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Abstract— Model predictive control (MPC) is a popular strat-
egy for urban traffic management that is able to incorporate
physical and user defined constraints. However, the current
MPC methods rely on finite horizon predictions that are unable
to guarantee desirable behaviors over long periods of time. In
this paper we design an MPC strategy that is guaranteed to keep
the evolution of a network in a desirable yet arbitrary -safe- set,
while optimizing a finite horizon cost function. Our approach
relies on finding a robust controlled invariant set inside the
safe set that provides an appropriate terminal constraint for the
MPC optimization problem. An illustrative example is included.

I. INTRODUCTION

Traffic congestion is a major problem in many cities
worldwide. Many methods for more efficient usage of exist-
ing physical infrastructure have been proposed including new
strategies specialized for controlling traffic lights in an urban
network [1]. With the advent of new sensing technologies
and improvements in online computation capabilities, traffic
responsive strategies are gaining more popularity.

Model predictive control (MPC) is a powerful framework
for coordinating urban traffic lights that relies on online
optimization while accounting for various constraints in the
system [2], [3]. However, MPC is known to exhibit “myopic”
behavior that is a result of limited horizon planning. For
instance, an MPC traffic light control strategy may lead a
network to a state in which undesirable behaviors such as
gridlock, spill-back and heavy congestion become inevitable
for any future control action. A tempting resolution is
elongating the prediction horizon which is often impractical
from computational perspective. Some control strategies [3]–
[5] have proposed enhancing the control architecture with
additional layers that try to detect and avoid undesirable
behaviors such as spill-back. However, these methods largely
rely on heuristics rather than formal and verifiable measures.

MPC closed-loop strategies that are guaranteed to satisfy
a set of constraints are studied extensively in the control
theory literature [6]. Using set invariance theories [7] and
terminal constraints, MPC strategies have been developed
that are able to address stability issues while restricting the
system trajectory to a convex safe set. However, applying
similar methods to urban traffic models is impractical if not
impossible due to the complexity of the constraints, controls
and uncertainties. Furthermore, a critical bottleneck in the
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set invariance theories is the inability to deal with non-
convex safe sets [8] [9]. Those approaches are computation-
ally intractable for traffic models which have to take into
consideration finite capacity roads, discrete controls (traffic
lights), uncertain exogenous inputs (vehicular arrival rates)
and non-convex safe sets that are able to specify desirable
behaviors such as avoidance of spill-backs and gridlocks

In this paper, we wish to design an MPC strategy that
is guaranteed to confine the evolution of an urban traffic
network to a user-defined (non-convex) “safe” set. Inspired
by recent advances in formal methods approaches to control
theory, we propose a new method to overcome the mentioned
issues, which is based on abstracting the network system
model to a finite state system. Finite state representations of
urban traffic networks have been recently investigated in [10],
[11]. In a finite system, we can easily solve a “safety game”
[12]. We prove that the safe invariant set found in the finite
representation corresponds to a robust controlled invariant
set in the original system that can be used as a terminal
constraint for the MPC optimization problem. We are thus
able to guarantee that the evolution of the system remains
in the safe set, while planning ahead for optimality. Similar
to works in [2], [13], we formulate the MPC optimization
problem as a mixed integer linear programming (MILP)
problem. We also argue that now being able to use small
prediction horizons, we also can rely on full enumeration of
possible controls to find the best future control plan instead
of solving a possibly large MILP.

The network model and finite abstraction section of this
work is almost identical to the work in [11]. However,
there are clear differences between the control strategies.
The authors in [11] find a control strategy that satisfies
a linear temporal logic (LTL) specification directly from
solving a Rabin game [14] on a finite state graph, without
any attempt to consider optimality. However, we find an
optimization based control strategy in the original continuous
system subject to the constraints we find in the abstract
finite state system. While LTL control in a traffic network
typically requires the user to rigorously specify the desired
behavior of each road and intersection, MPC naturally se-
lects a (sub)optimal policy in the absence of user-defined
constraints.

II. TRAFFIC NETWORK MODEL

The urban traffic network model used in this paper is
adopted from the discrete-time fluid-like flow model in [11].
The network consists of a set of links denoted by L and a set
of intersections denoted by V . Each l ∈ L is a oneway link
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from tail intersection τ(l) ∈ V ∪ ∅ toward head intersection
η(l) ∈ V . The links that flow out of the network are not ex-
plicitly modeled. For each link l, the set of downstream links
is defined as Ldownl := {k ∈ L : τ(k) = η(l)} . Similarly, the
set of upstream links is Lupl := {i ∈ L : η(i) = τ(l)}, and
the set of adjacent links is Ladjl := {j ∈ L : τ(j) = τ(l)} .
Links in Llocall := {Lupl ∪Ldownl ∪Ladjl } are local to l. The
number of vehicles on link l at time t ∈ Z≥0 is denoted
by xl[t] ∈ [0, xcapl ], where xcapl is the capacity of link
l. The network state at time t is the vector representation
x[t] = {xl}l∈L ∈ X ⊂ Rn where n = |L| is the number of
links and

X =
∏
l∈L

[0, xcapl ]. (1)

The vehicular flow of link l at time t is controlled by a binary
decision denoted by ul[t] ∈ {0, 1}, where values 0 and 1
represent the red and green traffic lights, respectively. The
control decision combining all traffic lights at time t is u[t] =
{ul}l∈L ∈ U ⊂ {0, 1}

n, where U is the set of admissible
combinations of traffic lights, which is defined with respect
to the traffic conventions. For instance, the green/green traffic
light combination for two perpendicular links l1 and l2 that
have a common head intersection is excluded by adding the
constraint ul1 [t] + ul2 [t] ≤ 1, or ul1 [t] + ul2 [t] = 1. In the
latter case, the red/red combination is also disallowed. Note
that the set U is finite.

Now we describe the network dynamics. When ul[t] = 1,
vehicles of link l flow to its downstream links Ldownl . Let βlk
be the ratio of vehicles turning into link k ∈ Ldownl . Note that∑
k∈Ldown

l
βlk ≤ 1,where the inequality indicates that some

vehicles may flow out of the network. The capacity available
at link l to its upstream links at time t is xcapl − xl[t]. Let
α
u[t]
il be the capacity portion of link l available to link i ∈
Lupl when the decision on traffic lights is u[t]. We also have∑
i∈Lup

l
α
u[t]
il = 1. For simple intersections, it is reasonable

to assume αu[t]il is constant if ui[t] = 1 and zero otherwise.
Therefore, for simplicity, we drop out the “u[t]” superscripts
from the capacity ratios in the rest of the paper. The number
of vehicles flowing out of link l at time step t is given by
the following equation:

fl[t] = ul[t] min

{
xl[t], cl, min

k∈Ldown
l

αlk
βlk

(xcapk − xk[t])

}
,

(2)
where cl is the maximum number of vehicles that can flow
out of link l in one time step. The one-step evolution of link
xl is given by:

xl[t+ 1] = Fl(xlocall [t], u[t], dl[t])

= min

xl[t]− fl[t] +
∑
i∈Lup

l

βilfi[t] + dl[t], x
cap
l

 ,
(3)

where xlocall = {xm} ,m =
{
l ∪ Llocall

}
and dl[t] is the

number of vehicles arriving in the link l from outside of the
network at time t. We also denote d[t] = {dl}l∈L ∈ D ⊂ Rn,
where D is assumed to be a known set. We observe that Fl is

a piecewise affine function. The network dynamics is written
in the following compact form:

x[t+ 1] = F (x[t], d[t], u[t]) , (4)

where F : X ×D × U → X is a piecewise affine function.

III. PROBLEM FORMULATION AND APPROACH

In this section we formulate the problem and briefly
explain the approach. First, we define the safety set as a union
of hyper-rectangles in the state space X . A hyper-rectangle
H ⊂ X is defined with respect to a set of rectangular
inequalities in the form of:

H := {x ∈ X | xli ≤ ri} , i = 1, · · · , p (5)

where ri ∈ (0, xcapli ) and p ≤ n. A safe set S is defined as
a union of hyper-rectangles:

S :=
⋃
s

Hs, s = 1, · · · , nS , (6)

where each Hs is a hyper-rectangle in the form of (5). Note
that the safe set is, in general, non-convex. Considering
constraints of the form xl ≤ rl stems from the practical
purpose that the safe set should always favor fewer number
of vehicles on each link.

From a game theoretical perspective, the exogenous values
for d are considered as adversarial inputs. The safety problem
considered in this paper is finding a control strategy such
that for all allowable realizations of adversarial inputs, the
evolution of the system remains in the safe set. The controls
that ensure safety are often not unique. For practical im-
plementation, (sub)optimal selection of the controls subject
to an appropriate cost function is also important. Since the
system is complex and various constraints are present, we use
MPC strategy to the find the optimal control sequence over
a finite horizon. Once an optimal control sequence is found,
only the current step control is applied to the system and
given the new measurements at next time step, a new optimal
control sequence is found accordingly. The finite horizon cost
criterion considered in this paper is the total time spent (TTS)
of the vehicles in the network, which is used extensively in
traffic literature. It can be shown that finite horizon TTS is
equivalent to the total number of vehicles [1]:

J :=

t+H∑
τ=t+1

∑
l∈L

xl[τ ],

where H is the length of the prediction horizon. The finite
horizon control sequence starting at time t is:

uH [t] := {u[t], u[t+ 1], · · · , u[t+H − 1]} .

Given the finite horizon exogenous input sequence
{d[t], · · · , d[t+H − 1]} and the current system state x[t],
one can compute, using (4), the finite horizon evolution of
the system {x[t+ 1], · · · , x[t+H]}.

Problem 1: Given an urban traffic network (4) and a
safety set S in the form of (6), find a control strategy that
for all allowable sequences of adversarial inputs d[t] ∈ D,
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the evolution of the system is guaranteed to remain in the
safe set:

x[t] ∈ S,∀t ∈ Z≥0, (7)

and, optimize an estimated finite horizon cost function:

Je =

t+H∑
τ=t+1

∑
l∈L

xel [τ ], (8)

where xe are given by the estimated (nominal) finite horizon
evolution of the system.

The MPC optimization problem that includes safety only
over the finite horizon is:

uH [t] = argmin
t+H∑
τ=t+1

∑
l∈L

xel [τ ]

s.t x[τ ] ∈ S,
x[τ + 1] = F(x[τ ], d[τ ], u[τ ]),
xe[τ + 1] = F(x[τ ], de[τ ], u[τ ]),
∀d[τ ] ∈ D, τ = t, ... , t+H − 1,

(9)

where de is the estimated value for the vehicular arrivals.
Finite horizon safety does not guarantee infinite horizon
safety. In other words, it is possible that the MPC opti-
mization problem becomes infeasible at some time. The
key contribution of this paper is guaranteeing recursive
feasibility, which is defined as follows.

Definition 1: An MPC problem is recursively feasible if
the application of control u[t] from the solution of the MPC
optimization problem at time t guarantees the feasibility of
the MPC optimization problem at time t+ 1.

A well known method to guarantee recursive feasibility
is adding an appropriate terminal constraint [6] to the MPC
problem in the form of:

x[t+H] ∈ T , (10)

where T ⊆ S is the terminal set. Our approach to Problem
1 involves solutions to the two following subproblems.

Subproblem 1: (Terminal Set) Find a terminal set T such
that adding the terminal constraint (10) to the MPC opti-
mization problem (9) guarantees recursive feasibility.

Subproblem 2: (MPC) Find u[t] by solving the optimiza-
tion problem (9) with the addition of the terminal constraint
(10).
Subproblem 1 is solved once and in offline fashion, while
Subproblem 2 is solved online at each time step. It is also
reasonable to assume that in the online implementation, more
precise knowledge of values of d are available for a finite
horizon. However once solving Subproblem 1, the whole set
of D is taken into account. Our approach to Subproblem 1
concerns computing a robust controlled invariant set inside
S that involves abstracting the system into a finite state
transition system, which is explained in detail in Section IV.
Our solution to Subproblem 2 is based on formulating the
problem as a robust optimization problem. The translation
of dynamical and set constraints to MILP is explained in
Section V.

IV. TERMINAL SET AND INVARIANCE

This section focuses on the solution to Subproblem 1.
First, we define the notion of robust controlled invariant set.
Next, we provide a summary on how to abstract system (4)
to a finite state transition system. We then state, and prove,
that the properties of the abstract system can be used to find
a solution to Subproblem 1.

A. Robust Controlled Invariant Set

Definition 2: Given the non-deterministic discrete time
control system (4), the set Ω ⊆ X is robust controlled
invariant if and only if:

∀x ∈ X ∃u ∈ U s.t. f(x, d, u) ∈ Ω ∀d ∈ D. (11)
It can be shown that if there exists a robust control invariant
set, then there exists a unique maximal robust controlled
invariant set (MRCIS) which is the union of all possible
robust control invariant sets [6].

We wish to find the robust controlled invariant set of
the traffic network inside the safe set S. The traffic net-
work’s MRCIS inside S, which is denoted by I, can be
computed using the fixed-point iterative algorithm [6]. The
main drawback of this approach is that finite termination of
the iterations is not guaranteed. Furthermore, early termina-
tion results in an over-approximation of MRCIS which is
undesirable. Even if MRCIS is determined in finitely many
steps, performing the polyhedral operations for dynamics (4),
which is piecewise affine with adversarial inputs, and a non-
convex safe set S, is computationally intractable due to the
severe limitations in performing polyhedral operations like
Pontryagin’s difference [6] for non-convex sets (see [8]).
Our approach to overcome these issues is to abstract the
system as a finite state transition system. In the finite realm,
implementation of the fixed-point algorithm, also known as
safety game, is easier and finite termination is assured.

B. Finite State Abstraction

Definition 3: (Finite State Transition System) A (non-
determistic) finite state transition system is defined as the
tuple FT S = (Q,Σ, δ,Λ, λ) where Q is a finite set of states,
Σ is a finite set of symbols (controls), δ : Q×Σ→ 2Q is the
transition function, Λ is a finite set of labels and λ : Q→ Λ
is a labeling function.
Constructing a finite state transition system FT S =
(Q,Σ, δ,Λ, λ) from the original system (4) is treated in [10],
[11] and the details are not presented in this section. Instead,
we summarize the main points about the properties of the
abstract system and provide the necessary notation for the
remaining of the paper.

Abstraction involves partitioning the state space into a
finite set of hyper-rectangles denoted by Q. The state space
corresponding to each link l ∈ L, [0, xcapl ], is partitioned
into Nl intervals:{

[0, x
(1)
l ], (x

(2)
l , x

(3)
l ], · · · , (x(Nl−1

l , x
cap)
l ]

}
. (12)

By performing the cartesian product of the sets from (12)
for all different l ∈ L, |Q| =

∏
l∈LNl hyper-rectangles are
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obtained 1 . Each abstract state q ∈ Q uniquely represents
a hyper-rectangle, denoted by P(q), where the function
P : Q → 2X is defined to map each abstract state into
its hyper-rectangle representation inside X . Note that these
sets provide a partition of X :⋃

q∈Q
P(q) = X , P(qa) ∩ P(qb) = ∅, qa 6= qb.

The labeling function Λ is defined with respect to the safe
set S. Each q ∈ Q is labeled as safe if the whole hyper-
rectangle is inside S and unsafe otherwise. Let QS ⊂ Q
represent the set of states that are labeled safe. If the intervals
(12) are initialized with respect to S , it can be shown that:

S =
⋃
q∈QS

P(q). (13)

In other words, no q ∈ Q represents a hyper-rectangle that
is only partially in the safe set.

The transitions are determined using dynamics (4). Since
the set of controls is finite, we let Σ = U . For each abstract
state q ∈ Q and control u ∈ U , the set of one-step reachable
abstract states, denoted by post(q, u), is computed by taking
into account all allowable adversarial inputs:

q′ ∈ post(q, u) if and only if
∃x ∈ P(q),∃d ∈ D s.t. F(x, u, d) ∈ P(q′).

(14)

The set post(q, u) often includes more than one state which
results in non-determinism in the finite state transition
system. The computation of post operation for a piece-
wise affine system with exogenous inputs requires inten-
sive polyhedral operations. On the other hand, based on
the sparsity and component-wise monotonicity properties of
the traffic networks, authors in [10], [11] have introduced
a computationally efficient method that, under some mild
assumptions, slightly over-approximates post(q, u) by the
set post(q, u), post(q, u) ⊆ post(q, u). Finally, all transition
relations δ(q, u) =

{
q′ | q′ ∈ post(q, u)

}
are constructed and

the finite state abstraction procedure is completed.
Proposition 1: The abstarct finite system simulates the

original system, i.e. any transition in the original system is
captured by at least one transition in the abstract system:

∀x ∈ X ∀u ∈ U ∀d ∈ D s.t. x′ = F(x, u, d),
∃q, q′ ∈ Q, x ∈ P(q), x′ ∈ P(q′) s.t. q′ ∈ δ(q, u).

(15)

Proof: See [11].
Note that the simulation property does not state that all
trajectories in the abstract system are also present in the
original system. In fact, the finite state transition system
may include spurious trajectories that are not present in the
original system. Although the presence of these transitions
do not affect safety control, they introduce conservatism in
optimal planning.

1We abuse the notation and call these sets hyper-rectangles even though
not all of them contain their boundaries (see (5)).

C. MRCIS for the Abstract System

In this section, we find the abstract system’s MRCIS,
denoted by QI , in the safe set QS . This problem, also known
as the “safety game” [12], is based on iteratively removing
the states that are absorbed into the unsafe set for all control
inputs. The procedure is outlined in Algorithm 1. We define

Algorithm 1 Procedure for MRCIS QI inside QS

1: QI = QS

2: while Qa 6= ∅ do
3: Qa = ∅
4: for q ∈ QI do
5: if ∀u ∈ U δ(q, u) 6⊆ QI then
6: Qa ← Qa ∪ q
7: end if
8: end for
9: QI ← QI \Qa

10: end while
11: return QI

the hyper-rectangle representation of QI as

Ĩ :=
⋃
q∈QI

P(q). (16)

Since QI ⊆ QS , it is clear that Ĩ ⊆ S .
Theorem 1: Ĩ is a robust controlled invariant set of the

original system (4).
Corollary 1: The abstract system’s MRCIS is a subset of

the original system’s MRCIS. i.e. Ĩ ⊆ I.
Due to the space constraints, we have omitted the proofs for
the results of this paper. The interested reader is referred to
the extended version 2 of this paper for the proofs.

D. Recursive Feasibility

Replacing the terminal set with a robust controlled invari-
ant set guarantees recursive feasibility:

Theorem 2: The following MPC optimization problem:

uH,opt[t] = argmin
t+H∑
τ=t+1

∑
l∈L

xel [τ ]

s.t x[τ ] ∈ S,
x[t+H] ∈ Ĩ,
x[τ + 1] = F(x[τ ], d[τ ], u[τ ]),
xe[τ + 1] = F(x[τ ], de[τ ], u[τ ]),
∀d[τ ] ∈ D, τ = t, ... , t+H − 1.

(17)

is recursively feasible.
Finally, we have found a solution to Problem 1 and we let
the terminal constraint to be:

T = Ĩ. (18)

2http://arxiv.org/abs/1602.01028
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E. Discussions

Algorithm 1 may end with an empty set which, unfortu-
nately, does not conclude that I is also empty. In this case,
finer partitions are required to find a nonempty invariant set.
Furthermore, refinement may also enlarge Ĩ if it is already
nonempty, which leads to less conservative hence more
control options. Note that the refinement of partitions outside
QS is not necessary. However, the number of partitions
and transitions in the abstract system grows exponentially
with respect to the network size. Therefore, our approach to
safety control is restricted to small networks. We also note
that if the initial MPC optimization problem is infeasible,
for instance x is initially outside S, one can solve the
“reachability” game [12] to guide the state of the system
into Ĩ and later start implementing the MPC. It is worth to
note that the reachability game may also be infeasible from
some initial conditions.

V. MODEL PREDICTIVE CONTROL

In this section, we provide the solution to Subproblem
2 based on MILP formulation of the optimization problem
(17). We also discuss the limitations of the MILP approach.

A. Mixed Logical Representations of Traffic Networks

The traffic network dynamics (4) is a hybrid system that
falls into the class of mixed logical dynamical (MLD) sys-
tems which can be encoded using mixed integer constraints
[15]. Formally, we have:

Proposition 2: The traffic dynamics (4) can be formulated
as a finite set of mixed integer constraints:

x[t+ 1] = F (x[t], d[t], u[t])

⇔ x[t+ 1] + Exx[t] + Euu[t]

+ Edd[t] + Ezz[t] + Eδδ[t] ≤ e,
(19)

where z[t] is the vector of auxiliary continuous variables,
δ[t] is the vector of auxiliary binary variables, Ex, Eu, Ed,
Ez , Eδ are appropriately defined constant matrices and e is
a vector that is defined such that the set of mixed-integer
constraints is well posed, i.e. for given values of x[t], u[t]
and d[t], the feasible set of x[t+ 1] is a single point.

B. Robust MPC

A solution to the robust optimization problem requires
that the safety and terminal constraints are satisfied for all
allowable adversarial inputs d ∈ D. In this section, we briefly
explain how to characterize the H-step reachable sets.

1) One-step reachable set: We assume the set D is given
as a union of hyper-rectangles:

D =
⋃
id=1

Did , id = 1, · · · , nD, (20)

such that each Did is a hyper-rectangle in the form of{
d | did ≤ d ≤ did

}
, where the inequalities are interpreted

element-wise. Note that this assumption is not restrictive
as one may over-approximate any bounded set by hyper-
rectangles. Given control u[τ ], we wish to compute the

one-step reachable set of hyper-rectangle
∏
l∈L [xl[τ ], xl[τ ]],

where lower (over) bars stand for lower (upper) bounds of
the values x and d, and superscript id stands for the values
obtained from exogenous inputs in hyper-rectangle Did . We
denote:

Rid([x[τ ], x[τ ]] , u[τ ]) =
∏
l∈L

[
xidl [τ + 1], xidl [τ + 1]

]
. (21)

The one step reachable set is thus given by an union of
hyper-rectangles:

R(1)(x[τ ], x[τ ], u[τ ]) =

nD⋃
id=1

Rid([x[τ ], x[τ ]] , u[τ ]). (22)

2) H-step reachable set: Using (22), the H-step reachable
set denoted by R(H)([x[t], x[t]], uH [t]) is:
nD⋃

iH
d

=1

...

nD⋃
i1
d
=1

RiH
d

([
...
[
Ri1

d
([x[t], x[t]] , u[t])

]
...
]
, u[t+H − 1]

)
,

(23)
where x[t] = x[t]. Note that we may assume bounded

uncertainties in online measurements of x[t] but this may
cause issues with recursive feasibility guarantee for the MPC
problem The number of mixed logical equations in the form
of (19) required to encode the H-step reachable set is 2nHD .
The MILP problem becomes quickly intractable if nD > 1.

C. Non-Convex Sets and Additional Integer Constraints

The constraints corresponding to the safe set S and termi-
nal set T also can be encoded as mixed integer constraints.
We do not explain this method as encoding non-convex sets
using integer constraints is a well known straightforward
procedure [16]. The main issue is that the number of integer
constraints describing the sets can be very large, and hence
the MILP formulation becomes impractical. One approach
to overcome this issue is considering the set constraints as
lazy constraints [17], i.e. adding them to the MILP problem
if they are violated by the relaxed solution. However, this
approach may still require incorporating all the constraints.

D. Discussions

The computational complexity of MILPs grow exponen-
tially with respect to the number of integer constraints.
Therefore, practical implementation of MILP in our frame-
work is restricted to simple problems. Since the set of con-
trols is finite, a much simpler approach is full enumeration
of the all controls over H-step horizon. This approach is
appropriate if the size of U and the horizon H are small,
which is the case in small networks.

VI. EXAMPLE

We implemented our methods on a simple urban traffic
network. The results are presented in this section. Consider
a network with 9 links and 3 intersections, as illustrated in
Fig. 1. The parameters of the model are given as

xcapl = 55, l = 1, · · · , 6, xcapl = 40, l = 7, 8, 9,
cl = 20, l = 1, · · · , 6, cl = 15, l = 7, 8, 9, β86 = β83 = 0.4,
β12 = β23 = β45 = β56 = 0.7, β72 = 0.5, β95 = 0.3
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Fig. 1. The urban traffic network studied in this example

and all capacity ratios are one. The safety set is given by the
boolean expression φ1 ∧ φ2 ∧ φ3 ∧ φ4, where

φ1 = (x1 ≤ 36) ∧ (x4 ≤ 36),
φ2 = (x2 ≤ 44) ∨ (x3 ≤ 44),
φ3 = (x5 ≤ 44) ∨ (x6 ≤ 44),

φ4 = (x7 ≤ 32) ∨ (x8 ≤ 32) ∨ (x9 ≤ 32).

The conversion of a set defined by a boolean expression to
the hyper-rectangle form of (6) is straightforward. Informally,
φ1 requires that the entry arterials 1, 4 are never congested,
φ2 and φ3 state that if the traffic on a link in the mid-corridor
is heavy, the other is light. φ4 prevents the entry side links
7, 8, 9 from being congested simultaneously. We assume that
each intersection has two modes of controls corresponding
to the horizontal and vertical flows, |U| = 23 = 8. The
set characterizing exogenous inputs (arrival rates) is D ={
d | 0 ≤ d ≤ (15, 0, 0, 15, 0, 0, 10, 10, 10)T

}
.

We abstract the states corresponding to the links
1, 4, 7, 8, 9 to 3 intervals and the states of the remaining
links into 2, generating 3888 abstract states, where 1664
of them represent the safe hyper-rectangles. Computing the
finite state transition system took 434 seconds on a 3 GHz
dual core Macbook Pro. Solving the safety game took 31
seconds and the finite state transition system’s MRCIS, QI ,
consists of 1176 abstract states.

We solved the robust MPC with horizon H = 3 relying
on full enumeration of the controls. We used (23) to find
3-step reachable set and checked the safety and the terminal
constraint for all the reachable set. Fig. 2 b) shows the
robustness of the trajectory obtained from the MPC solution
simulated for 20 time steps. The robustness is computed by
measuring the minimum Euclidian distance of the system’s
state to the safety set’s boundaries 3. The exogenous inputs
were randomly chosen from D with uniform distribution. The
values of estimated exogenous inputs for optimal planning
were also randomly chosen.
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