2018 Annual American Control Conference (ACC)
June 27-29, 2018. Wisconsin Center, Milwaukee, USA

A Policy Search Method For Temporal Logic Specified Reinforcement
Learning Tasks

Xiao Li, Yao Ma and Calin Belta

Abstract— Reward engineering is an important aspect of
reinforcement learning. Whether or not the users’ intentions
can be correctly encapsulated in the reward function can
significantly impact the learning outcome. Current methods
rely on manually crafted reward functions that often requires
parameter tuning to obtain the desired behavior. This operation
can be expensive when exploration requires systems to interact
with the physical world. In this paper, we explore the use of
temporal logic (TL) to specify tasks in reinforcement learning.
TL formula can be translated to a real-valued function that
measures its level of satisfaction against a trajectory. We take
advantage of this function and propose temporal logic policy
search (TLPS), a model-free learning technique that finds a
policy that satisfies the TL specification. A set of simulated
experiments are conducted to evaluate the proposed approach.

I. INTRODUCTION

Reinforcement learning (RL) has enjoyed groundbreaking
success in recent years ranging from playing Atari games
at super-human level [1], playing competitively with world
champions in the game of Go [2] to generating visuomotor
control policies [3], [4]. Despite much effort in developing
efficient sample algorithms, an important aspect of RL re-
mains less explored. The reward function is the window
for designers to specify the desired behavior and impose
important constraints for the system. While most reward
functions used in the current RL literature have been based
on heuristics for relatively simple tasks, real world applica-
tions typically involve tasks that are logically more complex.

Consider the task of an agent learning to use the oven.
The agent is required to perform a series of sub-tasks in the
correct sequence (set temperature and timer — preheat —
open oven door — place item in oven — close oven door). In
addition, the agent has to make the simple decision of when
to open the oven door and place the item (i.e. preheat finished
implies open oven door). For such a task, a function that
correctly maps the desired behavior to a real-valued reward
is difficult to design. If the semantics of the reward function
can not be guaranteed, then an increase in the expected return
will not necessarily represent better satisfaction of the task
specification. This is referred to as reward hacking by [5].

In this paper, we take advantage of the expressive power of
temporal logic and use it as a task specification language for
reinforcement learning in continuous state and action spaces.
Its quantitative semantics (also referred to as robustness
degree or simply robustness) translate a TL formula to a
real-valued function that can be used as the reward. By
definition of the quantitative semantics, a robustness value
of greater than zero guarantees satisfaction of the temporal
logic specification.

978-1-5386-5428-6/$31.00 ©2018 AACC

Temporal logics (TL) have been adopted as specification
languages for a wide variety of control tasks. Authors of [6]
use linear temporal logic (LTL) to specify a persistent
surveillance task carried out by aerial robots. Similarly, [7]
and [8] applied LTL in traffic network control. Application of
TL in reinforcement learning has been less investigated. [9]
combined signal temporal logic (STL) with Q-learning while
also adopting the log-sum-exp approximation of robustness.
However, their focus is in the discrete state and action spaces,
and ensured satisfiability by expanding the state space to a
history dependent state space. This does not scale well with
large or continuous state-action spaces which is often the
case for control tasks.

The contribution of this paper is threefold. First, we
present a model-free policy search algorithm, which we call
temporal logic policy search (TLPS), that takes advantage of
the robustness function to facilitate learning. We show that an
optimal parameterized policy that maximizes the robustness
could be obtained by solving a constrained optimization. Sec-
ond, we propose a smooth approximation of the robustness
degree, which is necessary for obtaining the gradients of the
objective and constraints. We prove that using the smoothed
robustness as reward provides similar semantic guarantees to
the original robustness definition while providing significant
speedup in learning. Finally, we demonstrate the performance
of the proposed approach using simulated navigation tasks.

II. PRELIMINARIES
A. Truncated Linear Temporal Logic (TLTL)

A TLTL formula [10] is defined over predicates of form
f(s) <c, where f : IR™ — IR is a function of state and c is
a constant. The syntax of TLTL is defined as:

p=TI[[f(s)<c|=p|dAP |V
Co 1B | oUY [6T ¥ |

where T is the boolean constant true, f(s) < c is a
predicate, — (negation/not), A (conjunction/and), and V (dis-
junction/or) are Boolean connectives, and < (eventually),
O (always), U (until), 7 (then) are temporal operators. TLTL
formulas are evaluated against finite time sequences of states
{s0,81,...,87}. Due to space constraints, we refer readers
to [10] for complete definitions of the Boolean and quanti-
tative semantics of TLTL. For an intuitive understanding of
TLTL, we provide the following example.

Example 1: Consider specification ¢ = {(s > 5 A s <
10), where s is a one dimensional state. Intuitively, this
formula specifies that s eventually reaches region (5,10)

)

240

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

for at least one time step. Suppose we have a state tra-

jectory sq.3 Sps182 = [11,6,7] of horizon 3. The

robustness is p(sg.3,$) = max (min(lO — S¢,8; — 5)) =
€0,3

s

max(—1,1,2) = 2. Since p(s¢, ¢) > 0, Sp.1 = ¢ and the
value p(sy, @) = 2 is a measure of the satisfaction margin.
Note that both states s; and so stayed within the specified
region, but sy “more” satisfies the predicate (s > 5As < 10)
by being closer to the center of the region and thereby
achieving a higher robustness value than s;.

B. Markov Decision Process

In this section, we introduce the finite horizon infinite
Markov decision process (MDP) and the semantics of a
TLTL formula over an MDP. We start with the following
definition:

Definition 1: A finite horizon infinite MDP is defined as a
tuple (S, A,p(-|-,-)), where S C IR" is the continuous state
space; A C IR™ is the continuous action space; p(s’|s, a) is
the conditional probability density of taking action a € A at
state s € S and ending up in state s’ € S. We denote T as
the horizon of MDP.

Given an MDP in Definition 1, a state trajectory of length
T (denoted 7 = sp.7—1 = (S0, ..., ST—1)) can be produced.
The semantics of a TLTL formula ¢ over 7 can be evaluated
with the robustness degree p(7,¢) defined in the previous
section. p(7,¢) > 0 implies that 7 satisfies ¢, i.e. 7 = ¢
and vice versa. In the next section, we will take advantage
of this property and propose a policy search method that
aims to maximize the expected robustness degree.

III. PROBLEM FORMULATION AND APPROACH

We first formulate the problem of policy search with TLTL
specification as follows:

Problem 1: Given an MDP in Definition 1 and a TLTL
formula ¢, find a stochastic policy 7(a|s) (7 determines a
probability of taking action a at state s) that maximizes the
expected robustness degree

7 = argmax Ep- () [p(7, 9)], 2

where the expectation is taken over the trajectory distribution
p™ (1) following policy T, i.e.

T-1

p(so) [p(serrlse ar)m(ads,).

t=0

pr(7) = 3)

In reinforcement learning, the transition function p(s’|s, a)
is unknown to the agent. The solution to Problem 1 learns
a stochastic time-varying policy m(a¢|s¢) [11] which is a
conditional probability density function of action a given
current state s at time step t.

In this paper, policy m is a parameterized policy
mw(ag|se; 0:),¥t = 1,...,T (also written as mg in short,
where 0 = {6p,601,...,0r_1}) is used to represent the

241

policy parameter. The objective defined in Equation (2) then
becomes finding the optimal policy parameter #* such that
0* = arg(gnax Epro (7 [p(T,0)] . 4)

To solve Problem 1, we introduce temporal logic policy
search (TLPS) - a model free RL algorithm. At each iteration,
a set of sample trajectories are collected under the current
policy. Each sample trajectory is updated to a new one with
higher robustness degree by following the gradient of p
while also keeping close to the sample so that dynamics
is not violated. A new trajectory distribution is fitted to
the set of updated trajectories. Each sample trajectory is
then assigned a weight according to its probability under
the updated distribution. Finally, the policy is updated with
weight maximum likelihood. This process ensures that each
policy update results in a trajectory distribution with higher
expected robustness than the current one. Details of TLPS
will be discussed in the next section.

As introduced in Section II-A, the robustness degree p
consists of embedded max / min functions and calculating
the gradient is not possible. In Section V, we discuss the
use of log-sum-exp to approximate the robustness function
and provide proofs of some properties of the approximated
robustness.

IV. TEMPORAL LOGIC PoLICY SEARCH (TLPS)

Given a TLTL formula ¢ over predicates of S, TLPS finds
the parameters 6 of a parametrized stochastic policy mg(als)
that maximizes the following objective function.

ST = Epro [p(7, ¢)], (T' < 00), o)

where p™ = p™ (1) is defined in Equation (3).

In TLPS, we model the policy as a time-varying linear
Gaussian, i.e. w(as|s;) = N (Kysy+ ki, Cy) where Ky, ke, C;
are the feedback gain, feed-forward gain and covariance of
the policy at time ¢. (similar approach has been adopted
in [12], [13]). And the trajectory distribution in Equation (3)
is modeled as a Gaussian p™(7) N (7|pr, X;) where
tr = (Hsgy ooy fhsy) and Xp = diag(Esy, ..o, Xy)

At each iteration, N sample trajectories are collected
(denoted 7%, i € [1, N]). For each sample trajectory 7¢, we
find an updated trajectory 7° by solving

max p(7',9), st (71— 7)1 (7 =) <e.

Fi

(6)

In the above equation, p is the log-sum-exp approximation
of p. This is to take advantage of the many off-the-shelf
nonlinear programming methods that require gradient in-
formation of the Lagrangian (sequential quadratic program-
ming is used in our experiments). Using the log-sum-exp
approximation we can show that its approximation error is
bounded. In additional, the local ascending directions on the
approximated surface coincide with the actual surface given
mild constraints (these will be discussed in more detail in
the next section). Equation (6) aims to find a new trajectory
that achieves higher robustness. The constraint is to limit the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

deviation of the updated trajectory from the sample trajectory
so the system dynamics is not violated.

After we obtain a set of updated trajectories, an updated
trajectory distribution p(7) = N (7|fi,, ¥,) is fitted using

N N
=527 ZT — i) (7 =)T, (D)
i=1 i=1

The last step is to update the policy. We will only be up-
dating the feed-forward terms k; and the covariance C;. The
feedback terms K is kept constant (the policy parameters
are §; = (k;,Cy), t € [0,T)). This significantly reduces
the number of parameters to be updated and increases the
learning speed. For each sample trajectory, we obtain its
probability under p(7)

N(T'|fir, Br) ®)

(p(7%) is also written in short as p’) where i € [1, N] is
the sample index. Using these probabilities, a normalized
weighting for each sample traJectory is calculated using
the softmax function w’ = €' /3 e (a > 0 is a
parameter to be tuned). Finally, similar to [12], the policy
is updated using weighted maximum likelihood by

p(r') = N(7'|fir,

N
:Zwiki
Zw (ki — k) (ki — k)"

According to [14], such update strategy will result in con-
vergence.

)

V. ROBUSTNESS SMOOTHING

In the TLPS algorithm introduced in the previous section,
one of the steps requires solving a constrained optimiza-
tion problem that maximizes the robustness (Equation (6)).
The original robustness definition in Section II-A is non-
differentiable and thus rules out many efficient gradient-
based methods. In this section we adopt a smooth ap-
proximation of the robustness function using log-sum-exp.
Specifically

max(xy, ..., Ty) &

1 n
B log Z exp(fz;)
' (10)

min(xq, ...,z

b

1 n
n) ~ ~3 logz exp(—pfx;),
i
where 5 > 0 is a smoothness parameter. We denote an
iterative max-min function as

M (z) = mami; f;(x),

where f;(x) = mami;f;(x). mami denotes a function as
mami € {max, min,Z} where Z is a operator such that
Zfi(x) = fj(z). i and j are index of the functions in mami

242

and can be any positive integer. As we showed in Section II-
A, any robustness function could be expressed as an iterative
max-min function.

Following the log-sum-exp approximation, any iterative
max-min function (i.e., the robustness of any TL formula)
can be approximated as follows

M(z) = %log (Z exp (ﬂfi(:c»)

where 3; > 0 if mami; = max; and 3; < 0 if mami; = min;.
In the reminder of this section, we provide three lemmas that
show the following:

o the approximation error between M(z) and M (x)
approaches zero as [3; — oco. This error is always
bounded by the log of the number of f(x) which is
determined by the number of predicates in the TL
formulae and the horizon of the problem. Tuning f;
trades off between differentiability of the robustness
function and approximation error.

despite the error introduced by the approximation, the
optimal points remain invariant (i.e. argmax_ M (x)
argmawa (x)). This result provides guarantee that the
optimal policy is unchanged when using the approxi-
mated TL reward,

even though the log-sum-exp approximation smooths the
robustness function. Locally the ascending directions of
M (z) and M (z) can be tuned to coincide with small
error and the deviation is controlled by the parameter
B. As many policy search methods are local methods
that improve the policy near samples, it is important to
ensure that the ascending direction of the approximated
TL reward does not oppose that of the real one.

Due to space constraints, we will only provide sketches of
the proofs for the lemmas.

Len}ma 1: Let N; be the number of terms of mami;, M
and M satisty

1
vo y ! > L
Zesmbn Zesnlam /Bl
where Sy, = {i : mami; = min;} and Sy, = {0 :

mami; = max; }.

Proof: For simplicity and without loss of generality,
we illustrate the proof of Lemma 1 by constructing an
approximation for a finite max-min-max problem

b =
(x) I{le‘a,IXIJnellI]lI’?é})éfL,] k()

Let M; = |I|, Mj; = |J|, Mg = |K|, and 6[> 0, ﬁj <
0, Bk > 0. Firstly, we define ®,(z) = maxpex fijr(x).

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

Straightforward algebraic manipulation reveals that

log | > exp(8,2;) +§" log(Mg) (11)
jeJ
giJ
<log | Y lZ exp(ﬂKfi,j,m))]
jeJ LkeK
<log [> exp(B,P;)
isd

Furthermore, let us define ®; = min;c ; ®;, we have

Bs®; <log | Y exp(B8s®;) | <log(M;)+ Bs®;.
jedJ

By substituting into Equation (11), we obtain
BsP; + log(My) > log Z exp(Bs®;)
jeJ

> Bs®; + By log(Mf).
Bk

Mult1p1y1ng on both side, then
log(Z exp(B101)) + L log(M;)
il B
51 Fh
BK
<ios| 2| X (3 ontintsato)
icl |jeJ \keK

B
< log(z exp(Br®;)) + L log(Mf).
il B
Finally, let & = max;c; ®;, then we have
exp(Br®) <D exp(Br®;) < M exp(BP)
iel

Br® < log(y _ exp(BrPy)) < log(My) + fr®
i€l

12)

Substitute into Equation (12)

Br® + % log(M)
J

879 5y

< log Z Z (Zexp(ﬁKfi,j,k(x))> ’

iel |jeJ \keK

< Br® + log(My) + br log(Mf).
Bk

Then we conclude the proof. []
Lemma 2: Suppose X* = {z* : 2* € argmax M (x)},
there exist a positive constant B such that for all |5| > B
xz* is also one of the maximum point of M(a:) for any z*,
ie.
x* € argmax M (z).

Proof: We start by considering M as a maximum
function, i.e. M(xz) = max; f;(z).let us denote I,q, =

argmax, f;(x*), then z* € argmax M (z) when
Z exp (Bfi(x*)) — Z exp (Bfi(x))
i#Imax i#Imax

S exXp (ﬁflmaz(m*)) — €Xp (B.flmaa:(x))

There always exists a positive constant B, such that for all
[> B the above statement holds. Lemma 2 can be obtained
by using the above proof for the mami function in general.
|

Lemma 3: Let us denote the sub- gradient of M as

M {BI1 } and the gradient of M as a—M =
{ By 2 af,” 1. There exists a positive constant B such that
for all |ﬂ| > B, % and %—J\f satisfy
(oM aM>
Or’ dr '~

where (-, -) denotes the inner product.
Proof: Here we will only provide the proof when
M is a point-wise maximum of convex functions. One can
generalize it to any iterative max-min function using the
chain rule. Supposing M (x) = max; f;(x), the sub-gradient
of M(x) is
oM

S = 0fila).i € I(a),

where I(z) = {i|fi(z) = f(x)} is the set of “active”
functions. The corresponding M is defined as

N 1
M = log <Z exp (sz-(x))) :
where its first order derivative is

exp(Bfi(z))0fi(x)
Z 2k exp (Bfr(x))

(M OM) () if

ep (Bf()
5, exp Bfe(@)
exp (85;())
2 e (3]

Therefore, there always exists a positive constant B, such
that (24 2My . (holds for all 8 > B. [

> fi(z),Vi € I(z).

VI. CASE STUDIES

In this section, we apply TLPS on a vehicle navigation
example. As shown in Figure 1, the vehicle navigates in
a 2D environment. It has a 6 dimensional continuous state
feature space s = [x,y, 0, &, y, 0] where (z,y) is the position
of its center and @ is the angle its heading makes with the z-
axis. Its 2 dimensional action space a = [a,, ag] consists of
the forward driving speed and the steering angle of its front
wheels. The learning agent is not provided with knowledge
about the vehicle or the environment and is required to learn
satisfying control policies through trial and error.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

Fig. 1 : Vehicle navigation task using TLTL specifications. The
vehicle is shown in brown, the obstacle is shown as the green circle
and the goals are shown as the green squares. left: Task 1 is to reach
the goal while avoiding the obstacle. right: Task 2 is to visit goals
1,2,3 in this order while avoiding the obstacle

We test TLPS on two tasks with increasing difficulty. In
the first task, the vehicle is required to reach the goal g while
avoiding the obstacle o. We express this task as a TLTL
specification

01 :<>(x>xlg/\x<a:g/\y>ylg/\y<yg)/\

O(dy > 7). (13)

In Equation (13), (z}, 2%y}, y%) defines the square shaped
goal region, d, is the Euclidean distance between the ve-
hicle’s center and the center of the obstacle, 7, is the
radius of the obstacle. In English, ¢; describes the task
of “eventually reach goal g and always stay away from
the obstacle”. Using the quantitative semantics described in
Section II-A , the robustness p1(é1, (2, y)o.7) and its smooth
approximation pi(¢1, (z,y)o.7) can be calculated with the
definitions provided in Section II-A and Equation (10).

In task 2, the vehicle is required to visit goals 1, 2, 3 in
this specific order while avoiding the obstacle. Expressed in
TLTL results in the specification

P2 :(w!h T '(/)!12 T qu) A (—\('(/ng v wg?;) u ,(/J!h)/\
(m(gs) U gy) A (Oy, = OO=thg,))A

1=1,2,3
O(do > 10),
(14)

where /\ is a shorthand for a sequence of conjunction,
Vg, x> b Ax < al Ay >yl Ay <yl are the predicates
for goal g;. In English, ¢o states “visit g, then gs then gs,
and don’t visit go or gs until visiting g1, and don’t visit g3
until visiting gs, and always if visited g; implies next always
don’t visit g; (don’t revisit goals), and always avoid the
obstacle” . Due to space constraints the robustness of ¢5 and
its approximation will not be explicitly presented, but it will
take a similar form of nested min()/ max() functions that
can be generated from the quantitative semantics of TLTL.

Each episode has a horizon T' 200 time-steps. 40
episodes of sample trajectories are collected and used for
each update iteration. The policy parameters are initialized

244

randomly in a given region (the policy covariances should be
initialized to relatively high values to encourage exploration).
Each task is trained for 50 iterations and the results are pre-
sented in Figures 2 and 3. Figure 2 shows sample trajectory
distributions for selected iterations. Trajectory distributions
are illustrated as shaded regions with width equal to 2
standard deviations. Lighter shade indicates earlier time in
the training process. We used S = 9 for this set of results. We
can see from Figure 2 that the trajectory distribution is able
to converge and satisfy the specification. Satisfaction occurs
much sooner for task 1 (around 30 iterations) compared with
task 2 (around 50 iterations).

Fig. 2 : Sample trajectory distributions for selected iterations for
left: task 1, right: task 2. Each iteration consists of 40 sample
trajectories each having a horizon of 200 time-steps. The width
of each distribution is 2 standard deviations and color represent
recency in the training process (lighter color indicates earlier time
in training).

Figure 3 compares the average robustness (of 40 sample
trajectories) per iteration for TLPS with different values
of the approximation parameters J in (10). As a baseline,
we also compare TLPS with episode-based relative entropy
policy search (REPS) [11]. The original robustness function
is used as the terminal reward for REPS and our previous
work [10] has shown that this combination outperforms
heuristic reward designed for the same robotic control task.
The magnitude of robustness value changes with varying
B. Therefore, in order for the comparison to be meaningful
(putting average returns on the same scale), sample trajecto-
ries collected for each comparison case are used to calculate
their original robustness values against the TLTL formula
and plotted in Figure 3 (a similar approach taken in [10]).
The original robustness is chosen as the comparison measure
for its semantic integrity (value greater than zero indicates
satisfaction).

Results in Figure 3 shows that larger S results in faster
convergence and higher average return. This is consistent
with the results of Section V since larger S indicates lower
approximation error. However, this advantage diminishes
as [increases due to the approximated robustness func-
tion losing differentiability. For the relatively easy task 1,
TLPS performed comparatively with REPS. However, for the
harder task 2, TLPS exhibits a clear advantage both in terms
of rate of convergence and quality of the learned policy.

TLPS is a local policy search method that offers gradual

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

—— beta=1
beta=3

—— beta=6

— beta=9

= = REPS + real robustness

Average Robustness

oh

lteration

Average Robustness

-4
0

—— beta=1
beta=3

—— beta=6

— beta=9,

= = REPS + real robustness

Ne o

Iteration

Fig. 3 : Average return vs training iteration for left: task 1, right: task2. The average return is represented as the original robustness value
calculated from sample trajectories. TLPS is compared with varying . REPS with the original robustness as terminal reward is used as

a baseline.

policy improvement, controllable policy space exploration
and smooth trajectories. These characteristics are desirable
for learning control policies for systems that involve physical
interactions with the environment. S (likewise for other local
RL methods). Results in Figure 3 show a rapid exploration
decay in the first 10 iterations and little improvement is seen
after the 40" iteration. During experiments, the authors find
that adding a policy covariance damping schedule can help
with initial exploration and final convergence. A principled
exploration strategy is possible future work.

VII. CONCLUSION

In this paper, we applied temporal logic as the task
specification language for reinforcement learning. The quan-
titative semantics of TL is adopted for accurate expression of
logical relationships in an RL task. We explored robustness
smoothing as a means to transform the TL robustness to a
differentiable function and provided theoretical results on the
properties of the smoothed robustness. We proposed temporal
logic policy search (TLPS), a model-free method that utilizes
the smoothed robustness and operates in continuous state
and action spaces. Simulation experiments are conducted to
show that TLPS is able to effectively find control policies
that satisfy given TL specifications.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
2015.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. V. D.
Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, and K. Kavukcuoglu, “Mastering
the game of Go with deep neural networks and tree search,”
Nature, vol. 529, no. 7585, pp. 484-489, 2016. [Online]. Available:
http://dx.doi.org/10.1038/nature 16961

[2

—

245

[3]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-End Training of
Deep Visuomotor Policies,” Arxiv, p. 6922, 2015. [Online]. Available:
http://arxiv.org/abs/1504.00702

S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning
Hand-Eye Coordination for Robotic Grasping with Deep Learning
and Large-Scale Data Collection,” arXiv, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02199v1

D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete Problems in AI Safety,” pp. 1-29, 2016.
[Online]. Available: http://arxiv.org/abs/1606.06565

K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos, M. Schwager,
and C. Belta, “Persistent surveillance for unmanned aerial vehicles
subject to charging and temporal logic constraints,” Autonomous
Robots, vol. 40, no. 8, pp. 1363-1378, 2016.

S. Sadraddini and C. Belta, “A provably correct mpc approach to safety
control of urban traffic networks,” in American Control Conference
(ACC), 2016. 1IEEE, 2016, pp. 1679-1684.

S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control
from temporal logic specifications,” IEEE Transactions on Control of
Network Systems, vol. 3, no. 2, pp. 162-172, 2016.

D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-
learning for robust satisfaction of signal temporal logic specifications,”
in Decision and Control (CDC), 2016 IEEE 55th Conference on.
IEEE, 2016, pp. 6565-6570.

X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” IEEE International Conference on Intelligent
Robots and Systems, 2017.

M. P. Deisenroth, “A Survey on Policy Search for Robotics,”
Foundations and Trends in Robotics, vol. 2, no. 1, pp. 1-142,
2011. [Online]. Available: http://www.nowpublishers.com/articles/
foundations-and-trends-in-robotics/ROB-021

Y. Chebotar, M. Kalakrishnan, A. Yahya, A. Li, S. Schaal, and
S. Levine, “Path integral guided policy search,” arXiv preprint
arXiv:1610.00529, 2016.

W. H. Montgomery and S. Levine, “Guided policy search via approx-
imate mirror descent,” in Advances in Neural Information Processing
Systems, 2016, pp. 4008-4016.

F. Stulp and O. Sigaud, “Path integral policy improvement with
covariance matrix adaptation,” ICML, 2012.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 21:08:51 UTC from IEEE Xplore. Restrictions apply.

