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Abstract— This paper considers the problem of finding the
most informative path for a sensing robot under temporal logic
constraints, a richer set of constraints than have previously
been considered in information gathering. An algorithm for
informative path planning is presented that leverages tools
from information theory and formal control synthesis, and is
proven to give a path that satisfies the given temporal logic
constraints. The algorithm uses a receding horizon approach
in order to provide a reactive, on-line solution while mitigating
computational complexity. Statistics compiled from multiple
simulation studies indicate that this algorithm performs better
than a baseline exhaustive search approach.

I. INTRODUCTION

In this paper we propose an algorithm for controlling a
mobile sensing robot to collect the most valuable information
in its environment, while simultaneously carrying out a
required sequence of actions described by a temporal logic
(TL) specification. Our algorithm is useful in situations
where a robot’s main objective is to collect information,
but it must also perform pre-specified actions for the sake
of safety or reliability. Consider searching for a survivor
trapped in the rubble of a collapsed building. Our algorithm
would drive the robot to locate the survivor while avoiding
obstacles, and returning to a rescue worker to report on the
progress of its search. The obstacle avoidance and visit to
the worker are represented as temporal logic constraints. In
order to locate the survivor, the robot plans a path on-line, in
a receding horizon fashion, such that it localizes the survivor
as precisely as possible, while still satisfying the temporal
logic constraints.

This work brings together methods from information the-
ory and formal control synthesis to create new tools for
robotic information gathering under complex constraints.
More specifically, the robot uses a recursive Bayesian filter to
estimate the quantity of interest in its environment (e.g. the
location of a survivor) from its noisy sensor measurements.
The Shannon entropy of the Bayesian estimate is used as
a measure of the robot’s uncertainty about the quantity of
interest. The robot plans a path to maximally decrease the
expected entropy of its estimate over a finite time horizon,
subject to the TL constraints. The path planning is repeated
at each time step as the Bayesian filter is updated with new
sensor measurements to give a reactive, receding horizon
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planner. Our algorithm is guaranteed to satisfy the TL
specification. We compare the performance of our algorithm
to a non-reactive, exhaustive search method. We show in
statistics compiled from extensive simulations that our re-
ceding horizon algorithm gives a lower entropy estimate with
lower computational complexity than the exhaustive search
method.

The algorithm we present is applicable to many scenarios
in which we want a robot to gather informative data, but
where safety and reliability are critical. For example, our
algorithm can be used by a mobile robot deployed on Mars
that is tasked with collecting soil samples and images while
gathering enough sunlight to charge its batteries and avoid-
ing dangerous terrain. In an animal population monitoring
scenario, our algorithm can drive a robot to count animals
of a given species whose positions are unknown while
avoiding sensitive flora and fauna, eventually uploading data
to scientists. Our algorithm could also be used, for example,
in active SLAM to control a robot to build a minimum
uncertainty map [23] of its environment while avoiding walls
and returning to a base station for charging.

Extensive work already exists in using information the-
oretic tools in robotic information gathering applications.
Most of this work uses a one-step-look-ahead approach [5],
[19], a receding horizon approach [4], [8], or an offline plan
based on the sub-modularity property of mutual information
[17], [21], [22]. The key innovation in our algorithm is
that it gives a path which is guaranteed to satisfy rich
temporal logic constraints. Temporal logic constraints can
specify complex, layered temporal action sequences that
are considerably more expressive than the static constraints
considered in previous works. Indeed, much of the work in
constrained informative path planning can be phrased as a
special case of the TL constraints that we consider here. For
example the authors of [4] solve an information-gathering
problem in which an underwater agent must avoid high traffic
areas and communicate with researchers—constraints which
can be naturally expressed as TL statements.

In this work, we consider a particular kind of tempo-
ral logic called syntactically co-safe linear temporal logic
(scLTL) [13]. Synthesis of trajectories from scLTL specifi-
cations is currently an active area of research [1], [3], as is
the use of receding horizon control to solve optimization
problems over TL-constrained systems. Receding horizon
control (RHC), sometimes referred to as model-predictive
control, is a control technique in which current information is
used to predict performance over a finite horizon [15], [18].
The authors of [24] use a receding horizon path planning
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algorithm that satisfies TL constraints in a provably correct
manner and is capable of correcting navigational errors on-
line. In [7], the authors extended this principle to provide a
receding horizon algorithm for gathering time-varying, deter-
ministic rewards in a TL-constrained system. The analysis of
our informative planning algorithm was inspired by [7], with
the significant difference that information gain is a stochastic
quantity which depends on noisy sensor measurements.

We assume in the sequel that readers are familiar with
the basic principles of information theory, transition system
models, and scLTL.

II. NOTATION AND DEFINITIONS

For a set S, we use |S| and 2S to denote its cardinality
and power set, respectively. S × T is the Cartesian product
of S and T . We denote the range space of a discrete random
variable X as RX , its realization as x ∈ RX , and its
probability mass function (pmf) as pX . We denote the (Shan-
non) entropy, conditional entropy, and mutual information of
discrete random variables X,Y [6], [20] as H(X), H(X|Y ),
and I(X;Y ), respectively.

A weighted transition system [2] is a tuple TS =
(Q, q0, Act, T rans,AP,L, d), where Q is a set of states,
q0 ∈ Q is the initial state, Act is a set of actions, Trans ⊆
Q×Act×Q is a transition relation, AP is a set of atomic
propositions, L : Q → 2AP is a labeling function of states
to atomic propositions, and d : Trans → R is a weighting
function over the set of transitions.

A finite state automaton (FSA) is a tuple A =
(Σ,Π,Σ0, F,∆A) where Σ is a finite set of states, Π is an
input alphabet, Σ0 ⊆ Σ is a set of initial states, F ⊆ Σ is
a set of final (accepting) states, and ∆A ⊆ Σ× Π× Σ is a
deterministic transition relation.

An accepting run rA of an automaton A on a finite word
w = w0w1 . . . wj over Π is a sequence of states rA =
σ0σ1 . . . σj+1 such that σj+1 ∈ F and (σi, wi, σi+1) ∈ ∆A

∀i ∈ [0, j].
The product automaton between a weighted transition

system TS = (Q, q0, Act, T rans,AP,L, d) and an FSA
A = (Σ,Π,Σ0, F,∆A) with Π = 2AP is a tuple P =
TS × A = (Q × Σ, q0 × Σ0,∆P, Q × F, d′) [2]. The
transition relation and weighting are defined as ∆P =
{(q, σ), π, (q′, σ′)|(q, π, q′) ∈ Trans, (σ, L(q), σ′) ∈ ∆A}
and d′((q, σ), π, (q′, σ′)) = d(q, π, q′), respectively.

An accepting run rP on a finite word π = π0π1 . . . πj is
a sequence of states rP = (q0, σ0)(q1, σ1) . . . (qj+1, σj+1)
such that (q0, σ0) ∈ {q0} × Σ0, (qj+1, σj+1) ∈ Q× F , and
((qi, σi), πi, (qi+1, σi+1)) ∈ ∆P ∀i ∈ [0, j].

The projection of a run (q0, σ0) . . . (qj , σj) from P to TS
is the run q0 . . . qj over TS.

Syntactically co-safe linear temporal logic formulas are
made of atomic propositions along with the Boolean opera-
tors “conjunction” (∧), “disjunction” (∨) and “negation” (¬)
and the temporal operators “until” ( U ), “next” ( © ), and
“eventually” ( ♦ ) [13].

III. PROBLEM FORMULATION

Our task is to find a path such that a robot following
it fulfills a temporal logic task specification and also on
average produces a low-entropy estimate of some a priori
unknown quantity. We model a robot as a deterministic
transition system over which we can evaluate temporal logic
specifications and provide a model for incorporating new
information into the robot’s estimate. We use these models to
formalize the scLTL-constrained informative path planning
problem.

A. Robot motion model

We consider a robot with known kinematic state moving
deterministically in an environment. Here we have taken
a hierarchical view of path planning [11], [24] in which
the problem is decomposed into the high-level problem of
selecting way points on a graph to be followed by the
robot and the low-level problem of selecting local trajectories
between nodes. We assume that the low-level problem is
solved and focus on high-level path planning. We partition
the environment and take the quotient to form a transition
system TS = (Q, q0, Act, T rans,AP,L, d) [2], where Q is
the set of regions in the partition and q0 ∈ Q is the region
where the robot is located initially. Act is a set of finite-time
control policies {ui}i∈[1,|Act|] that can be enacted by the
robot. A transition (qi, uk, qj) ∈ Trans is a pair of regions
qi and qj and the control policy uk that can be applied to
drive the robot from qi to qj . AP is a set of properties that
can be assigned to regions in Q and L : Q → 2AP is the
mapping giving the set of properties satisfied at each region.
d : Trans → R is a weighting over the transitions whose
value corresponds to the cost of enacting the given control.
We define the discretized time k that is initialized to 0 and
incremented by 1 after a transition. We denote the state of
TS at a time k as qk.

B. Estimator and sensor dynamics

The robot is tasked with estimating an environmental
feature modeled as the random variable S. We assume that
the robot has onboard sensors and can take and process
measurements related to S. We encapsulate the measurement
and data-processing performed during a transition on TS at
time k as a report yk. The report is drawn from a random
process Y k whose randomness encapsulates sensor noise.
The pmf of Y k depends on the realization s of S, the position
of the robot, and sensor statistics. We can use this model
to construct a likelihood function f(yk, s, qk) = Pr[Y k =
yk|S = s, robot at qk]. The robot maintains an estimate
pmf p̂ : RS × N → [0, 1], where p̂(s, l) = Pr[S =
s|{Y j = yj}j∈[0,l]]. After a transition is completed, the robot
incorporates the report into p̂ via a Bayes filter

p̂(s, l + 1) =
f(yl+1, s, ql+1)p̂(s, l)∑

σ∈RS
f(yl+1, σ, ql+1)p̂(σ, l)

. (1)
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C. scLTL-constrained informative path planning

Our task is to select a sequence of transitions
{(qi, ui, qi+1)}i∈[0,k−1] such that the induced run q0 . . . qk

over TS on average produces the best estimate of S. The
robot’s knowledge of S is given by its estimate p̂(·, k). We
quantify the impact on p̂(·, k) of a set of transitions by using
the mutual information I(p̂(·, k); {Y l}l∈[0,k]), a frequently-
used measure of sensing quality in sensor networks, lo-
calization, and surveillance problems [5], [12], [16], [19].
Since our goal is to produce the best estimate, we naturally
wish to maximize the mutual information. We may restate
this objective by using the identity I(p̂(·, k); {Y j}j∈[0,k]) =
H(p̂(·, k))−H(p̂(·, k)|{Y j}j∈[0,k]). The estimate p̂(·, ·) does
not change over time if no new reports are received, so max-
imizing the mutual information is equivalent to minimizing
the conditional entropy H(p̂(·, k)|{Y j}j∈[0,k]).

Problem 1. The scLTL-constrained informative path plan-
ning problem over TS is the optimization

min
{qj}j∈[0,k]

E{Y j}[H(p̂(·, k)|{Y j})]

subject to
φ

(qi, ui, qi+1) ∈ Trans ∀i ∈ [0, k − 1],

(2)

where φ is an scLTL formula over AP , the likelihood
function f and initial pmf p̂(·, 0) are given, and k is finite
but not fixed.

We discuss how to use model checking and optimization
tools to solve this problem in the next section.

IV. RECEDING HORIZON INFORMATIVE PATH PLANNING

From an scLTL formula φ, we can construct an FSA Aφ
that will accept only those words that satisfy φ [13], [14].
Given TS and φ, we can construct a product FSA P =
TS × Aφ. Accepting runs over P are given as finite words
(q0, σ0) . . . (qk, σk) such that transitions between subsequent
states are in ∆P and σk ∈ F . Problem 1 can be solved using
the following procedure:

Algorithm 1 (Exhaustive Search).
1) From TS and φ, construct P = TS ×Aφ
2) Enumerate all accepting runs of P, i.e. all simple paths

from (q0, σ0) to states in Q× F
3) Project all accepting runs on P to runs over TS
4) Calculate E{Y j}j∈[0,k]

[H(p̂(·, k)|{Y j})] for each ac-
cepting run.

5) Select the trajectory with the minimum expected con-
ditional entropy

The calculation of E{Y j}j∈[0,k]
[H(p̂(·, k)|{Y j})] from a

given run proceeds as follows. A run over TS q0 . . . qk

induces a sequence of reports y0, . . . , yk. We can find the
estimate using (1) that would result from observing a given
sequence of reports and calculate H(p̂(·, k)|{yj}j∈[0,k]).
We can use the given run, the prior estimate pmf
p̂(·, 0) and the likelihood function f to construct a pmf

pY 0,...,Y k(y0, . . . , yk). Taking these together we can calcu-
late

E{Y j}j∈[0,k]
[H(p̂(·, k)|{Y j})] =∑

y0,...,yk∈Rk
Y

H(p̂(·, k)|y0, . . . , yk)×

pY 0,...,Y k(y0, . . . , yk).

(3)

A. Receding Horizon Control

The exhaustive search (Algorithm 1) produces a solution
that is optimal in expectation. However, it is computationally
expensive (see Section IV-A.2). Algorithms exist to mitigate
the computational costs incurred by Algorithm 1 [17], [22].

Algorithm 1 gives a non-reactive trajectory computed
before the robot collects any additional information about
S. The optimal path is calculated based on the topology of
P, the sensor noise, and some initial guess p̂(·, 0). What if
a sample path of Y k is atypical or p̂(·, 0) is a bad guess?
After making l < k transitions, we cannot guarantee that

arg min
{qj}j∈[l,k]

E{Y j}[H(p̂(·, k)|{Y j}, {ym}m∈[0,l))]

is the same as the end of the trajectory calculated using
Algorithm 1. In the next section, we propose an on-line
receding horizon algorithm that addresses the issues of
computational explosion and non-reactivity.

1) Algorithm description: In the RHC approach to Prob-
lem 1, we select some horizon b and at each time l solve the
following problem

min
{δj∈∆P}j∈[l,l+b]

E{Y j}[H(p̂(·, k)|{Y j})])

subject to
(4a)

χl+bopt ∈ Nr,χf
(χl, b) (4b)

W (χl+bopt ) < W (χl+b−1
pred ), if Nr,χf

(χl, b) 6= χf (4c)

χl+1
opt 6∈ {χj}j∈[lr,l], if χl ∈ Nr(χf , b), (4d)

where χl = (ql, σl) is the state of P at time l, χopt
is a state in the optimal finite-horizon trajectory calculated
at time l, χpred is a state in the optimal finite-horizon
trajectory previously calculated at time l − 1, Nr(χ, n) is
the neighborhood of states about χ that are reachable in n
or fewer transitions, and lr is the minimum value of l such
that χl ∈ Nr(χf , b). The optimization (4) is solved in the
same manner as Algorithm 1 in which feasible paths on P

over the short horizon are enumerated, projected back to TS,
and their expected impact on conditional entropy evaluated.
The function W : Q× Σ→ R is defined as

χ0 = (q0, σ
0)

χf = arg max
χk∈Q×F

D(χ0, χk) s. t. D(χ0, χf ) <∞

W (χj) = D(χj , χf ),

(5)

where D(·, ·) is the shortest graph distance between two
states in P. The distance between two adjacent states is given
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by the weighting d′. Nr,χf
(χ, n) is the constrained n-step

reachability neighborhood

Nr,χf
(χ, n) =

{
Nr(χ, n) χf 6∈ Nr(χ, n)
χf χf ∈ Nr(χ, n)

. (6)

The extra conditions (4b)-(4d) ensure convergence to χf
in finite time. Constraint (4b) ensures that if χf is reachable
from the current position, the terminal state in the finite-
horizon trajectory is χf . Constraint (4c) is similar to a
decreasing energy constraint used in Lyapunov convergence
analysis. It ensures that the finite-horizon trajectory moves
closer to an accepting trajectory as time increases. Condition
(4d) ensures that P does not cycle infinitely between non-
accepting states.

We construct a receding horizon algorithm adapted from
[7] to solve Problem 1.

Algorithm 2 (Receding Horizon).
l = 0
χ = (q0, σ

0)
While (χ 6= χf )

{χmpred}m∈[l,l+b−1] = {χmopt}m∈[l,l+b−1]

{χmopt}m∈[l+1,l+b] = solution to (4)
χ = χl+1

opt
l + +

If at least one satisfying run exists on P (i.e. if W (χ0) is
finite), then any path produced by Algorithm 2 satisfies the
specification φ. This is formalized in the following theorem.

Theorem 1 (scLTL satisfaction). If W (χ0) < ∞, applying
Algorithm 2 to Problem 1 will result in an accepting run on
P.

The proof, which may be found in the technical report
[10], proceeds in a similar manner as in [7].

Note that intuitively in an environment with spatially
distributed information we expect that longer paths generally
will be more informative. It may seem that using conditions
(4b)-(4d) to ensure convergence causes Algorithm 2 to con-
verge more quickly (produce shorter paths) than is desirable.
This effect is offset by the reactivity of the algorithm and
selection of the optimal local trajectories at each time step.
Our approach can be adapted to further address path length
concerns by including minimum path length constraints in
Algorithm 2 or by specifying in the scLTL constraint φ a set
of spatially dispersed regions that the robot must visit.

2) Computational complexity: Define K(χ0, χf , t) as the
number of simple paths of length less than or equal to t that
connect χ0 to χf in P. Let t∗ be the length of the longest sim-
ple path in P and let κ(P, t) = max

χ0,χf∈(Q×Σ)2
K(χ0, χf , t).

Calculating the expected impact of each transition on the
conditional entropy of the estimate requires |RS | calcu-
lations. The computational complexity of Algorithm 1 is
therefore O(|RS |t∗κ(P, t∗)).

For Algorithm 2, consider a single solution of (4a) with
short horizon b. The number of possible paths is bounded by
`κ(P, b), where ` is the number of edges of the maximally

connected state in P. The complexity of a single solution to
(4) is O(|RS |b`κ(P, b)). Constraints (4b)-(4d) mean that (4)
is solved at most N = |Q × Σ| times. The complexity of
Algorithm 2 is O(|RS |b`Nκ(P, b)).

A comparison of worst-case complexity depends on the
size and topology of P. Note that for a product automaton of
large size and high enough connectivity, the function κ(P, ·)
increases exponentially in path length. For such systems,
Algorithm 2 has the lowest worst-case complexity. While
it may seem disingenuous to compare the complexity of an
off-line algorithm against an on-line algorithm, note that as
the size and connectivity of P grow, it becomes infeasible
to solve Algorithm 1 in a reasonable amount of pre-mission
time before it becomes infeasible to calculate Algorithm 2
on-line.

V. SIMULATION STUDY

We performed a simulation study demonstrating the use
of Algorithm 2 to solve Problem 1. We assumed the tran-
sition system is the quotient of a gridded partition and that
all neighboring regions are deterministically reachable. Our
variable of interest is S = [Sj ]j:qj∈Q where RSj

= {0, 1}.
We assume that the Sj are mutually independent. After
a transition to a new region, the robot returns a report
yk ∈ {0, 1}. Our estimate is formed using a prior pmf and
the Bayesian filter (1).

We assume that the volume of a region q ∈ Q is
sufficiently small compared to the volume observable by the
robot’s sensors such that the robot will receive information
from adjacent regions. We model this overlap by a set Emeas,
where the existence of an element ejk ∈ Emeas indicates
information from region qj can be gathered while the robot
is in qk. We assume here that Emeas = {ejk|(qj , u, qk) ∈
Trans}, though this assumption does not need to hold
in general. Each element of Emeas is weighted according
to the distance dM (qj , qk) that represents the amount of
information contained in region qk that can be observed
from region qj . Define the observation neighborhood of qk
as No(qk) = {qi|eik ∈ Emeas} ∪ qk. We assume independent
correct report rates µ(qk, qj) = Pr(Y k = 1| agent at qk, sj =
1) and a constant false alarm rate r such that the overall alert
likelihood is

f(1, s, qk) =

{
r if sj = 0 ∀j : qj ∈ No(qk)

1−
∏

qj∈No(qk)

1− µ(qk, qj)sj , else (7)

Since our reports are binary, we can calculate f(0, s, qk)
from f(1, s, qk). Our detection model is given by

µ(qk, qj) = µ0e
−λdM (qk,qj) (8)

The propositions in our scenario are AP =
{D1,D2,C,U}. The specification we wish to satisfy
is “Visit D1 before visiting D2 and visit D2 before ending
in C while avoiding U”. The task is formalized as
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min
{qj}j∈[0,k]

E{Y j}[H(p̂(·, k)|{Y j})]

subject to
(¬U U C) ∧ (¬C U D2) ∧ (¬D2 U D1)

(9)

We generated a 5 x 5 grid-like abstraction with fixed
initial state and terminal ‘C’ state. Our simulation was
constructed using NetworkX graph algorithms [9] and the
model-checking algorithms of scheck [14]. We performed
100 Monte Carlo trials with randomly placed ‘D1’, ‘D2’, and
‘U’ labels. The sensing parameters were µ0 = 0.9, r = 0.01,
and λ = 0.01. Weightings dM between adjacent states were
drawn according to uniform distributions over (0, 10), graph
distances between two adjacent states were set at a value
of 1, and the sj were generated according to a Bernoulli
distribution with parameter p = 0.08. Figure 1 shows sample
paths resulting from using Algorithm 2 to solve (9). Each
run satisfied the given constraint specification. The average
terminal entropy H(p̂(·, k)|y0, . . . , yk) over all trials was
14.78 bits. The average CPU time required for construction
of P and optimal path finding per trial was 2.61 s on a
machine with a 2.66 GHz Intel Core 2 Duo processor and 4
GB of memory.

In order to compare the performance of Algorithms 1
and 2, we solved (9) over a single 6 x 6 transition system
generated in the same manner as above. We chose the larger
system in order to make comparisons over a larger number
of accepting runs. We used Algorithm 1 to find the optimal
path in the constrained environment and constructed the
pmf of the terminal entropy. We also performed 250 Monte
Carlo trials using Algorithm 2 over the same environment
and constructed the empirical pmf of the resulting terminal
entropies. Histogram representations of the two pmfs are
shown in Figure 2. The mean, median, and variance are
26.30 bits, 26.44 bits, and 3.67 bits2, respectively, for the
pmf from Algorithm 1 and 25.86 bits, 26.44 bits, and 2.80
bits2, respectively, for the empirical pmf from Algorithm
2. These results confirm our intuition about reactivity and
performance: Algorithm 2 performs better in expectation and
has lower performance variability than Algorithm 1.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered planning an informative path
for a robotic agent subject to temporal logic specifications.
We modeled the robot as moving deterministically on a graph
with noisy sensor measurements at each node. We proposed
a receding horizon algorithm for solving this problem in an
on-line, computationally efficient manner while still ensuring
specification satisfaction. We compared the performance of
our algorithm with an off-line exhaustive search method in a
simulation study. Our algorithm out performed the exhaustive
search method, producing lower entropy estimates with less
computational overhead.

One natural extension to this work is to plan a path that
optimizes some other quantity (e.g. path length or graph
distance) subject to a minimum level of mutual information.
That is, we make the information content of the path a

(a)

(b)

Fig. 2. Histograms of (a) the pmf of the terminal entropy found
when following the path from Algorithm 1 and (b) the empirical pmf of
the terminal entropy that resulted when the paths were calculated using
Algorithm 2. These histograms show that the mean and variance of the pmf
of the terminal entropy is lower for the paths generated by Algorithm 2
than the for the path generated by Algorithm 1. The lower mean indicates
that using Algorithm 2 will result in a lower entropy estimate on average.
The lower variability means that we are less likely to have a high entropy
estimate when using Algorithm 2. Algorithm 1 took 1741 s of CPU time
to complete and Algorithm 2 took an average of 2.94 s of CPU time per
execution to complete.

constraint rather than an objective. Another possible ex-
tension is to consider cases in which the satisfaction of
the temporal logic specification relies on some unknown
quantity. Consider, for instance, a rescue robotics scenario
in which the robot is tasked not only with finding survivors,
but also moving the survivors to a medical station. In this
case, planning a path to the medical station is impossible
until the robot knows the survivor’s location. This extension
would allow us to use formal synthesis methods in a more
reactive manner. More generally, we expect that the fusion of
information theoretic tools with formal control synthesis will
yield robotic control policies that are reactive to noisy, real-
world environments while still providing provably correct
performance.
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