
A Formal Methods Approach to Pattern Synthesis
in Reaction Diffusion Systems

Ebru Aydin Gol, Ezio Bartocci and Calin Belta

Abstract— We propose a technique to detect and generate
patterns in a network of locally interacting dynamical systems.
Central to our approach is a novel spatial superposition logic,
whose semantics is defined over the quad-tree of a partitioned
image. We show that formulas in this logic can be efficiently
learned from positive and negative examples of several types of
patterns. We also demonstrate that pattern detection, which is
implemented as a model checking algorithm, performs very
well for test data sets different from the learning sets. We
define a quantitative semantics for the logic and integrate the
model checking algorithm with particle swarm optimization in
a computational framework for synthesis of parameters leading
to desired patterns in reaction-diffusion systems.

I. INTRODUCTION

From the stripes of a zebra and the spots on a leopard
to the filaments (Anabaena) [1], spirals, squares (Thiopedia
rosea), and vortex (Paenibacillus) [2] formed by single-
cell organisms, patterns can be found everywhere in nature.
Pattern formation is at the very origin of morphogenesis and
developmental biology, and it is at the core of technologies
such as self-assembly, tissue engineering, and amorphous
computing. Even though it received a lot of attention from
diverse communities such as biology, computer science, and
physics, this phenomenon is still not well understood.

Pattern recognition is usually formulated as a machine
learning problem, in which patterns are characterized either
statistically [3] or through a structural relationship among
their features [4]. Despite its success in several application
areas [5], pattern recognition still lacks a formal foundation.
Can patterns be specified in a formal language with well-
defined syntax and semantics? Can we develop algorithms
for pattern detection from specification given in such a lan-
guage? Given a collection of locally interacting agents, can
we design parameter synthesis rules, control and interaction
strategies guaranteeing the emergence of global patterns? In
this paper, by drawing inspiration from model checking [6],
we provide partial answers to these questions.

We address the following problem: Given a network of
locally interacting dynamical systems, and given sets of
positive and negative examples of a desired pattern, find
parameter values that guarantee the occurrence of the
pattern in the network at steady state. Our approach is
based on a novel spatial superposition logic, called Tree
Spatial Superposition Logic (TSSL), whose semantics is
defined over quad-trees of partitioned images. The decision
of whether a pattern exists in an image becomes a model
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checking problem. A pattern descriptor is a TSSL formula,
and we employ machine-learning techniques to infer such a
formula from the given positive and negative examples of the
pattern. To synthesize parameters of the original networked
system leading to a desired pattern, we use a particle swarm
optimization (PSO) algorithm. The optimization fitness func-
tion is given by a measure of satisfaction induced by the
quantitative semantics. We present examples showing that
formulas in the proposed logic are good classifiers for some
commonly encountered patterns. While the overall algorithm
can be applied to any network of locally interacting systems,
in this paper we focus on the Turing reaction-diffusion
system [7], and show that pattern-producing parameters can
be automatically generated with our method.

II. RELATED WORK

Pattern recognition is a well-established technique in
machine learning. Given a data set and a set of classes, the
goal is to assign each data to one class, or to provide a
“most likely” matching of the data to the classes. The two
main steps in pattern recognition are: (a) to extract distinctive
features [8], [9] with relevant information from a set of input
data representing the pattern of interest and (b) to build, using
one of the several available machine learning techniques
(see [10] for a detailed survey), an accurate classifier trained
with the extracted features.

In this paper we establish an interesting connection be-
tween verification and pattern recognition. Both classical
verification [11], [12] and pattern recognition techniques
aim to verify (and possibly quantify) the emergence of a
behavioral pattern. We propose logic formulas as pattern
descriptors and verification techniques as pattern classifiers.
The logical nature of such pattern descriptors allows to
reason about the patterns and to infer interesting properties.

This paper is inspired by the original work on morphogen-
esis by Alan Turing [7], and is closely related to [13]. In the
latter, the authors introduced a Linear Spatial Superposition
Logic (LSSL), whose formulas were interpreted, as in this
paper, over quad-tree partitions. The existence of a pattern
in an image corresponded to the existence of a path in the
corresponding tree from the root to the leaf corresponding
to a representative point in the image. As a consequence,
the method was shown to work for spirals, for which the
center was chosen as the representative point. The tree logic
proposed here is more general as it does not depend on the
choice of such a point and captures the pattern “globally”.
For example, the patterns considered in this paper cannot be
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expressed in LSSL, because they rely on a tree representation
rather than a path representation.

As opposed to [13], we define a quantitative semantics
for the logic, and use the distance to satisfaction as a fitness
function while searching for pattern-producing parameters.
This quantitative semantics and the discounted model check-
ing on a computational tree are inspired from [14], with the
notable difference that we do not need a metric distance,
but rather a measure of satisfiability. The main novelty
of this paper, compared to the other pattern recognition
approaches, is that we can quantify “how far” a system is
from producing a desired pattern. This, which is possible due
to the quantitative semantics of our logic, enables the use
of optimization algorithms to search for pattern-producing
parameters. Due to space limitations, the results in this paper
are stated without proofs. The proofs and additional details
can be found in [15].

III. PROBLEM FORMULATION

Notation. We use R, R+, N and N+ to denote the set of
real numbers, non-negative reals, integer numbers, and non-
negative integers, respectively. For any a,b,c ∈ R and set
S ⊆R, S>c := {x∈ S | x> c}, and S[a,b] := {x∈ S | a≤ x≤ b}.

A reaction-diffusion system S is modeled as a spatially
distributed and locally interacting K×K rectangular grid of
identical systems, where each location (i, j) ∈N[1,K]×N[1,K]
corresponds to a system:

Si, j :
dx(n)i, j

dt
= Dn(u

(n)
i, j − x(n)i, j )+ fn(xi, j,R), n = 1, . . . ,N, (III.1)

where xi, j = [x(1)i, j , . . . ,x
(N)
i, j ] is the state vector of system Si, j,

which captures the concentrations of all species of interest.
D and R are the parameters of system S. D = [D1, . . . ,DN ]∈
RN
+ is the vector of diffusion coefficients. R ∈ RP−N is the

vector of parameters that defines the local dynamics fn :RN
+×

RP−N → R for each of the species n = 1, . . . ,N. Note that
the parameters and dynamics are the same for all systems
Si, j,(i, j)∈N[1,K]×N[1,K]. The diffusion coefficient is strictly
positive for diffusible species and it is 0 for non-diffusible
species. Finally, ui, j = [u(1)i, j , . . . ,u

(N)
i, j ] is the input of system

Si, j from the neighboring systems:

u(n)i, j =
1
|νi, j| ∑

v∈νi, j

x(n)v , where

νi, j denotes the set of indices of systems adjacent to Si, j.
Given a parameter vector p = [D,R] ∈ RP, we use S(p)

to denote an instantiation of a reaction-diffusion system. We
use x(t)∈RK×K×N

+ to denote the state of system S(p) at time
t, and xi, j(t)∈RN

+ to denote the state of system S(p)i, j at time t.
While the model captures the dynamics of concentrations of
all species of interest, we assume that a subset {n1, . . . ,no}⊆
{1, . . . ,N} of the species is observable through:

H : RK×K×N
+ → RK×K×o

[0,b] : y = H(x),

for some b ∈ R+.
We are interested in analyzing the observations generated

by system (III.1) in steady state. Therefore, we focus on
parameters that generate steady state behavior, which can be

easily checked through a running average:
K

∑
i=1

K

∑
j=1

N

∑
n=1
| x(n)i, j (t)− x(n)i, j |< ε, (III.2)

where x(n)i, j =
∫ T

t−T x(n)i, j (τ)dτ/T for some T ≤ t. The system
is said to be in steady state at time t̄, if (III.2) holds for
all t ≥ t̄. In the rest of the paper, we will simply call the
observation of a trajectory at steady state as the observation
of the trajectory, and denote it as H(x(t̄)).

Example 3.1: We consider a 32× 32 reaction-diffusion
system with two species (i.e. K = 32, N = 2):

dx(1)i, j

dt
= D1

(
u(1)i, j − x(1)i, j

)
+R1x(1)i, j x(2)i, j − x(1)i, j +R2,

dx(2)i, j

dt
= D2

(
u(2)i, j − x(2)i, j

)
+R3x(1)i, j x(2)i, j +R4. (III.3)

The system is inspired from Turing’s reaction-diffusion sys-
tem and is presented in [16] as a model of the skin pigments
of an animal. At a cell (location (i, j)), the concentration
of species 1, x(1)i, j , depends on the concentration of species
1 in this cell and in its neighbors (if D1 > 0), and the
concentration of species 2 in this cell only, i.e. x(2)i, j . Similarly,

x(2)i, j depends on the concentration of species 2 in this cell

and in its neighbors (if D2 > 0), and x(1)i, j (if R3 6= 0).
We assume that species 1 is observable through mapping
H : R32×32×2

+ → R32×32
[0,1] given by:

y = H(x), where yi, j =
x(1)i, j

maxm,n x(1)m,n

.

We simulate the system from random initial conditions with
parameters R = [1,−12,−1,16], and different diffusion pa-
rameters D1 = [5.6,24.5], D2 = [0.2,20], and D3 = [1.4,5.3].
The observed concentrations of species 1 at different time
points are shown in Figure 1. At time t = 50, all trajectories
are in steady state. Note that, in all three cases, the spatial
distribution of the steady state concentrations of species 1 has
some regularity, i.e. it forms a “pattern”. We will use large
spots (LS), fine patches (FP), and small spots (SS) to refer to
the patterns corresponding to D1, D2, and D3, respectively.

  t=0           t=5         t=10       t=20        t=30       t=40       t=50       t=60  

(a)

(b)

(c)

Fig. 1. Observations generated by system (III.3) with parameters R and
(a) D1, (b) D2, and (c) D3 from Example 3.1 (the concentration of species
1 is represented with shades of red). The steady state observations produce
(a) large spots (LS), (b) fine patches (FP), and (c) small spots (SS).

Problem 3.1: Given a reaction-diffusion system S (III.1),
a finite set of initial conditions X0 ⊂RK×K×N , ranges of the
design parameters P = P1× . . .×PP, Pi ⊂ R, i = 1, . . . ,P, a
set of observations Y+ = {yi}i=1,...,N+ that contain a desired
pattern, a set of observations Y− = {yi}i=1,...,N− that do not
contain the pattern, find parameters p∗ ∈ P such that the tra-
jectories of system S(p∗) originating from X0 are guaranteed
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to produce observations similar to the ones from Y+.
To solve Problem 3.1, we need to perform two steps: 1)
design a mechanism that decides whether an observation
contains a pattern, 2) develop a search algorithm over the
state space of the design parameters to find p∗.

The first step requires to define a pattern descriptor. To
this goal, we develop a new spatial logic over spatial-
superposition trees obtained from the observations, and treat
the decision problem as a model checking problem. Then,
finding a pattern descriptor reduces to finding a formula of
the new logic that specifies the desired pattern. We employ
machine-learning techniques to learn such a formula from
the given sets of observations Y+ and Y−.

The second step is the synthesis of parameters p∗ such that
the observations produced by the corresponding reaction-
diffusion system S(p∗) satisfy the formula learned in the first
step. To this end, we introduce quantitative semantics for
the new logic, which assigns a positive valuation only to the
superposition-trees that satisfy the formula. This quantitative
valuation is treated as a measure of satisfaction, and is
used as the fitness function in a particle swarm optimization
(PSO) algorithm. Finally, we propose a supervised, iterative
procedure to find p∗ that solves Problem 3.1. The procedure
involves iterative applications of steps one and two, and
an update of the set Y− until a parameter set that solves
Problem 3.1 is found, which is decided by the user.

IV. TREE SPATIAL SUPERPOSITION LOGIC
A. Quad-tree spatial representation

We represent the observations of a reaction-diffusion sys-
tem as a matrix Ak,k of 2k×2k elements ai, j with k ∈ N>0.
Each element corresponds to a small region in the space
and is defined as a tuple ai, j = 〈a

(1)
i, j , · · · ,a

(o)
i, j 〉 of values

representing the concentration of the observable species
within an interval a(c)i, j ∈ [0,b], with b ∈ R+. Given a matrix
Ak,k, we use Ak,k[is, ie; js, je] to denote the sub-matrix formed
by selecting the rows with indices from is to ie and the
columns with indices from js to je.

Definition 4.1: A quad-tree Q = (V,R) is a quaternary
tree [17] representation of Ak,k where each vertex v ∈ V
represents a sub-matrix of Ak,k and the relation R ⊂ V ×V
defines the four children of each node v that is not a leaf.
A vertex v is a leaf when all the elements of the sub-matrix
that it represents have the same values.

Figure 2 shows an example of a quadtree, where node
v0 represents the entire matrix; child v1 represents the sub-
matrix {1, · · · ,2k−1}×{1, · · · ,2k−1}. In Figure 2, we label
each edge in the quad-tree with the direction of the sub-
matrix represented by the child: north west (NW), north east
(NE), south west (SW), south east (SE).

v1 

v2 v3 

v4 
v5 

v6 v7 

v8 v0 v0 

v1 v2 v3 v4 

v5 v6 v7 v8 

(a)$ (b)$

NW$ NE$

SW$

NW$

SE$

NE$

SW$ SE$

NW$ NE$SW$ SE$

NW$ SW$ SE$ NE$

Fig. 2. Quad-tree representation (b) of a matrix (a).

Definition 4.2: We define the mean function µc : V →
[0,b] for sub-matrix Ak,k[is, ie; js, je] represented by the vertex
v ∈V of the quad-tree Q = (V,R) as follows:

µc(v) =
1

(ie− is +1)( je− js +1) ∑
i, j∈{is ,··· ,ie}×{ js ,··· , je}

a(c)i, j

The function µc provides the expected value for an observ-
able variable with index c,1 ≤ c ≤ o in a particular region
of the space represented by the vertex v.

Algorithm BUILDINGQUADTRANSITIONSYSTEM

Input: Matrix Ak,k of 2k×2k of elements ai, j = 〈a
(1)
i, j , · · · ,a

(o)
i, j 〉,

its quad-tree Q=(V,R), the root v0 ∈V , and a labeling
function LQ : R→D = {NW,NE,SE,SW}

Output: Quad Transition System QT S = (S,sι,τ,Σ, [.],L)

1: Σ := {m1, · · · ,mo} . Initialize the set of variables Σ of QT S .
2: τ = /0 . Initialize the set τ of the transition relation τ of QT S .
3: S := {sι} . Initialize the set of states S of QT S .
4: T S := {〈sι,{v0}〉}

. Each tuple in TS contains a state in S and a set of vertices in V.
5: LF := {v ∈V | 6 ∃t ∈V : (v, t) ∈ R} . LF is the set of leaves of Q
6: PLF := {Pi ⊆ LF,1≤ i≤ n | Pi 6= /0∧∀va,vb ∈ Pi,

∀vc ∈ Pj 6=i,va ≡ vb ∧ va 6≡ vc}
. PLF is a partition of LF with equivalent leaves.

7: for each P̂ ∈ PLF do
. For each partition element, create a state s′ with a self-loop and
. a transition to the state sι if P̂ contains a child of v0.

8: add new state s′ to S and a tuple 〈s′, P̂〉 to T S
9: τ := τ∪{(s′,s′)}∪{(s,s′) : 〈s,V S〉 ∈ T S,

∃v ∈V S,∃v′ ∈ P̂ : (v,v′) ∈ R}
10: end for
11: FS := {v ∈V |(v0,v) ∈ R}\LF

. explore the children of v0 that are not leaves.
12: while FS 6= /0 do . FS contains the frontier vertices to be explored.
13: LFS := {v ∈ FS | ∀v′ ∈V : (v,v′) ∈ R :

∃〈s,V S〉 ∈ T S∧ v′ ∈V S}
14: PLFS := {Pi∈I ⊆ LFS | I 6= /0,Pi 6= /0,∀va,vb ∈ Pi,

∀vc ∈ Pj 6=i,va ≡ vb ∧ va 6≡ vc}
15: for each P̂ ∈ PLFS do
16: add new state s′ to S and a tuple 〈s′, P̂〉 to T S
17: τ := (

⋃
s:〈s,V S〉∈T S:∃v∈P̂,∃v′∈V S,(v,v′)∈R(s

′,s))∪ τ

18: if ∃v ∈ P̂∧∃〈s,V S〉 : ∃v′ ∈V S∧ (v′,v) ∈ R then
19: τ := τ∪{(s,s′)}
20: end if
21: end for
22: for each v̂ ∈ FS\LFS do
23: add new state s′ to S and a tuple 〈s′,{v̂}〉 to TS
24: τ := (

⋃
s:〈s,V S〉∈T S:∃v′∈V S,(v̂,v′)∈R(s

′,s))∪ τ

25: if ∃〈s,V S〉 : ∃v′ ∈V S∧ (v′, v̂) ∈ R then
26: τ := τ∪{(s,s′)}
27: end if
28: end for
29: FS := {v ∈V | ∃v̄ ∈ FS,(v̄,v) ∈ R}\LF
30: end while
31: define func [.] as [c̄](s̄) := µc̄(vs̄), c̄ ∈ {1, · · · ,o},

vs̄ ∈V S : 〈s̄,V S〉 ∈ T S
32: define func L as L(s, t) := (t = s)?D :⋃

ṽ∈Ṽ S,v̄∈ ¯V T :〈s,Ṽ S〉,〈t, ¯V T 〉∈T S,(ṽ,v̄)∈R LQ(ṽ, v̄)
33: return S,sι,τ,Σ, [.],L

Definition 4.3: Two vertices va,vb ∈ V are said to be
equivalent when the mean function applied to the elements of
the sub-matrices that they represent produce the same values:

va ≡ vb⇐⇒ µc(va) = µc(vb),∀c,1≤ c≤ o

We use the mean of the concentration of the observable
species as a spatial abstraction (superposition) of the obser-
vations in a particular region of the system, avoiding in this
way to enumerate the observations of all locations.

Proposition 4.1: Given a vertex v∈V of a quad-tree Q =
(V,R) and its four children vNE ,vNW ,vSE ,vSW the following
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property holds:

µc(v) =
µc(vNE )+µc(vNW )+µc(vSE )+µc(vSW )

4
.

Proposition 4.2: The number of vertices needed for the
quad-tree representation Q = (V,R) of a matrix Ak,k is upper
bounded by ∑

k
i=0 22i.

NW,NE,SE,SW 

(a)$

NW,NE,SE,SW 

NE,SW 

NE,NW,SE,SW 

sι

s1

s2

s3

(c)$(b)$

SE 

SE 

SE 

SE 

v0

v1 v2
v3 v4

v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

B  =1/2 
W =1/2$
$

B  =1/2 
W =1/2$
$

B  = 1 
W = 0$
$

B  = 0 
W = 1$
$

Fig. 3. A checkerboard pattern as a matrix of pixels (a), the quad-tree
representation (b) and the derived quad transition system (c), where B and
W denote black and white, respectively.

B. Quad Transition System

Definition 4.4: A Quad Transition System (QTS) is a
tuple QT S = (S,sι,τ,Σ, [.],L), where S is a finite set of states
with sι ∈ S the initial state, τ ⊆ S × S is the transition
relation, Σ is a finite set of variables, [.] is a function
[.] : S → (Σ→ [0,b]) that assigns to each state s ∈ S and
a variable m ∈ Σ a rational value [s](m) in [0,b] with b ∈
R+, L is a labeling function for the transition L : τ→ 2D

with D = {NW,NE,SE,SW} and with the property that
∀(s, t),(s, t ′) ∈ τ, with t 6= t ′ it holds that L(s, t)∩L(s, t ′) = /0,⋃
∀t∈S:(s,t)∈τ L(s, t) = D . We require τ to be non-blocking and

bounded-branching: ∀s ∈ S,∃t ∈ S : (s, t) ∈ τ and ∀s ∈ S, if
T (s) = {t : (s, t) ∈ τ} is the set of all successors of s, the
cardinality of |T (s)| ≤ 4.

The BUILDINGQUADTRANSITIONSYSTEM algorithm
shows how to generate a QTS starting from a quad-tree
representation Q=(V,R) of a a matrix Ak,k and a labeling
function LQ : R→D .

Proposition 4.3: A quad transition system (QTS) QT S =
(S,sι,τ,Σ, [.],L) generated by the BUILDINGQUADTRANSI-
TIONSYSTEM algorithm has always a least fixed point, that
is ∃s ∈ S : (s,s) ∈ τ.

Definition 4.5 (Labeled paths): Given a set B of labels
representing the spatial directions, a labeled path (lpath) of a
QTS Q is an infinite sequence πB = s0s1s2 · · · of states such
that (si,si+1) ∈ τ ∧ L(si,si+1)∩B 6= /0, ∀i ∈ N. Given a state
s, we denote LPathsB(s) the set of all labeled paths starting
in s, and with πB

i the i-th element of a path πB ∈ LPathsB(s).
For example, in Figure 3, LPathsB(sι) = {sιs1s2s2 · · ·} if B =
{NW,SE}.

C. TSSL Syntax and Semantics
Definition 4.6 (TSSL syntax): The syntax of TSSL is

defined as follows:

ϕ ::=>|⊥|m∼ d |¬ϕ |ϕ1 ∧ϕ2 | ∃B© ϕ |∀B© ϕ |∃B ϕ1 Uk ϕ2 |∀B ϕ1 Uk ϕ2

with ∼∈ {≤ ,≥}, d ∈ [0,b], b∈R+, k ∈N>0, B⊆D : B 6= /0,
and m ∈ Σ, with Σ the set of variables.

From this basic syntax one can derive other two temporal
operators: the exist eventually operator ∃BFk, the forall

eventually operator ∀BFk, the exist globally operator ∃BGk,
and the forall globally operator ∀BGk defined such that:

∃BFkϕ := ∃B>Uk ϕ ∃BGk ϕ := ¬∀BFk¬ϕ.

∀BFkϕ := ∀B>Uk ϕ ∀BGk ϕ := ¬∃BFk¬ϕ.

The TSSL logic resembles the classic CTL logic [18], with
the main difference that the next and until are not temporal,
but spatial operators meaning a change of resolution (or
zoom in). The set B selects the spatial directions in which
the operator is allowed to work and the parameter k limits
the until to operate on a finite sequence of states. In the
following we provide the TSSL qualitative semantics that,
given a spatial model and a formula representing the pattern
to detect, provides a yes/no answer.

Definition 4.7 (TSSL Qualitative Semantics): Let Q =
(S,sι,τ,Σ, [.],L) be a QTS, Then, Q satisfies a TSSL formula
ϕ, written Q |= ϕ, if and only if Q ,sι |= ϕ, where:

Q ,s |=>
Q ,s |= m∼ d
Q ,s |= ¬ϕ

Q ,s |= ϕ1 ∧ϕ2
Q ,s |= ∃B© ϕ

Q ,s |= ∀B© ϕ

Q ,s |= ∃Bϕ1 Uk ϕ2

Q ,s |= ∀Bϕ1 Uk ϕ2

and
⇔
⇔
⇔
⇔
⇔
⇔
⇔

Q,s 6|=⊥
[s](m)∼ d
Q ,s 6|= ϕ

Q ,s |= ϕ1 ∧Q ,s |= ϕ2
∃s′ : (s,s′) ∈ τ∧L(s,s′)∩B 6= /0∧Q ,s′ |= ϕ

∀s′ : (s,s′) ∈ τ∧L(s,s′)∩B 6= /0∧Q ,s′ |= ϕ

∃πB ∈ LPathsB(s) : ∃i,0 < i≤ k :
(Q,πB

i |= ϕ2)∧ (∀ j < i,(Q,π j |= ϕ1))
∀πB ∈ LPathsB(s) : ∃i,0 < i≤ k :

(Q,πB
i |= ϕ2)∧ (∀ j < i,(Q,π j |= ϕ1))

Example 4.1: Checkerboard pattern. The checkerboard
pattern from Fig 3 a) can be characterized with the following
TSSL formula (B∗ = {SW,NE,NW,SE}):

∀B∗© (∀B∗© ((∀{SW,NE}© (m≥ 1))∧ (∀{NW,SE}© (m≤ 0)))).

The “eventually” operator can be used to define all the
possible checkerboards of different sizes less or equal than
42 as follows:

∀B∗F2((∀{SW,NE}© (m≥ 1))∧ (∀{NW,SE}© (m≤ 0)))

The qualitative semantics is useful to check if a given spatial
model violates or satisfies a pattern expressed in TSSL. How-
ever, it does not provide any information about how much
the property is violated or satisfied. This information may
be useful to guide a simulation-based parameter exploration
for pattern generation. For this reason we equip our logic
also with a quantitative valuation that provides a measure of
satisfiability in the same spirit of [11]. Since the valuation
of a TSSL formula with spatial operators requires to traverse
and to compare regions of space at different resolution,
we apply a discount factor of 1

4 on the result each time a
transition is taken in QTS.

Definition 4.8 ( TSSL Quantitative Semantics): Let
Q = (S,sι,τ,Σ, [.],L) be a QTS. The quantitative valuation
JϕK : S→ [−b,b] of a TSSL formula ϕ is defined as follows:

J>K(s) = b∧J⊥K(s) =−b

Jm∼ dK(s) = (∼ is≥) ? ([m](s)−d) : (d− [m](s))

J¬ϕK(s) =−JϕK(s)

Jϕ1 ∧ϕ2K(s) = min(Jϕ1K(s),Jϕ2K(s))

J∃B© ϕK(s) =
1
4

max
πB∈LPathsB(s)

JϕK(πB
1 )

J∀B© ϕK(s) =
1
4

min
πB∈LPathsB(s)

JϕK(πB
1 )

J∃Bϕ1 Uk ϕ2K(s) = sup
πB∈LPathsB(s)

{min(
1
4i Jϕ2K(πB

i ), inf{ 1
4 j Jϕ1K(πB

j ) | j < i}) | 0 < i≤ k}}

J∀Bϕ1 Uk ϕ2K(s) = inf
πB∈LPathsB(s)

{min(
1
4i Jϕ2K(πB

i ), inf{ 1
4 j Jϕ1K(πB

j ) | j < i}) | 0 < i≤ k}
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Theorem 4.1 (Soundness): Let Q = (S,sι,τ,Σ, [.],L) be
a QTS, s ∈ S a state of Q , and ϕ a TSSL formula. Then, the
following properties hold for the two semantics:

JϕK(s)> 0 =⇒ Q ,s |= ϕ

JϕK(s)< 0 =⇒ Q ,s 6|= ϕ

Remark 4.1: Theorem 4.1 provides the basis of the tech-
niques for pattern generation discussed in the following
sections. It is worth to note that, in the case JϕK(s) = 0,
it is not possible to infer whether Q violates or satisfies a
TSSL formula ϕ and only in this particular case we need to
resort to the qualitative semantics for determining it.

V. TSSL PATTERN CLASSIFIERS

A QTS can be seen in the context of multi-resolution
representation, since the nodes that appear at deeper levels
provide information for higher resolutions. Therefore, a
TSSL formula can effectively capture properties of an image.
However, it is difficult to write a formula that describes a
desired property, such as a pattern. Here, we propose to
use machine-learning techniques to find such a formula from
given sets of positive (Y+) and negative (Y−) examples.

We first define a labeled data set from the given data sets
Y+ and Y− as

L = {(Qy,+) | y ∈ Y+}∪{(Qy,−) | y ∈ Y−},

where Qy is the QTS generated from y. Then, we separate
the data set L into disjoint training and testing sets LL,LT .
We employ RIPPER [19], a rule based learner, to learn a
classifier from LL, and then translate the classifier into a
TSSL formula characterizing +. Each rule obtained from
the learning algorithm is described as ri : Ci⇒∼i, where Ci
is a boolean formula over linear predicates over the variables
of the states of a QTS, e.g. [s](m)> d, and ∼i takes values
from the label set {+,−}. A linear predicate for a state s∈ S
can be written as a TSSL formula via the QTS path from
the root sι to s. Therefore, each Ci can be translated into
an equivalent TSSL formula Φi. The classification rules are
interpreted as nested if-else statements. Hence, a logically
equivalent TSSL formula for the desired property is defined
as follows:

Φ+ :=
∨

j∈R+

(
Φ j ∧

∧
i=1,..., j−1

¬Φi

)
, (V.4)

where R+ is the set of indices of rules ri with ∼i= +, and
Φi is the TSSL formula obtained from Ci.

(a)

(b)

Fig. 4. Sample sets of images from the sets (a) Y(1)
+ and (b) Y(1)

− for the
LS pattern.

Example 5.1: LS pattern. For the LS pattern from Ex-
ample 3.1, we generate a data set Y(1)

+ containing 8000
positive examples by simulating the reaction-diffusion sys-
tem (III.3) from random initial conditions with parameters
R and D1. Similarly, to generate the data set Y(1)

− containing
8000 negative examples, we simulate system (III.3) from
random initial conditions. However, in this case we use R
and randomly choose the diffusion coefficients from R2

[0,30].

A sample set of images from the sets Y(1)
+ and Y(1)

− is shown

in Figure 4. We generate a labeled set L(1) of QTS from
these sets, and separate L(1) into L(1)

L ,L(1)
T . We use RIPPER

algorithm implemented in Weka [20] to learn a classifier
from L(1)

L . The learning step took 228.5sec on an iMac with
a Intel Core i5 processor at 2.8GHz with 8GB of memory.
The classifier consists of 24 rules. The first rule is

r1 :(R≥ 0.59)∧ (R≤ 0.70)∧ (R.NW.NW.NW.SE ≤ 0.75)∧
(R.NW.NW.NW.NW ≥ 0.45)⇒+,

where R denotes the root of a QTS, and the labels of the
children are explained in Figure 2. Rule r1 translates to the
following TSSL formula:

Φ1 :(m≥ 0.59)∧ (m≤ 0.70)∧ (∃NW©∃NW©∃NW©∃SE©m≥ 0.75)∧
(∃NW©∃NW©∃NW©∃NW©m≥ 0.45).

We define the TSSL formula Φ
(1)
+ characterizing the pat-

tern as in (V.4), and model check QTSs from L(1)
T (|L(1)

T |=
8000) against Φ

(1)
+ , which yields a high prediction accuracy

(96.11%) with 311 miss-classified QTSs.
FP and SS patterns. We follow the above explained

steps to generate data sets Y(i)
+ ,Y(i)

− , generate labeled data
sets L(i)

L ,L(i)
T , and finally learn formulas Φ

(i)
+ for the FP and

SS patterns corresponding to diffusion coefficient vectors Di,
i = 2,3 from Example 3.1. The model checking of the QTSs
from the corresponding test sets yields high prediction accu-
racies 98.01%, and 93.13% for Φ

(2)
+ , and Φ

(3)
+ , respectively.

VI. PARAMETER SYNTHESIS FOR
PATTERN GENERATION

We slightly abuse the terminology and say that a trajectory
x(t), t ≥ 0 of system S(p) satisfies Φ if the QTS Q =
(S,sι,τ,Σ, [.],L) of the corresponding observation, H(x(t̄)),
satisfies Φ, i.e Q |= Φ, or JΦK(sι)> 0. We define an induced
quantitative valuation of a system S(p) and a set of initial
conditions X0 from a TSSL formula Φ as:

JΦK(S(p)) = min
x0∈X0

{JΦK(sι) | Q = (S,sι,τ,Σ, [.],L) is QTS of H(x(t̄))}
(VI.5)

The definition of the induced valuation of a system S(p)

implies that all trajectories of S(p) originating from X0 satisfy
Φ if JΦK(S(p)) > 0. Therefore, it is sufficient to find p
that maximizes (VI.5). It is assumed that the ranges P =
P1× . . .×PP of the design parameters are known. Therefore,
the parameters maximizing (VI.5) can be found with a greedy
search on a quantization of P . However, the computation of
JΦK(S(p)) for a given p∈ P is expensive, since it requires to
perform the following steps for each x0 ∈ X0: simulating the
system S(p) from x0, generating QTS Q of the corresponding
observation, and quantitative model checking of Q against
Φ. Here, we use the particle swarm optimization (PSO)
algorithm [21] over P with (VI.5) as the fitness function.

Example 6.1: LS pattern. We consider the reaction-
diffusion system from Example 3.1 and the TSSL formula
Φ

(1)
+ corresponding to the LS pattern from Example 5.1.

We assume that the parameters of the local dynamics are
known, R = [1,−12,−1,16], and the diffusion coefficients
D1 and D2 are set as the design parameters with P =R2

[0,30].
We implement PSO to find p ∈ P maximizing the induced
valuation (VI.5). The PSO computation was distributed on 16
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processors at 2.1GHz on a cluster, and the running time was
around 18 minutes. The optimized parameters are D1 = 2.25
and D2 = 29.42, and the valuation of the system is 0.0023.
A set of observations obtained by simulating S([2.25,29.42]) is
shown in Figure 6-(a). Note that, while all the observations
have some spatial periodicity indicating the presence of a
pattern, they are still different from the desired LS pattern.

FP and SS patterns. We apply the PSO algorithm on
the same setting explained above to maximize the induced
valuation (VI.5) for the TSSL formulas Φ

(2)
+ (FP) and

Φ
(3)
+ (SS) from Example 5.1. The optimized parameters are

[0.083,11.58] and [1.75,7.75] for Φ
(2)
+ and Φ

(3)
+ , respec-

tively. Sets of observations obtained by simulating systems
S([0.083,11.58]) and S([1.75,7.75]) are shown in Figure 5. In
contrast with the LS pattern, the observations are similar to
the ones from the corresponding data sets i.e. Y(2)

+ and Y(3)
+ .

(a) (b)

Fig. 5. Sample set of observations obtained by simulating (a) S([0.083,11.58])

and (b) S([1.75,7.75]).

(a)

(b)

(c)

Fig. 6. Sample set of observations obtained by simulating (a) S([2.25,29.42]),
(b) S([3.75,28.75]), and (c) S([6.25,29.42]).

As seen in Example 6.1, it is possible that simulations
of the system corresponding to optimized parameters do
not necessarily lead to desired patterns. This should not
be unexpected, as the formula reflects the original training
set of positive and negative examples, and was not “aware”
that these new simulations are not good patterns. A natural
extension of our method should allow to add the newly
obtained simulations to the negative training set, and to
reiterate the whole procedure as described below.

We start with the user defined sets of observations Y+

and Y−, and learn a TSSL formula Φ from the QTS
representations of the observations (Section V). Then, in
the optimization step, we find a set of parameters p that
maximizes γ = JΦK(S(p)). If γ < 0, then we terminate the
procedure as parameters producing observations similar to
the ones from the set Y+ with respect to the TSSL formula
Φ could not be found. If γ ≥ 0, then the observations
of system S(p) satisfy Φ. Finally, the user inspects the
observations generated from the reaction-diffusion system
with the optimized set of parameters S(p). If the observations
are similar to the ones from the set Y+, then we find a
solution. If, however, the user decides that the observations
do not contain the pattern, then we add observations obtained
from system S(p) to Y−, and repeat the process, i.e learn a
new formula, run the optimization until the user terminates
the process or the optimization step fails (γ < 0).

Example 6.2: LS pattern. We apply the proposed design
procedure to the system from Example 6.1. We decide that

observations shown in Figure 6-(a) are not similar to the
ones from the set Y(1)

+ shown in Figure 4-(a), and add
250 observations generated with the optimized parameters to
Y(1)
− . In the second iteration, the optimized parameters are

D1 = 3.75 and D2 = 28.75, and the observations obtained
by simulating S([3.75,28.75]) are shown in Figure 6-(b). We
continue by adding these to Y(1)

− . The parameters computed
in the third iteration are D1 = 6.25 and D2 = 29.42. The
observations obtained by simulating S([6.25,29.42]) are shown
in Figure 6-(c). Although the optimized parameters are
different from D1, which was used to generate Y(1)

+ , the
observations of S([6.25,29.42]) are similar to the ones from Y(1)

+ .
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