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Abstract- We present a computational framework for auto-
matic deployment of robots in 2D and 3D rectangular envi-
ronments with polytopal obstacles. The results are derived for
polytopal robots that can only translate with velocities restricted
to polyhedral sets. Our approach consists of three steps: (1)
constructing a discrete representation of the problem by using
hierarchical partitions in the form of quad-trees and oct-trees, (2)
planning the motion in the finite dimensional quotient produced
by the partition, and (3) generating provably correct robot
feedback control laws by constructing a hybrid system. Given
the environment and robot geometry and constraints, generation
of control laws is completely automated. The computation consists
of polyhedral operations and searches on graphs.

I. INTRODUCTION

Robot motion planning and control are fundamental prob-
lems that received a lot of attention. Some works on this
topic focus on environment complexity, while assuming that
the robot is fully actuated with no control bounds, and in-
cludes approaches based on Voronoi diagrams, visibility graphs,
freeway methods, potential fields [1], navigation functions
[2], cellular decompositions, and probabilistic roadmaps [3].
Others focus on the detailed dynamics of the robot, assuming
simple environments. Some of these approaches are differential
geometric [4], some exploit concepts such as flatness [5], while
others use input parameterizations [6], or discontinuous control
laws [7]. Among works combining discrete algorithms with
continuous methods, generation of smooth curves with curva-
ture guarantees is linked to a probabilistic roadmap planner in
[8], while a method dealing with non-holonomic constraints
was developed in [9]. Polygonal partitions and triangulations
followed by assignment of vector fields in the regions produced
by the partition were considered in [10], [11], [12].

In this paper, we present a method for planning and con-
trol of a fully actuated polytopal robot that can translate
with speeds restricted to a polyhedral set in a 2D or 3D
rectangular environment with polytopal obstacles. With a bit
of conservatism, the method can be extended to rotating and
translating under-actuated robots (such as unicycles) [13]. The
main idea behind our method is to use partitions to capture
the complexity of the environment and discrete abstractions
of hybrid systems to generate provably correct robot control
laws. The computational framework consists of three steps.
(1) A hierarchical finite dimensional discrete representation of

the obstacle - free space is constructed by using rectangular
partitions in the form of quad-trees (for 2D case) and oct-
trees (for 3D case) in a modified space where the robot is
reduced to a point, the environment boundaries are shrunk,
and the obstacles are enlarged. (2) A string is generated in
the language of the discrete system, as solution of a path
finding problem on a graph. (3) Provably correct robot control
laws are designed by constructing a hybrid system whose
discrete states (locations) together with their allowed transitions
will correspond to the generated string. We implemented this
method as a user-friendly software package [14].

This work is closely related to [10], [1 1], [12]. In [10], the
authors consider a polygonal partition of a planar configuration
space and assign vector fields so that initial states in each
polygon can only flow to a neighbor through the corresponding
common facet. The vector fields are defined as gradients of
scalar functions determined as solutions of Laplace's equation.
A computationally more attractive approach is proposed in [11],
where the assignment of vector fields in triangulated poly-
gons requires operations on polyhedral sets only, and arbitrary
polyhedral control bounds can be satisfied. The computational
framework of [11] is also used in [12], where paths for the
discretized motion planning problem are found by temporal
logic model checking.
As in [11], [12], our framework is fully algorithmic and

the generation of vector fields is based on operations on
polyhedral sets. However, we use rectangulations as opposed
to triangulations, and take advantage of efficient hierarchical
representations of partitions in the form of quad-trees and oct-
trees [15]. The construction of the vector fields in this paper is
inspired from [16], where sufficient conditions for the existence
of a multi-affine vector field driving all states in a rectangle
through an exit facet and making a rectangle an invariant were
derived for Euclidean spaces of arbitrary dimension. Here, we
focus on two and three dimensional spaces and are able to
derive necessary and sufficient conditions. Moreover, we derive
a controller driving all initial states in a rectangle to an arbitrary
state inside it.

II. PROBLEM FORMULATION

Consider a rectangular environment g c RN, N C {2, 3}
and a finite set of n C N possibly overlapping obstacles
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modelled as convex polytopes O' c 8, i = 1,... ,n. Let
{F} denote a world frame fixed to the environment. Let R
denote a polytopal robot free to translate in S and x C S be
the coordinates of a representative point (observable) of R in
{F}. We assume that the velocity of the point x can be directly
controlled, i.e., we assume that the dynamics of the robot are
described by

±=U,u,cuU (1)

where u is the control input and U is a polyhedral subset of RN,
N = 2, 3 capturing the robot control constraints. A trajectory
x(t) of the robot is called feasible if it is contained in the
environment, it does not intersect the obstacles, and the corre-
sponding velocity is allowed, i.e., cRC , Rn(U i oi) 0,
and=uc U.
Problem 1: Given 8, O', i 1,... ,I n, X, U, and two

feasible positions xo, xf C 8, determine whether there exists
a feasible trajectory x(t) of the robot from xo to xf. If such
trajectories exist, determine a continuous feedback control law
u = f(x) C U producing a trajectory of robot from xo to xf.

If there exist more trajectories satisfying Problem 1, we
choose one for which the distance travelled by the robot is
minimized and, during its motion, the robot does not approach
the obstacles too much. A minimal trajectory should not be
understood in the sense of an interpolating geodesic determined
by a given metric capturing the geometry of the robot and
the environment. Such a problem is computationally very
expensive. In our representation, a minimal trajectory will
correspond to a minimal path in a finite graph which is a
discrete representation of our problem. The optimality criterion
that we use is described in Section IV-B.

To illustrate our approach, throughout this paper we consider
the example in Fig. 1, which shows the initial and final positions
of a robot modelled as a square with side 1 in a planar
rectangular environment with polyhedral obstacles. The robot
observable is assumed to be its centroid and the control bounds
are assumed to be U = [-2, 2] x [-2, 2].

III. DEFINITIONS AND APPROACH

In this paper, we provide a solution to Problem 1 that
is algorithmic, fully automated, computationally efficient, and
robust with respect to knowledge of environment, obstacles,
and robot position. We use iterative partitions to capture the
complexity of the environment and the quotients produced by
such partitions to specify and solve motion tasks in a finite
dimensional discrete (and, therefore, decidable) world. We then
use discrete abstractions of hybrid systems to generate provably
correct robot control laws implementing the specifications. In
the rest of this section, we give the necessary definitions and
outline these ideas.

a) Constructing a finite discrete representation: Using
operations on polyhedral sets, we first construct a new problem,
where the robot R is reduced to its reference point x, the
boundaries of the environment S are shrunk, and the obstacles
o' are enlarged. We then construct a hierarchical representation
of the free space of the robot by using rectangular partitions and
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Fig. 1. Illustrative case study: initial (left) and final (right) positions of a
square robot in a 2D rectangular environment with polyhedral obstacles. The
observable is the centroid of the robot.

2N- trees. Let L = {1, 12, ...., IILI } be a finite set of symbols
labelling obstacle - free rectangles produced by such a partition
( - denotes the cardinality of a set). To capture neighboring
relations among obstacle - free rectangles, we construct a graph

G = (L,t) (2)
where the edge set t c L x L denotes a symmetric adjacency
relation between the corresponding rectangles. Details are in-
cluded in Section IV-A and a graphical illustration of these
ideas is given in Fig. 2.

b) Specifying tasks and generating solutions on the dis-
crete representation: The graph in equation (2) is our frame-
work for algorithmic planning and control. In other words, we
will abstract a robot motion to a sequence of adjacent obstacle -
free rectangular cells. Formally, we define the language L(G)
of the graph G as the set of all its strings

(3)

with 'ij C {I . , Ll},j= 1, . .., m, m > 1. In this
framework, a robot motion is a string in L(G). If we denote
by 1(l) the rectangular region in the modified obstacle - free
environment labelled by 1, a feasible string solving Problem 1
satisfies xo C I(lIi) and xf C I(li)J. Thus, feasible strings
can be determined by using a standard algorithm for finding
paths in a graph. This problem is treated in Section IV-B.

c) Generation of provably correct control laws: To gen-
erate continuous robot control laws implementing a discrete
trajectory given in terms of a string s = (li, li, . . , lJ) C
L(G), we construct a hybrid system by assigning a vector field
(feedback control law) to each of the regions labelled by lij,
j =1,.. ., m, so that the robot (1), reduced to its observable
x, moves in finite time through the set of regions specified by
the string and stays in the last region for all times, independent
of the exact position of the robot in each of the regions. Such
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a hybrid system can be formally defined as

H ={X,Q,I,f,T} (4)

where X = JU l(lij) is its continuous state space, Q
{lil l in* ,i } is its finite set of locations (also called
modes), I: Q -> 2x is as defined before, f: Q -> (X -> TX)
is a mapping that specifies the continuous flow (vector field) in
each location I with the property that fi C U, for all I C Q (U
is the control constraint set as in (1)), and T C t is its set of
transitions given by T = {(lil,1i2), (1i2,1i3), , (lin_, lim)}
According to this definition, while in location I C Q, the hybrid
system evolves according to

± = fJ(x), x (l), (5)

The vector fields will be designed so that all initial states in
I(lij) will flow in finite time to I(lij+,), for j 1,.. ., m 1
and I(li) is an invariant for the system, i.e., the system stays
in I(li )J for all times if it is initialized in I(lim)J. We use some
interesting properties of multi-affine vector fields on rectangles
to construct bounded controllers that (i) drive all initial states
in a rectangle through a desired facet in finite time, (ii) make
a rectangle an invariant, and (iii) make all initial states in a
rectangle converge to an arbitrary point inside the rectangle.
Moreover, while constructing such controllers, we make sure
that the produced vector field is continuous everywhere in X,
which ensures smoothness of the produced trajectories. These
results are presented in Section V.

d) Conservativeness of the approach and extensions:
At a first look, the problem and solution we propose in this
paper seem very conservative. This conservativeness has three
sources. First, in Problem 1, we assume that the polytopal robot
R can only translate (no rotation is allowed) and it is fully
actuated. However, with a bit of extra work, a rotating robot
can be easily accommodated by constructing a large enough
polytope R that includes all 2D (or 3D rotations) of the actual
robot around the reference point x. Also, under-actuated robots
such as unicycles can be treated under this framework by
constructing a diffeomorphic map between its inputs and the
velocity of the reference point x, and by properly mapping the
corresponding constraint sets [13].

Second, in this paper, we restrict our attention to rectangu-
lar partitions, even though other types of partitions, such as
triangulations, might capture the geometry of the environment
and obstacles more efficiently. Our motivation for this choice
is threefold. First, as opposed to triangulations, rectangulations
are easy to define in 3D, or any other higher dimension. Second,
rectangulations can be represented very efficiently using 2N
trees (quad-trees, octrees, etc.). Third, the geometry of the
rectangles is fundamental in developing a computationally
efficient and fully automated procedure for the construction of
the hybrid system (4).

Third, our solution to Problem 1 might seem conservative
in the sense that a whole set of robot initial states around
xo are driven in finite time to a set around xf, with eventual
convergence to xf. However, this approach provides robustness

with respect to knowledge of initial and current state of the
robot and exact geometry of environment.

IV. DISCRETE REPRESENTATION AND SOLUTION

For clarity, in this section we restrict our attention to the
2D case (N = 2). The extension to the 3D case (N = 3) is
straightforward, as stated at the end of this section.

A. Constructing afinite discrete representation
We start by formulating a new problem in which the non-

rotating polytopal robot R is shrunk to its observable x
by correspondingly shrinking the environment boundaries and
enlarging the obstacles. If we assume that the obstacles o0,
i = 1, ... , n and the robot R are all described as the convex
hull of their vertices, there exists a simple algorithm to solve
this problem, which consists of polyhedral operations only [1].
In Fig. 2 (a), we illustrate the application of the algorithm to
the case study from Fig. 1. It is important to note that one
can easily accommodate non-convex polygonal obstacles by
modelling them as overlapping convex obstacles.

To construct a discrete representation of the obstacle - free
space in the modified environment, we use quad-trees [15], [1],
to which we add adjacency relations to obtain the graph G from
equation (2). The edges of this graph correspond to possible
transitions between neighbor rectangles of the partitioned free
space. A quad-tree decomposition and the graph G for the
modified environment of Fig. 2 (a) is given in Fig. 2 (b).

B. Generating a solution to the discrete problem
Problem 1 is feasible if there exists a path in the graph G

from the start node containing xo to the end node containing
xf. Such a path does not exist if the start and the end points are
separated by overlapping obstacles or by obstacles "unsafely"
close to each other.

If the problem is feasible, we choose among possibly several
feasible paths by using an optimality criterion, which is briefly
described here. Our goal is to produce trajectories which are
"safe" with respect to approaching obstacles and "minimal"
with respect to the distance travelled by robot. If only safety
was of interest, since in general small rectangles are a measure
of "closeness" to obstacles, a good choice of cost for (li, Ij) C t
would be the inverse of area of I(lj). In this case, at each
step, a transition towards a larger neighbor would be cheaper.
However, such costs would cause long trajectories through
large rectangles. To deal with this, we attach to each transition
(ii, ij) C t of G a cost equal to the ratio of perimeter over area
of rectangle I(lj). Such a cost, while making transitions to
larger rectangles cheaper, gives a trajectory through a rectangle
the same cost as a trajectory through two larger rectangles
produced at the previous quad-tree iteration. We use Dijkstra's
algorithm for finding the path with minimum cost in the
weighted graph. The obtained path for the graph in Fig. 2 (b)
is given in Fig. 3 (a).

In order to implement such a path, we need to construct a
hybrid system (4) whose location succession will follow exactly
the transitions from the obtained path. To this goal we develop
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(a) (b)
Fig. 2. Construction of the discrete representation of the obstacle - free environment for the case study in Fig. 1: (a) The obstacles are enlarged and the
environment is shrunk (shaded portions will be considered occupied by the robot shrunk to its observable), (b) The graph G (equation (2)) is the quotient of
the quad-tree partition of the free space augmented with adjacency relations.

in Section V a controller driving all initial states in a rectangle
through an exit facet in finite time. Since we cannot determine
exactly the point on the facet through which a rectangle is left,
in order to avoid hitting a wrong rectangle, whenever we need
to make a transition from a rectangle to a smaller rectangle, the
larger rectangle is split (in up to three rectangles) according to
the dimension of the smaller rectangle. Moreover, as detailed in
Section V, in order to construct a hybrid system whose vector
field is continuous everywhere (therefore producing smooth
trajectories), adjacent rectangles are required to exactly share
facets. To this goal, a path might need to be refined by further
splitting the corresponding rectangles before constructing the
hybrid system. Fig. 3 (b) illustrates this idea for the path in
Fig. 3 (a).
The extension of these algorithms to the 3D case is straight-

forward. The only differences are that a quad-tree becomes
an oct-tree and that the cost associated with a transition to
a rectangle is facet area/volume of that rectangle.

V. GENERATION OF PROVABLY CORRECT ROBOT CONTROL
LAWS

A. Preliminaries

A full dimensional (closed) rectangle RN in RN is defined
by two vectors mT (mT,m2,. . . ,mN) N and M
(Ml,M2, ...,MN) RRN mj < M;, j 1,.. .,N as

RN =H 1[mTi, M]. We denote the vertices of RN by vi,
1,... 2N and the set of all vertices by VN HN= {mi, MH}i
Let Fi and ni, i = 1, .... 2N denote the facets and the
corresponding unit outer normals, respectively. For simplicity
of exposition, we denote the opposite facet of Fj by Fj,

1,... N. The facets are numbered so that F. = Fj+N,
1,...,N.

A multi-affine vector field f IRN RRN is a polynomial in
the indeterminates X1, X. ., XN with the property that the degree

of f in any of the indeterminates Xl,..., XN is less than or
equal to 1. Formally, f has the form

f(x) (6)E: fil) ..iNzxi .. XN )

il S.*iNGE{0 .

with fi1.. C RN for all i, ..... i. {O, 1} and using the
convention that if 'k = 0, then k = 1. For example, for
N = 2, all multi-affine functions have the form f(Xl, X2)
fOO + f1Ox1 + fO1x2 + f11X1X2, where fij C R2, i,j C
{0, 1}. In [16] it was proved that a multi-affine vector field
is uniquely determined by its values at the vertices of a full
dimensional rectangle and its restriction to the rectangle is a
convex combination of these values. Specifically,

2N

f(x) = cigi, gi = f(vWi), =1i..., 2
i=l

with ci defined as:

N (Mi 1-jx)
Tnj

(7)

(8)
-b M

KM.oJ

In (8), (bil bi2... , bi,) is the representation of (i- 1) in base 2,
i=1, . .. ,2ff It is easy to see that O < ci <1 ,...,N

and Zi= Ci 1.

B. Design of controllers

All the results in this section are given for the 3D case N
3, i.e., for parallelepipeds R3. They can be easily adjusted for
the planar case N = 2 as stated at the end of this section.
Due to space constraints, we omit all the proofs, and refer
the interested reader to [13]. In what follows, we consider the
following system

±= f(x), f:R3-> U, (9)

956
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 28,2023 at 12:30:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b)
Fig. 3. Generating a solution to the discrete problem corresponding to the case study in Fig. 1: (a) optimal path from initial to final node (rectangle) in the
graph G. o and x denote the initial and final position of robot observable, respectively. (b) new path after rectangle splitting.

where f is a multi-affine vector field as defined in equation (6)
and U C R3 is a polyhedral set of constraints.
Theorem 1 gives a characterization of all multi-affine vector

fields (9) with polyhedral bounds whose trajectories leave the
rectangle R3 through a desired facet. Without restricting the
generality of the theorem, the exit facet is assumed to be F1.

Theorem ] (Exit through a facet): System (9) drives all ini-
tial states in R3 through facet F1 in finite time, with the
additional property that the rectangle is left first time facet F1
is hit, if and only if the values gi of the vector field f at the
vertices vi, i =1,.. , 8 are in U\{O} and satisfy the following
conditions:

nTgi > O, nTgi < °, (0
i = 1,...,~8; andj C {2 ..61withvi CE Fj

Ei,vieF, 11 gi > 0, Z, i,Fi 112 gi > 0 (11)

V~FOJ(121 njT4qg,> 0,Ei,vieF,nFj ( - )i > ,12)
Ei,vieFnFj (nT n )gi > 0, j C {2, 3, 5, 6} (1)

The satisfaction of inequalities (10) guarantees that R3
cannot be left through any facet except F1 and that the motion
speed towards F1 is positive in every point of R3. Inequalities
(11) mean that in at least one vertex of F1 and at least one
vertex of F1 the vector field projections on direction n1 are
strictly positive, while inequalities (12) guarantee that there
does not exist any equilibrium point on edges of F1 or F1.

Theorem 2 (Stay inside): A rectangle R3 is an invariant for
system (9) if and only if the values gi of the vector field f at
the vertices vi, i =1,.. , 8 are in U and satisfy the following
conditions:

2Tgi < O, j C {1, ...,6}andvi C Fj (13)
Geometrically, inequalities (13) mean that on all facets, the

vectors gi point inside the rectangle R3.
Theorem 3 (Asymptotic stabilization): If all inequalities (13)

are strict, then system (9) has a unique equilibrium in R3,

which is asymptotically stable with region of attraction R3.
For arbitrary xe C R3, a vector field (9) whose trajectories
asymptotically converge to xe from everywhere in R3 can be
chosen as:

(14)

where a > 0 is any constant for which gi C U.
Remark 1: If the constraint set U contains an open neigh-

borhood of the origin in R3, then there always exist values gi,
i = 1, ... , 8 satisfying the inequalities from Theorems 1 or 2.
In this paper, we assume that this condition holds.
Remark 2: Since the set U was assumed polyhedral, check-

ing for the existence of allowed gi in the above theorems
reduces to solving linear inequalities, for which there exists
several software packages. For a choice of gi satisfying such
inequalities, the vector field everywhere in the rectangle is
easily constructed using equations (7,8).
Remark 3 (2D case): All the above theorems hold also in

the two-dimensional case N = 2. Since the facets of a rectangle
R2 are also its edges, in Theorem 1, inequalities (12) become
redundant. A simple way to interpret the case N = 2 as a
particular case of N = 3 is that a rectangle R2 can be viewed
as facet F3 or F3 of RJ3.

C. Construction of a hybrid system
For a given string s = (lil l* lim) 12(G), with

x0 C I(lil), xf E I(li.), and with the property that 1(lij) and
I(li+ ) j 1, .. ., m-1 share a facet, we use Theorem 1 in
I(lij 1,..., m-1 and Theorem 3 in I(li )J to construct
a hybrid system giving provably correct robot feedback control
laws fiij (x). As stated above, for each vertex, there will exist
a whole polyhedral set of allowed values for the corresponding
vector field. We use these degrees of freedom to achieve two
desiderata: (i) smoothness of the corresponding trajectories,
and (ii) maximize the speed of motion. For smoothness, we
"stitch" together vector fields in adjacent rectangles so that
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Fig. 4. Construction of a hybrid system for the sequence of rectangles from Fig. 3 (b): (a) vector field assignment and the trajectory of the observable in the
modified environment; (b) robot motion in the initial environment

they completely agree on the common facet. Using the facts
that the restriction of a multi-affine vector field to a facet
remain multi-affine and a facet of a rectangle is a rectangle
itself, then the agreement on a whole facet is equivalent
to agreement at vertices, since the vector field is uniquely
determined at vertices. For each vertex of each rectangle, we
then determine a unique value of the field as the solution of a
linear program, whose polyhedral constraint set is as defined
above. The objective is the projection of the velocity along a
weighted sum of outer normals of rectangles to be reached,
where the weights are equal to the lengths of the rectangles
in the direction of the outer normals of the exit facets. It can
be shown that, if the set U contains an open neighborhood of
the origin, there exist a smooth trajectory for any string. The
details are omitted due to space constraints. An illustration of
this idea is given in Fig. 4. The vector fields and the trajectory
of the observable in the modified environment from xo to xf are
shown in Fig. 4 (a). Note that the vector field is everywhere
continuous and the trajectory is smooth. The motion of the
actual square robot is shown in Fig. 4 (b), which concludes
the solution of the case study considered in Fig. 1. The time
required to build the discrete representation was 1.3 seconds,
the free path was found in 0.4 seconds, and the control laws
were generated in 1.4 seconds, leading to a total conputation
time of 3.1 seconds. A 3D case study is presented in [13].

VI. CONCLUDING REMARKS

We developed a computational framework for automatic
deployment of robots with control bounds in rectangular 2D
and 3D environments with polytopal obstacles, available for
download from [14]. Central to our approach is to use partitions
in the form of quad-trees and oct-trees to capture the complexity
of the environment and discrete abstractions of hybrid systems
to construct provably correct robot control laws. Given an
environment and robot geometry, and start and end positions

of the robot, feedback control laws producing an interpolating
motion are automatically generated.
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