2)](2)(m)| in c), given d), we can safely obtain

e) [s(1)](1)(m) − |[s(1)](1)(m) − [s(2)](2)(m)| − d > 0.
Using the property of the absolute difference, we have:

f) [s(2)](2)(m) ≥ [s(1)](1)(m) − |[s(1)](1)(m) −
[s(2)](2)(m)|.

If we substitute [s(2)](2)(m) with [s(1)](1)(m) − |[s(1)](1)

(m) − [s(2)](2)(m)| in e), given f), we have [s(2)](2)

(m) − d > 0.
Finally, using the Theorem 1, we obtain the following:
[s(2)](2)(m) − d > 0 ⇒ [[m ≥ d]](s(2)) > 0 ⇒ Q(2) , s |= ϕ
case ϕ := m ≤ d:
In this case, we have
g) n∞(s(1) , s(2) , 0) < [[ϕ = m ≤ d]](s(1)) (see hypothesis);
h) [[m ≤ d]](s(1)) = d − [s(1)](1)(m) (Def. 8);
i) d − [s(1)](1)(m) − n∞(s(1) , s(2) , 0) > 0 [from g) and h)];
j) |[s(1)](1)(m) − [s(2)](2)(m)| ≤ n∞(s(1) , s(2) , 0) (Def. 9).

If we substitute n∞(s(1) , s(2) , 0) with |[s(1)](1)(m) −
[s(2)](2)(m)| in i), given j), we can safely obtain

k) d − [s(1)](1)(m) − |[s(1)](1)(m) − [s(2)](2)(m)| > 0.
Using the property of the absolute difference, we have

l) −[s(2)](2)(m) ≥ −[s(1)](1)(m) − |[s(1)](1)(m) −
[s(2)](2)(m)|.

If we substitute−[s(2)](2)(m) with−[s(1)](1)(m) − |[s(1)](1)

(m) − [s(2)](2)(m)| in k), given l), we have d − [s(2)](2)

(m) > 0.
Finally, using Theorem 1 we obtain the following:
d − [s(2)](2)(m) > 0 ⇒ [[m ≤ d]](s(2)) > 0 ⇒ Q(2) , s |= ϕ
all of the other cases:
If Q(1) , s(1) |= ϕ, then we have

[[ϕ]](s(1)) =

⎧
⎪⎪⎨

⎪⎪⎩

(1) :
1
4j

b:j ∈ N

(2):
1
4j

([s(1)](1)(m(1)) − d) : j ∈ N

Situation (1) may occur when one of the subformulae of ϕ is
� and the proof is equivalent to the case of ϕ := �. Situation 2)
can be proved in a similar way as the case ϕ := m ∼ d. �

Proposition 4: Given a TSSL formula ϕ and two QTSs
Q(1) = (S(1) , s

(1)
l , τ (1) ,Σ, [.](1) , L(1)) and Q(2) = (S(2) , s

(2)
l ,

τ (2) ,Σ, [.](2) , L(2)) then

Q(1) |= ϕ ∧ d∞(Q(1) , Q(2)) < [[ϕ]](s(1)
l) ⇒ Q(2) |= ϕ.

Proof: This is a special case of Theorem 2 where s(1) and s(2)

are the initial states s
(1)
l , s

(2)
l of Q(1) and Q(2) , respectively. �

Remark 2: The correctness theorem implies that the higher
the quantitative valuation of a TSSL formula is with respect to a
QTS, the harder it is to violate the formula by perturbing the QTS
since the maximum distance between the perturbation and the
original QTS must be at least equal to the quantitative valuation.
In other words, a higher positive quantitative valuation means a
more robust satisfaction of a formula under QTS perturbations.
This is why the quantitative valuation of a TSSL formula is also
called its robustness degree.

V. TSSL PATTERN CLASSIFIERS

A QTS can be seen in the context of multiresolution repre-
sentation, since the nodes that appear at deeper levels provide
information for higher resolutions. Therefore, a TSSL formula
can effectively capture properties of an image. However, it is
difficult to write a formula that describes a desired property,

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 315

Fig. 4. Sample sets of images from the sets (a) Y(1)
+ and (b) Y(1)

− for the LS
pattern.

such as a pattern. Here, we propose using machine-learning
techniques to find such a formula from given sets of positive
(Y +) and negative (Y −) examples.

We first define a labeled data set from the given data sets Y +
and Y − as

L = {(Qy ,+) | y ∈ Y + } ∪ {(Qy ,−) | y ∈ Y − },
where Qy is the QTS generated from y. Then, we separate
the data set L into disjoint training and testing sets LL ,LT . In
machine learning, the training set is used to learn a classifier
for a target class (for example, +), and the testing set is used
to measure the accuracy of the classifier. We employ RIPPER
[32] as a rule-based learner, to learn a classifier from LL , and
then translate the classifier into a TSSL formula characterizing
+. The classifier is composed of a set of rules. Each rule is
described as

ri : Ci ⇒∼i ,

where Ci is a Boolean formula over linear predicates over the
variables of the states of a QTS, for example, [s](m) > d, and
∼i takes values from the label set {+,−}. A linear predicate for
a state s ∈ S can be written as a TSSL formula via the QTS path
from the root sι to s as a state s is uniquely represented using the
existential (∃) and next (©) operators along the path from sι to
s. Therefore, each Ci can be translated into an equivalent TSSL
formula Φi . The classification rules are interpreted as nested
if-else statements. Hence, an equivalent TSSL formula for the
desired property is defined as follows:

Φ + :=
∨

j∈R+

(
Φj ∧

∧

i=1,...,j−1

¬Φi

)
, (4)

where R+ is the set of indices of rules ri with ∼i= +, and Φi

is the TSSL formula obtained from Ci .
Example 3: LS Pattern: For the LS pattern from Example 1,

we generate a data set Y(1)
+ containing 8000 positive examples

by simulating the reaction diffusion system (3) from random
initial conditions with parameters R and D1 . Similarly, to gen-
erate the data set Y(1)

− containing 8000 negative examples, we
simulate system (3) from random initial conditions. However,
in this case, we use R and randomly choose the diffusion co-
efficients from R2

[0,30] . As stated before, we only consider the
observation of a system in steady state; for this reason, simu-
lated trajectories that do not reach steady state in 60 time units
are discarded. A sample set of images from the sets Y(1)

+ and

Y(1)
− is shown in Fig. 4. We generate a labeled set L(1) of QTS

from these sets, and separate L(1) into L(1)
L ,L(1)

T . We use the

RIPPER algorithm implemented in Weka [33] to learn a clas-
sifier from L(1)

L . The learning step took 228.5 sec on an iMac
with a Intel Core i5 processor at 2.8 GHz with 8 GB of memory.
The classifier consists of 24 rules. The first rule is

r1 : (R ≥ 0.59)∧(R ≤ 0.70)∧(R.NW.NW.NW.SE ≤ 0.75)

∧ (R.NW.NW.NW.NW ≥ 0.45) ⇒ +,

R denotes the root of a QTS, and the labels of the children are
shown in Fig. 2, and + indicates the presence of the pattern.

Rule r1 translates to the following TSSL formula:

Φ1 : (m ≥ 0.59) ∧ (m ≤ 0.70) ∧ (∃N W ©∃N W ©∃N W

©∃SE © m ≤ 0.75)∧
(∃N W ©∃N W ©∃N W ©∃N W © m ≥ 0.45). (5)

We define the TSSL formula Φ(1)
+ characterizing the pattern

as in (4), and model check QTSs from L(1)
T (|L(1)

T | = 8000)
against Φ(1)

+ , which yields high prediction accuracy (96.11%)
with 311 misclassified QTSs.

FP and SS Patterns: We follow the above steps to gener-
ate data sets: Y(i)

+ ,Y(i)
− , generate labeled data sets L(i)

L ,L(i)
T ,

and finally learn formulas Φ(i)
+ for the FP and SS patterns cor-

responding to diffusion coefficient vectors Di , i = 2, 3 from
Example 1. The model checking of the QTSs from the corre-
sponding test sets yields high prediction accuracies 98.01%, and
93.13% for Φ(2)

+ , and Φ(3)
+ , respectively.

VI. PARAMETER SYNTHESIS FOR PATTERN GENERATION

In this section, we present the solution to Problem 1that is, a
framework to synthesize parameters p ∈ P of a reaction diffu-
sion network S (1) such that the observations of system S(p) sat-
isfy a given TSSL formula Φ. First, we show that the parameters
of a reaction diffusion system that produce trajectories satisfy-
ing the TSSL formula can be found by optimizing quantitative
model-checking results. Second, we include the optimization in
a supervised iterative procedure for parameter synthesis.

We slightly abuse the terminology and say that a trajectory
x(t), t ≥ 0 of system S(p) satisfies Φ if the QTS Q = (S, sι ,
τ,Σ, [.], L) of the corresponding observation H(x(t̄)) satisfies
Φ, that is, Q |= Φ, or [[Φ]](sι) > 0.

We define an induced quantitative valuation of a system S(p)

and a set of initial conditions X0 from a TSSL formula Φ as

[[Φ]](S(p)) = min
x0 ∈X0

{[[Φ]](sι) | Q = (S, sι , τ,Σ, [.], L)

is QTS of H(x(t̄)),x(0) = x0} (6)

The definition of the induced valuation of a system S(p) im-
plies that all trajectories of S(p) originating from X0 satisfy Φ
if [[Φ]](S(p)) > 0. Therefore, it is sufficient to find p that max-
imizes (6). It is assumed that the ranges P = P1 × . . . × PP

of the design parameters are known. Therefore, the parameters
maximizing (6) can be found with a greedy search on a quanti-
zation of P . However, the computation of [[Φ]](S(p)) for a given
p ∈ P is expensive, since it requires performing the following

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

316 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 5. Sample set of observations obtained by simulating (a) S([0 .083 ,11 .58])

and (b) S([1 .75 ,7 .75]) .

Fig. 6. Sample set of observations obtained by simulating (a) S([2 .25 ,29 .42]) ,
(b) S([3 .75 ,28 .75]) , and (c) S([6 .25 ,29 .42]) .

steps for each x0 ∈ X0 : simulating the system S(p) from x0 ,
generating QTS Q of the corresponding observation, and quan-
titative model checking of Q against Φ. Here, we use the PSO
algorithm [34] overP with (6) as the fitness function. The choice
of PSO is motivated by its inherent distributed nature, and its
ability to operate on irregular search spaces. In particular, PSO
does not require a differentiable fitness function.

Example 4: LS Pattern: We consider the reaction diffusion
network from Example 1 and the TSSL formula Φ(1)

+ cor-
responding to the LS pattern from Example 3. We assume
that the parameters of the local dynamics are known R =
[1,−12,−1, 16] and the diffusion coefficients D1 and D2 are
set as the design parameters with P = R2

[0,30] . We implement
PSO to find p ∈ P maximizing the induced valuation (6). The
PSO computation was distributed on 16 processors at 2.1 GHz
on a cluster, and the running time was around 18 minutes. The
optimized parameters are D1 = 2.25 and D2 = 29.42, and the
valuation of the system is 0.0023. A set of observations ob-
tained by simulating S([2.25,29.42]) is shown in Fig. 6(a). Note
that while all of the observations have some spatial periodicity
indicating the presence of a pattern, they are still different from
the desired LS pattern.

FP and SS Patterns: We also apply the PSO algorithm on
the same setting explained before to maximize the induced
valuation (6) for the TSSL formulas Φ(2)

+ (FP pattern) and

Φ(3)
+ (SS pattern) from Example 3. The optimized parameters

are [0.083, 11.58] and [1.75, 7.75] for Φ(2)
+ and Φ(3)

+ , respec-
tively. The sets of observations obtained by simulating systems
S([0.083,11.58]) and S([1.75,7.75]) are shown in Fig. 5. In contrast
with the LS pattern, the observations are similar to the ones from
the corresponding data sets, that is, Y(2)

+ and Y(3)
+ .

Remark 3: In this paper, we consider the observations gen-
erated from a given set of initial conditions X0 . However, the
initial condition can be set as a design parameter and optimized
in PSO over a given domain RK×K×N

[a,b] .
As seen in Example 4, it is possible that simulations of

the system corresponding to optimized parameters do not
necessarily lead to desired patterns. This should not be

unexpected, as the formula reflects the original training set
of positive and negative examples, and was not “aware” that
these new simulations do not produce good patterns. A natu-
ral extension of our method should enable adding the newly
obtained simulations to the negative training set, and to reiter-
ate the whole procedure. This approach is summarized in the
INTERACTIVEDESIGN algorithm.

Algorithm: InteractiveDesign.
Input: Parametric reaction diffusion system S, ranges of

parameters P , a set of initial states X0 , sets of
observations Y + and Y −

Output: Optimized parameters p, the corresponding
valuation γ
(no solution if γ < 0)

1: while True do
2: Φ = Learning(Y + ,Y −)
3: {p, γ} = Optimization(S,X0 ,Φ)

� γ is the induced valuation of S(p)

4: if γ < 0 then return p, γ
5: end if
6: UserQuery: Show observations of trajectories of

S(p) originating from X0 .
7: if User approves then return p, γ
8: else
9: Y − = Y − ∪ {H(x(t̄)) | x(t), t ≥ 0, is

generated by S(p) , x(0) ∈ X0}.
10: end if
11: end while

We start with the user-defined sets of observations Y + and
Y − , and learn a TSSL formula Φ from the QTS representations
of the observations (Section V). Then, in the optimization step,
we find a set of parameters p that maximizes γ = [[Φ]](S(p)). If
γ < 0, then we terminate the algorithm as parameters producing
observations similar to the ones from the set Y + with respect
to the TSSL formula Φ could not be found. If γ ≥ 0, then the
observations of system S(p) satisfy Φ. Finally, the user inspects
the observations generated from the reaction diffusion system
with the optimized set of parameters S(p) . If the observations
are similar to the ones from the set Y + , then we find a solution.
If, however, the user decides that the observations do not contain
the pattern, then we add observations obtained from system S(p)

to Y − , and repeat the process, that is, learn a new formula, run
the optimization until the user terminates the process or the
optimization step fails (γ < 0).

Example 5: LS Pattern: We apply theINTERACTIVEDESIGN

algorithm to the system from Example 4. A sample set of ob-
servations obtained in the first iteration is shown in Fig. 6(a).
We decide that these observations are not similar to the ones
from the set Y(1)

+ shown in Fig. 4(a), and add these 250 ob-

servations generated with the optimized parameters to Y(1)
−

(line 9). In the second iteration, the optimized parameters are
D1 = 3.75 and D2 = 28.75, and the observations obtained by
simulating S([3.75,28.75]) are shown in Fig. 6(b). We continue
by adding these to Y(1)

− . The parameters computed in the third

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 317

iteration are D1 = 6.25 and D2 = 29.42. The observations ob-
tained by simulating S([6.25,29.42]) are shown in Fig. 6(c). Al-
though the optimized parameters are different from D1 , which
was used to generate Y(1)

+ , the observations of S([6.25,29.42])

are similar to the ones from the set Y(1)
+ and we terminate the

algorithm.
Remark 4: As mentioned earlier, the model-checking pro-

cedure (computation of quantitative valuation) is very efficient
(linear in the size of the system and polynomial in the length of
the formula). For instance, computing the quantitative valuation
for the TSSL formula corresponding to the LS pattern against
a 32 by 32 image takes about 0:5 s on an iMac with an Intel
Core i5 processor at 2.8 GHz with 8 GB of memory. However, a
large number of unknown parameters would be problematic for
the developed parameter synthesis framework since such a sys-
tem requires a very large swarm population and a great number
of iterations for PSO independent of the fitness function (e.g.,
quantitative model checking).

VII. COMPARISON: TSSL AND LINEAR CLASSIFIERS

In this section, we provide a comparison between TSSL and
well-known learning algorithms based on linear classifiers.

A. Linear Classifiers

Assume we have m data points (xi, yi) : i = 1, 2, . . . ,m,
where xi ∈ Rd is a vector containing d features that correspond
to the ith example in the training set and yi ∈ {−1,+1} is the
class label associated with xi . A linear classifier is a function of
the form h(x) = sgn(wT x + b), where w ∈ Rd is the normal
vector corresponding to the hyperplane {x ∈ Rd : wT x + b =
0} and b ∈ R is the hyperplane’s bias, and sgn is the signum
indicator function. The Euclidean distance between a point in
the feature space and the hyperplane is called the geometric
margin, γ(x) = wT x+b

||w || . Notice that the geometric margin of a
point can be viewed as a distance to pattern satisfaction, since
the class prediction of a testing point with a higher geometric
margin is stronger.

The goal of the learning problem is to find w and b such that
h(x) correctly classifies the training data points. Several algo-
rithms have been proposed in the machine-learning literature
to learn a classifying hyperplane for a given data set. In this
paper, we use three such algorithms and compare the results
with TSSL:

1) Support vector machines (SVMs) [3]: A hyperplane is
chosen such that the minimum margin among all data
points in the training set is maximized. It is shown in
[3] that an SVM can be learned when the data are not
linearly separable by solving a quadratic programming
problem (Soft Margin Method). Furthermore, SVM can
be kernelized, that is, kernel functions can be used to map
the original data points to a higher dimensional space
where the data are linearly separable, which results in a
nonlinear classifier in the original feature space.

2) Fisher linear discriminant (FLD) [3]: A hyperplane is ob-
tained by maximizing the between-class variance while
minimizing the within-class variances.

TABLE I
CLASSIFICATION RATES OF TSSL (LEARNED BY RIPPER) COMPARED TO

LINEAR CLASSIFIERS (THE CLASSIFICATION RATES ARE COMPUTED FOR A

TESTING SET CONSISTING OF 8000 EXAMPLES)

Correct classification rates

Classifier LS FP SS

TSSL(RIPPER) 96.7% 96.1% 95.6%
SVM hyperplane 94.5% 91.7% 95.3%
FLD 96.5% 93.9% 92.8%
Kozinec’s hyperplane 95.2% 89.1% 92.4%

3) Kozinec’s algorithm [22]: A separating hyperplane is
learned in an iterative procedure that applies corrections
to classify each point in the training set.

B. Classification Rate

In this section, we compare the effectiveness of TSSL classi-
fiers and the linear classifiers described before. We created three
distinct training sets for the LS, SS, and FP Turing patterns us-
ing the procedure discussed in Section V. Each set consists
of 4000 positive and 4000 negative examples. Eight-thousand
other images were generated to test the results.

We considered two types of features for the linear classifiers.
First, we simply considered the normalized concentrations of
species 1 in each cell of the grid (i.e., the feature vector is
1024-D for our 32 × 32 grid). Second, we used histograms of
oriented gradients, which were created according to the method-
ology presented in [11]. For each type of linear classifier and for
each type of feature, we learned the classifier, tested it against
the testing set, and kept the one with the best class-action rate
to compare it with TSSL. Table I shows the results of this com-
parison.

Remark 5: Learning an SVM requires determining partic-
ular design parameters (e.g., proper kernel functions and their
parameters, the so-called parameter C in the soft margin method,
proper features). These parameters need to be fine-tuned using
techniques, such as cross-validation, in order to learn an effec-
tive classifier. This is a difficult and time-consuming process
for a large number of data points and features. On the other
hand, TSSL works effectively without the need for tuning any
parameters as shown in Table I.

C. Distance to Pattern

A very important feature of TSSL is its quantitative semantics,
which can be used as a measure of “distance to satisfaction”.
One can use this measure to compare two patterns and determine
which one is a “better”. Furthermore, this metric is used as
fitness function in particle swarm optimization (Section VI) to
synthesize system parameters. It is interesting to note that for
linear classifiers as described before, one can also view the
(e.g., Euclidean) distance between a data point and the classifier
hyperplane (geometrical margin) as distance to satisfaction. In
this section, we hypothesize that the distance given by TSSL

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

318 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Fig. 7. Examples of images used as a training set to compare TSSL with
SVM. (a) Positive examples (SS). (b) Negative examples.

Fig. 8. (a) Formation of LS in steady state. (b) TSSL quantitative valuation

with respect to Φ(1)
+ [see (5)] at various time steps. (c) SVM geometric margin.

Fig. 9. (a) Formation of FP in steady state. (b) TSSL quantitative valuation

with respect to Φ(2)
+ at various time steps. (c) SVM geometric margin.

Fig. 10. (a) Formation of SS in the steady state. (b) TSSL quantitative valua-
tion with respect to Φ3

+ at various time steps. (c) SVM geometric margin.

is more meaningful and more useful for optimization-based
pattern synthesis than that given by linear classifiers.

Figs. 8, 9, and 10 show a comparison between the TSSL and
SVM metrics. Each figure shows the evolution of the metric
over time for each of the three considered patterns: LS, FP, and

SS. In all three cases, the TSSL quantitative valuation is better
behaved. Indeed, the TSSL curves have fewer local optima (e.g.,
Figs. 9 and 10), and reach global maxima at steady state (e.g.,
Figs. 8 and 9).

VIII. HIGHER-ORDER STATISTICS IN TSSL

In previous sections, TSSL formulae have been learned using
the first moments as features in nodes of the quad trees. In
other words, we have assumed that Σ = {m} in the definition
of quad transition systems where m denotes mean values. In this
section, we study the effect of adding higher moments to the set
of variables Σ. In particular, we added variance of concentrations
of specie 1 to the set of variables in the QTS and investigated
how it improves the results.

Assume that the set of variables in the QTS is Σ = {m, v}
where m represents mean values and v represents variance,
respectively. We repeated the procedure presented in Sections V
and VI and observed that:

1) Improvement in pattern recognition: Adding variance
significantly reduces the length and number of RIPPER
classification rules and, thus, the TSSL formula that rep-
resents a given pattern will be much shorter. Although
the enhancement in prediction accuracy is limited and of-
ten negligible, this has a notable effect on the computation
time, since shorter classification rules are easier and faster
to learn.

2) Improvement in pattern synthesis: The complexity of
TSSL quantitative valuation for a given formula is pro-
portional to the length of the formula. Therefore, a shorter
TSSL formula results in a faster computation of (6). Con-
sequently, the optimization step in Algorithm INTERAC-
TIVEDESIGN is performed faster since we need to compute
the quantitative valuation at every iteration of a PSO.

Example 6: LS Pattern: We considered the experiment de-
scribed in Example 3 and repeated the same procedure (same
training and testing sets and simulation variables) using first-
and second-order statistics for the LS pattern. The learning step
took 23.3 s on the same computer described in Example 3. The
classifier consists of eight rules. Note that the experiment of
Example 3 consisted of 24 rules which were learned in 228 s.
The classifier that is built using mean and variance of observed
concentrations yields a high prediction accuracy (98.27%).

IX. CONCLUSION AND FUTURE WORK

We defined a tree-spatial superposition logic (TSSL) whose
semantics is naturally interpreted over quad trees of partitioned
images. We showed that formulas in this logic can be efficiently
learned from positive and negative examples. We defined a quan-
titative semantics for TSSL and, combined with an optimization
algorithm, to develop a supervised, iterative procedure for the
synthesis of pattern-producing parameters in a network of lo-
cally interacting dynamical systems.

While the experiments show that the current version of the
logic works quite well and can accommodate translational and
rotational symmetries commonly found in biology patterns,
there are several directions of future work. First, we do not

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

BARTOCCI et al.: FORMAL METHODS APPROACH TO PATTERN RECOGNITION AND SYNTHESIS IN REACTION DIFFUSION NETWORKS 319

exploit the full semantics of the logic in this paper. In future
work, we plan to investigate reasoning about multiple branches
and using the “until” operator. Second, we plan to apply this
method to more realistic networks, such as populations of lo-
cally interacting engineered cells. We expect that experimental
techniques from synthetic biology can be used to “tune” existing
synthetic gene circuits to produce global desired patterns.

REFERENCES

[1] J. Golden and H. Yoon, “Heterocyst formation in anabaena,” Curr Opin
Microbiol., vol. 1, no. 6, pp. 623–629, 1998.

[2] R. Scherrer and V. Shull, “Structure, partial elemental composition, and
size of thiopedia rosea cells and platelets,” Can. J. Microbiol., vol. 32,
no. 7, pp. 607–610, 1986.

[3] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[4] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: A review,”

IEEE Trans. Pattern Anal. Mach. Learn., vol. 22, pp. 4–37, 2000.
[5] T. Pavlidis, Structural Pattern Recognition. Springer-Verlag, 1980.
[6] R. C. Veltkamp and M. Hagedoorn, “State-of-the-art in shape matching,”

Principles of Visual Information Retrieval, Tech. Rep., 1999.
[7] E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical

Computer Science: Formal Models and Semantics, J. van Leeuwen, Ed.
North-Holland Pub. Co./MIT Press, 1990, vol. B, pp. 995–1072.

[8] E. M. M. Clarke, D. Peled, and O. Grumberg, Model Checking. MIT Press,
1999.

[9] A. M. Turing, “The chemical basis of morphogenesis,” Philos. Trans. Roy.
Soc. London, vol. 327, pp. 37–72, 1952.

[10] B. Julesz, “Textons, the elements of texture perception, and their interac-
tions,” Nature, vol. 290, pp. 91–97, 1981.

[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. CVPR: IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recogn., vol. 1, Jun. 2005, pp. 886–893.

[12] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 24, pp. 509–521, 2002.

[13] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. Int. Conf. Comput. Vis., vol. 2, 1999, pp. 1150–1157.

[14] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice-Hall, 2002.

[15] A. Rizk and F. Fages, “From model-checking to temporal logic constraint
solving,” in Proc. CP: 15th Int. Conf. Principles Practice Constraint Pro-
gram., Lisbon, Portugal, 20–24 September, ser. Lecture Notes in Computer
Science, vol. 5732. Springer, 2009, pp. 319–334.

[16] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. FORMATS, 8th Int. Conf. Formal Modeling and
Analysis of Timed Systems, Klosterneuburg, Austria, Sep. 8–10, vol. 6246,
2010, pp. 92–106.

[17] A. Donzé, E. Fanchon, L. M. Gattepaille, O. Maler, and P. Tracqui, “Ro-
bustness analysis and behavior discrimination in enzymatic reaction net-
works,” PLoS One, vol. 6, no. 9, p. e24246, 2011.

[18] G. Fainekos and G. Pappas, “Robust sampling for MITL specifications,”
in Proc. FORMATS 2007, 5th Int. Conf. Formal Model. Anal. Timed Syst.,
ser. Lect. Notes Comput. Sci., 2007, vol. 8044, pp. 264–279.

[19] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifica-
tions for continuous-time signals,” Theor. Comput. Sci., vol. 410, no. 42,
pp. 4262–4291, 2009.

[20] R. Grosu, S. Smolka, F. Corradini, A. Wasilewska, E. Entcheva, and
E. Bartocci, “Learning and detecting emergent behavior in networks of
cardiac myocytes,” Commun. ACM, vol. 52, no. 3, pp. 97–105, 2009.

[21] L. de Alfaro, M. Faella, and M. Stoeling, “Linear and branching sys-
tem metrics,” IEEE Trans. Softw. Eng., vol. 35, no. 2, pp. 258–273,
2009.

[22] M. I. Schlesinger and V. Hlavac, Ten Lectures on Statistical and Structural
Pattern Recognition. Springer, 2002, vol. 24.

[23] W. Ren and R. Beard, Distributed Consensus in Multi-Vehicle Cooperative
Control: Theory and Applications. Springer-Verlag, London, U.K., 2008.

[24] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods for Multiagent
Networks. Princeton University Press, Princeton, NJ, USA, 2010.

[25] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic Net-
works. A Mathematical Approach to Motion Coordination Algorithms.
Princeton University Press, 2009.

[26] E. A. Gol, E. Bartocci, and C. Belta, “A formal methods approach to
pattern synthesis in reaction diffusion systems,” in Proc. 53rd IEEE Conf.
Dec. Control, Los Angeles, CA, USA, 2014, pp. 108–113.

[27] R. Collantes, “Algorithm alley. Dr. Dobb’s journal,” Dec. 1996.
[28] R. Finkel and J. Bentley, “Quad trees a data structure for retrieval on

composite keys,” Acta Inf., vol. 4, no. 1, pp. 1–9, 1974.
[29] Y. Kwon and G. Agha, “Scalable modeling and performance evaluation

of wireless sensor networks,” in Proc. 12th IEEE Real-Time Embedded
Technol. Appl. Symp. , 2006, pp. 49–58.

[30] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching-time temporal logic,” in Proc. Logic Programs
Workshop, Ser. Lect. Notes Comput. Sci., vol. 131, 1982, pp. 52–71.

[31] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking,” Adv. Comput., vol. 58, pp. 117–148, 2003.

[32] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.
Mach. Learn.. Morgan Kaufmann, 1995, pp. 115–123.

[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newslett., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[34] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE
Int. Conf. Neural Netw., vol. 4, 1995, pp. 1942–1948.

Ezio Bartocci received the B.S. degree in computer
science, the M.S. degree in bioinformatics, and the
Ph.D. degree in information sciences and complex
systems from the University of Camerino, Italy, in
2002, 2005, and 2009, respectively.

From 2010 to 2012, he was a Research Associate
with the Department of Applied Math and Statistics
and Research Scientist with the Department of Com-
puter Science at the State University of New York at
Stony Brook, Stony Brook, NY, USA. He joined the
Faculty of Informatics at Vienna University of Tech-

nology, Vienna, Austria, in 2012 as a University Assistant. Since 2015, he has
been a tenure-track Assistant Professor with the Department of Computer Engi-
neering at Vienna University of Technology. The primary focus of his research
is to develop formal methods, and computational tools and techniques which
support the modeling and the automated analysis of complex computational
systems, including software systems, cyberphysical systems, and biological
systems.

Ebru Aydin Gol (M’12) received the B.S. degree in
computer engineering from ODTU, Ankara, Turkey,
in 2008, the M.S. degree in computer science from
Ecole Polytechnique Federale de Lausanne, Lau-
sanne, Switzerland, in 2010, and the Ph.D. degree in
systems engineering from Boston University, Boston,
MA, USA, in 2014.

Currently, he is an Assistant Professor at Orta
Dogu Teknik Universitesi (ODTU) in the Department
of Computer Engineering. Prior to joining ODTU in
2016, she was a Site Reliability Engineer at Google.

Her research interests include formal verification and control, probabilistic veri-
fication, hybrid systems, software/release evaluation, as well as verification and
design of cyberphysical systems.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

320 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 1, MARCH 2018

Iman Haghighi (S’16) received the B.S. degree in
mechanical engineering from Sharif University of
Technology, Tehran, Iran, in 2013, the M.S. degree in
systems engineering from Boston University, Boston,
MA, USA, in 2016, and is currently pursuing the
Ph.D. degree in systems engineering at the division
of systems engineering, Boston University.

His current research interests include formal ver-
ification and synthesis in networked systems, pattern
recognition and formation, and spatiotemporal logic
synthesis.

Calin Belta (SM’11) is a Professor in the Depart-
ment of Mechanical Engineering at Boston Univer-
sity, Boston, MA, USA, where he holds the Tegan
Family Distinguished Faculty Fellowship. He is the
Director of the BU Robotics Lab, and is also affili-
ated with the Department of Electrical and Computer
Engineering, the Division of Systems Engineering at
Boston University, the Center for Information and
Systems Engineering (CISE), and the Bioinformat-
ics Program. His research focuses on dynamics and
control theory, with a particular emphasis on hybrid

and cyberphysical systems, formal synthesis and verification, and applications
in robotics and systems biology.

Prof. Belta received the Air Force Office of Scientific Research Young In-
vestigator Award and the National Science Foundation CAREER Award.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 11:34:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

