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Abstract— We present a computational framework for auto-
matic synthesis of a feedback control strategy for a piecewise
affine (PWA) system from a specification given as a Linear
Temporal Logic (LTL) formula over an arbitrary set of linear
predicates in its state variables. First, by defining partitions for
its state and input spaces, we construct a finite abstraction of
the PWA system in the form of a control transition system.
Second, we develop an algorithm to generate a control strategy
for the finite abstraction. While provably correct and robust
to small perturbations in both state measurements and applied
inputs, the overall procedure is conservative and expensive. The
proposed algorithms have been implemented and are available
for download. Illustrative examples are included.

I. INTRODUCTION

Temporal logics and model checking [5] are customarily

used for specifying and verifying the correctness of digital

circuits and computer programs. However, due to their re-

semblance to natural language, expressivity, and existence of

off-the-shelf algorithms for model checking, temporal logics

have the potential to impact several other areas. Examples

include analysis of systems with continuous dynamics [6],

control of linear systems from temporal logic specifica-

tions [21], [15], task specification and controller synthesis

in mobile robotics [16], [4] and specification and analysis of

qualitative behavior of genetic networks [2], [3].

In this paper, we focus on piecewise affine systems (PWA)

that evolve along different discrete-time affine dynamics in

different polytopic regions of the (continuous) state space.

PWA systems are widely used as models in many areas. They

can approximate nonlinear dynamics with arbitrary accuracy,

and are equivalent with other classes of hybrid systems [9].

In addition, there exist techniques for the identification of

such models from experimental data (see [12] for a review).

We consider the following problem: given a PWA system

with polytopic control constraints, and a specification in

the form of a Linear Temporal Logic (LTL) formula over

linear predicates in its state variables, find a feedback control

strategy such that all trajectories of the closed loop system

satisfy the formula. Our approach consists of two main

steps. First, by partitioning the state and input spaces, we

construct a finite abstraction of the PWA system in the

form of a control transition system. Second, by leveraging

ideas and techniques from Rabin games [22] and LTL model

checking [5], we develop an algorithm to generate a control

strategy for the finite abstraction.

This work was partially supported by grants ARO W911NF-09-1-
0088, NSF CNS-0834260, and AFOSR FA9550-09-1-020 at Boston
University and by grants GA201/09/1389, and GA201/09/P497 at
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The contribution of this work is three-fold. First, it pro-

vides a general and fully automatic framework for controlling

finite nondeterministic transition systems from specifications

given as arbitrary LTL formulas. This extends our results

from [18], where completeness was only guaranteed for

specifications given in a fragment of LTL generated by

deterministic Büchi automata. This significantly increases the

expressivity of the specification language. Second, by dealing

with the stuttering phenomenon inherent in the finite abstrac-

tion and maintaining both time specific and time abstract

information about the system, it reduces the conservativeness

of the approach that we recently proposed for the above

problem in [25], while expressivity is not sacrificed. Third, it

seamlessly combines the abstraction and control procedures

into a computational framework allowing for fully automatic

generation of PWA feedback control strategies from high-

level, rich LTL specifications. The framework was imple-

mented as a freely downloadable tool conPAS2.

This paper can be seen in the context of literature focused

on the construction of finite quotients of infinite systems

(see [1] for an earlier review), and is related to [19], [21],

[15]. The embedding into transition systems is inspired

from [19], [21], where the existence of bisimulation quotients

and control strategies under the assumption of controlla-

bility for linear systems is characterized. In this work, we

focus instead on developing algorithmic procedures for the

computation of quotients and control strategies for the more

general class of PWA systems. This paper is also related

to literature focused on controlling finite systems, such as

discrete-event systems, from temporal logic specifications

such as CTL* formulas [11]. Although similar, our approach

to controlling nondeterministic transition systems can handle

information about the stuttering behavior that arises during

the construction of finite quotients. While controllers for

PWA systems can be synthesized using other tools [17], our

approach allows for more general, temporal logic specifica-

tions. The related problem of temporal logic control of Mixed

Logical Dynamical (MLD) systems has been considered

in [13] by representing LTL specifications as mixed-integer

linear constraints but a finite horizon assumption is imposed.

This paper extends recent results on formal analysis of PWA

systems [8], [26] to a control framework.

Due to space limitations, some proofs and additional de-

tails are omitted but made available as a technical report [23].

II. NOTATION AND PRELIMINARIES

Given a set Q, we use |Q|, 2Q, Q+, and Qω to denote its

cardinality, powerset, and sets of nonempty finite and infinite

sequences of elements from Q, respectively.
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Definition 1: A nondeterministic transition system is a

tuple T = (Q,Σ,δ,O,o), where Q and Σ are sets of states

and inputs, δ : Q×Σ → 2Q is a transition map, O is a set of

observations, and o : Q → O is an observation map.

A transition δ(q,σ) = Q′ indicates that, while the system

is in state q it can make a transition to any state q′ ∈ Q′ ⊆ Q

under input σ. We denote the set of inputs available at state

q ∈ Q by Σq = {σ ∈ Σ | δ(q,σ) 6= /0}. A transition δ(q,σ)
is deterministic if |δ(q,σ)| = 1 and transition system T is

deterministic if for all q ∈ Q and all σ ∈ Σq, δ(q,σ) is

deterministic. T is finite if both Q and Σ are finite. T is

non-blocking if, for every state q ∈ Q, Σq 6= /0. In this work,

we consider only non-blocking transition systems.

An input word of the system is defined as an infinite

sequence σ0σ1 . . .∈ Σω. A trajectory of T produced by input

word σ0σ1 . . . and originating at state q0 ∈ Q is an infinite

sequence q0q1 . . . with the property that qk+1 ∈ δ(qk,σk), for

all k≥ 0. We denote the set of all trajectories of T originating

at q by T (q) (similarly, T (Q′) =∪q′∈Q′T (q′) denotes the set

of all trajectories of T originating in Q′ ⊆ Q). A trajectory

q0q1 . . . defines a word o(q0)o(q1) . . ..
Definition 2: A (history dependent) control function

Ω : Q+ → Σ for transition system T = (Q,Σ,δ,O,o) maps

a finite, nonempty sequence of states to an input of T .

A control function Ω and a set of initial states Q0 ⊆ Q

provide a control strategy for T . We denote a control strategy

by (Q0,Ω) and the sets of all trajectories and words of the

closed loop T by T (Q0,Ω) and LT (Q0,Ω), respectively.

Any trajectory q0q1 . . . ∈ T (Q0,Ω) satisfies q0 ∈ Q0 and

qk+1 ∈ δ(qk,σk), where σk = Ω(q0, . . . ,qk), for all k ≥ 1.

To specify temporal properties of trajectories of transition

systems (and PWA systems, as it will become clear later) we

use Linear Temporal Logic [5]. Informally, LTL formulas

are inductively defined over a set of observations O, by

using the standard Boolean operators and temporal operators

© (“next”), U (“until”), � (“always”), and ♦ (“eventually”).

LTL formulas are interpreted over infinite words, as those

generated by the transition system T from Def. 1. We denote

by Lφ the language of words that satisfy the formula φ.

A Rabin automaton is a tuple R = (S,S0,O,δR ,F), where

S is a set of states, S0 ⊆ S is the set of initial states, O is

the input alphabet, δR : S × O → 2S is a transition map,

and F = {(G1,B1), . . . ,(Gn,Bn)} is the acceptance condition.

R is deterministic if |S0| = 1 and |δR (s,o)| ≤ 1 for all

s ∈ S and o ∈ O. The semantics of a Rabin automaton is

defined over infinite input words. A run of R over a word

w = o0o1 . . . ∈ Oω is a sequence ρ = s0s1 . . . , where s0 ∈ S0

and sk+1 ∈ δR (sk,ok) for all k ≥ 1. Let inf(ρ) denote the set

of states that appear in the run ρ infinitely often. A run ρ
is accepting if in f (ρ)∩Gi 6= /0∧ in f (ρ)∩Bi = /0 for some

i ∈ {1, . . . ,n}. An input word w is accepted by an automaton

if some run over w is accepting. We denote by LR the

language of words accepted by R .

Given an LTL formula φ, one can build a deterministic

Rabin automaton R with 22O(|φ|·log |φ|)
states and 2O(|φ|) pairs in

its acceptance condition, such that LR = Lφ [20]. The trans-

lation can be done using standard tools, e.g., ltl2dstar [14].

III. PROBLEM FORMULATION AND APPROACH

Let X ,Xl , l ∈ L be a set of open polytopes in R
N , where L

is a finite index set, such that Xl1

T

Xl2 = /0 for all l1, l2 ∈ L,

l1 6= l2 and cl(X ) =
S

l∈L cl(Xl), where cl(Xl) denotes the

closure of Xl . A discrete-time piecewise affine (PWA) control

system is defined as:

xk+1 = Alxk +Bluk + cl ,xk ∈ Xl , uk ∈ U, (1)

where, at each time step k = 0,1, . . ., xk ∈ R
N is the state

of the system, uk is the input restricted to a polytopic set

U ⊂R
M , and Al ∈R

N×N , Bl ∈R
N×M , cl ∈R

N are the system

parameters for mode l ∈ L.

We assume that at each time step k the exact state of

the system (xk ∈ Xl , l ∈ L) is unknown but we can observe

the current mode l. Intuitively, a trajectory of the system

produces a word by listing the index of the polytope visited

at each step (e.g., trajectory x0x1x2 . . . satisfying x0,x1 ∈ Xl1

and x2 ∈ Xl2 for some l1, l2 ∈ L will produce word l1l1l2 . . .).
We assume that polytope X is an invariant for all trajectories

of the system (in [25] we showed that this can always be

guaranteed through polyhedral control constraints) and, thus,

only infinite words are produced. Then, such words can be

checked against the satisfaction of an LTL formula over L.

We consider the following problem:

Problem 1: Given a PWA system (1) and an LTL formula

φ over L, find a control strategy, such that all trajectories of

the closed loop system satisfy φ, while remaining within X .

In order to complete the formulation of Problem 1, we

need to formalize the definitions of a control strategy for

a PWA system (1) and satisfaction of LTL formulas by

trajectories of (1). We do this through an embedding into

a transition system, for which both LTL satisfaction and a

control strategy are clearly defined.

Definition 3: The embedding transition system Te =
(Qe,Σe,δe,Oe,oe) for system (1) is: Qe =

S

l∈L Xl , Σe = U,

δe(x,u) = {x′} if and only if x′ ∈ Qe and there exist l ∈ L

and u ∈ U such that x ∈ Xl and x′ = Alx+Blu+ cl , Oe = L,

oe(x) = l if and only if x ∈ Xl .

Note that the embedding transition system Te is always

deterministic and non-blocking but both its set of states Qe

and set of inputs Σe are infinite.

Definition 4: Trajectories of system (1) originating in

Q0 ⊆ Qe satisfy formula φ if and only if Te(Q0) satisfies φ.

Problem 1 can be considered an LTL control problem,

where we seek a control strategy (Q0,Ω) (Def. 2) for the

infinite, deterministic transition system Te. A preliminary

solution to Problem 1 was presented in [25], where we

constructed control transition system Tc as a finite abstraction

for Te and showed that a control strategy generated for Tc can

be adapted for Te (we summarize those results in Sec. IV).

We treated the cases when Tc was deterministic and non-

deterministic separately and allowed full LTL expressivity

for a deterministic Tc (which corresponds to a conservative

approach to the abstraction process). For a nondeterministic

Tc, the expressivity was restricted to a fragment of LTL gen-

erated by a deterministic Büchi automaton. This solution was

conservative, since not all LTL formulas can be translated
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into deterministic Büchi automata (e.g., ♦�φ for any LTL

formula φ). The stuttering phenomenon (self transitions at

a state of Tc that can be taken infinitely in Tc but do not

correspond to real trajectories of Te), which is also related

to the well known Zeno behavior, was an additional source

of conservativeness in [25].

In this paper, by developing a complete control strategy

for nondeterministic transition systems from full LTL spec-

ifications in Sec. V and by characterizing and dealing with

stuttering phenomena in Sec. VI, we significantly (1) reduce

the conservativeness of our previous approach and (2) in-

crease the expressivity of the specification language.

Remark 1: We make some simplifying assumptions in the

formulation of Problem 1 that might seem restrictive. First,

we capture only the reachability of open full dimensional

polytopes in the semantics of the embedding. This is enough

for practical purposes, since only sets of measure zero are

disregarded, and it is unreasonable to assume that equality

constraints can be detected in real-world applications. Tra-

jectories originating and remaining in such sets are therefore

of no interest. Trajectories originating in the interior of full-

dimensional polytopes also cannot ”vanish” in such zero-

measure sets unless the dynamics of the system satisfy some

special conditions, which are easy to derive but omitted due

to space constraints. Second, the specification is formulated

over the polytopes Xl , which are given a priory. However,

arbitrary linear inequalities can be accommodated by includ-

ing additional polytopes, in which case the system will have

the same dynamics in several modes.

IV. CONTROL TRANSITION SYSTEM

In this section, we summarize the construction of control

transition system Tc = (Qc,Σc,δc,Oc,oc) for the infinite Te =
(Qe,Σe,δe,Oe,oe) that was presented in [25]. Then, we show

how a control strategy for Tc can be adapted to Te.

The observation map oe of Te induces an equivalence

relation ∼ over the set of states Qe. We say that two states

x,x′ ∈ Qe are equivalent if and only if oe(x) = oe(x
′). The

equivalence relation naturally induces a quotient transition

system Te/∼
= (Qe/∼

,Σe,δe∼
,Oe,oe∼

), where Qe/∼
= L

is the finite set of all equivalence classes formed in Qe.

The infinite set of inputs Σe is preserved from Te and the

transitions of Te/∼
are defined as l′ ∈ δe∼

(l,u) if and only

if there exist u∈ Σe,x ∈Xl and x′ ∈X ′ such that x′ = δe(x,u).
The set of observations Oe = L of Te/∼

is preserved from Te

and the observation map oe∼
is identity. Note that Te/∼

is,

in general nondeterministic, even though Te is deterministic.

For each state l ∈ Qe/∼
, we define an equivalence relation

≈l over the set of inputs Σe as (u1,u2) ∈≈l if and only if

δe∼
(l,u1) = δe∼

(l,u2) (i.e., inputs u1 and u2 are equivalent

at l if they produce the same transitions in Te/∼
). Let

UL′

l = {u ∈ Σe | l ∈ L,L′ ∈ 2Qe/∼ ,δe∼
(l,u) = L′} denote the

equivalence classes of Σe in the partition induced by ≈l .

In [25] we showed that the equivalence classes UL′

l can be

computed using polyhedral operations and can be represented

as finite unions of polytopes. Let uL′

l ∈ UL′

l be an input

such that ∀u ∈ Σe it holds that d(uL′

l ,u) < ε ⇒ u ∈ UL′

l ,

where d(u1,u2) denotes the Euclidean distance in R
M and

ε is a predefined parameter specifying the robustness of

the control strategy. In other words, uL′

l ∈ UL′

l is the center

of a sphere with a radius larger than ε, inscribed in UL′

l

and input uL′

l is available at a state l in Tc (i.e., uL′

l ∈ Σl
c)

if such a sphere can be computed1, which clearly induces

transition δc(l,u
L′

l ) = L′. In general, it is possible that at a

given state l, Σl
c = /0, (i.e., state l is blocking). Such states

are recursively removed from the system together with their

incoming transitions and therefore Qc ⊆ L. Following from

the construction outlined above, Tc has a finite set of states

and inputs.

Definition 5: A control strategy (Qc
0,Ω

c) for Tc can be

translated into a control strategy (Q0,Ω) for Te as follows.

The initial set Qc
0 ⊆ Qc gives the initial set Q0 =

S

l∈Qc
0

Xl ⊆
Qe. Given a finite sequence of states q0 . . .qk where

q0 ∈ Q0, the control function is defined as Ω(q0 . . .qk) =
Ωc(o(q0) . . .o(qk)).

Proposition 1: Given a control strategy (Qc
0,Ω

c) for Tc

translated as a control strategy (Q0,Ω) for Te, LTe
(Q0,Ω)⊆

LTc
(Qc

0,Ω
c), which implies that if Tc(Q

c
0,Ω

c) satisfies an

arbitrary LTL formula φ, then so does Te(Q0,Ω).
Following from Prop. 1, which we proved in [23], a control

strategy for Tc can be adapted to the infinite Te. The control

strategy is robust with respect to perturbations in the mea-

sured state (i.e., it depends on the observation of a state of Te

rather than the state itself). It is also robust to perturbations

in the applied inputs, bounded by the predefined parameter ε.

V. LTL CONTROL FOR FINITE TRANSITION SYSTEMS

In this section, we consider the following problem:

Problem 2: Given a finite (nondeterministic) transition

system T from Def. 1 (such as the control transition system

Tc from Sec. IV) and an LTL formula φ, find a control

strategy (Def. 2), such that all trajectories of the closed loop

system satisfy φ.

We first reformulate Problem 2 as a Rabin game and then

adapt the solution to the Rabin game as a control strategy

for T . As it will become clear later, the control strategy takes

the form of a “feedback automaton”, which reads the current

state of T and outputs the input to be applied at that state.

Given a finite transition system T = (Q,Σ,δ,O,o) and an

LTL formula φ over O we can translate φ into a deterministic

Rabin automaton R = (S,S0,O,δR ,F) (see Sec. II) and

construct the product automaton P = (SP ,SP 0,Σ,δP ,FP ),
where SP = Q×S is the set of states, SP 0 = Q×S0 is the set

of initial states, Σ is the input alphabet, δP : SP ×Σ → 2SP

is the transition map, where δP ((q,s),σ) = {(q′,s′) ∈ SP |
q′ ∈ δ(q,σ), and s′ = δR (s,o(q))}, and FP = {(Q×G1,Q×
B1), . . . ,(Q×Gn,Q×Bn)} is the Rabin acceptance condition.

The product automaton is a nondeterministic Rabin au-

tomaton with the same input alphabet Σ as T . Each accepting

run ρP = (q0,s0)(q1,s1) . . . of P can be projected into a

trajectory q0q1 . . . of T , such that the word o(q0)o(q1) . . .

1in [25] we computed the inscribed spheres of all polytopes from a set

UL′

l . Then, uL′

l was the center of the sphere with the largest radius if it was

greater than ε and otherwise we considered UL′

l to be empty
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is accepted by R (i.e., satisfies φ) and vice versa [24].

This allows us to reduce Problem 2 to finding a control

strategy (WP 0,πP ) for P , such that each run of the closed

loop P satisfies the Rabin acceptance condition FP
2. This

problem can be viewed as a Rabin game played on the

product automaton between two players – a protagonist and

an adversary. A play is initiated in a state of the product

automaton and proceeds according to the following rule: at

each state, the protagonist chooses an input to be applied

and the adversary determines the next state to be visited

under this input (i.e., the adversary resolves nondeterministic

transitions). A play produces an infinite sequence of states

(i.e., a run) and it is won by the protagonist if the produced

run satisfies the Rabin condition. A solution to the Rabin

game is a control strategy: a control function determining

moves of the protagonist and a set of initial states called

winning region, such that each play under the strategy is

won by the protagonist. Since winning strategies for Rabin

games are memoryless [7], the control function is simply a

map πP : SP → Σ.

Rabin games can be solved by standard algorithms. In

this paper we follow the approach by Horn [10], which can

be adapted to deal with the stuttering behavior as we will

explain in Sec. VI. The basic step of the recursive algorithm

is attractor construction. A protagoninst’s (or adversary’s)

attractor of a set S′ ⊆ SP is defined as a set of states from

which the protagonist (or the adversary, respectively) can

enforce a visit to S′.

By solving the Rabin game we generate a control strategy

(WP 0,πP ) for P . In order to complete the solution to Prob-

lem 2, we adapt (WP 0,πP ) as a control strategy (Q0,Ω) for

T . Although the control function πP was memoryless, Ω is

history dependent and takes the form of a feedback control

automaton C = (S,S0,Q,τ,π,Σ), where the set of states S

and initial states S0 are inherited from R , the set of inputs

Q is the set of states of T , and the memory update function

τ : S×Q→ S and output function π : S×Q→ Σ are defined as

τ(s,q) ∈ δR (s,o(q)) if (q,s) ∈WP , τ(s,q) =⊥ otherwise

π(s,q) = πP ((q,s)) if (q,s) ∈WP , π(s,q) =⊥ otherwise

The set of initial states Q0 of T is given by α(WP 0),
where α : SP → Q is the projection from states of P to

Q. The control function Ω is given by C as follows: for a

sequence q0 . . .qn, q0 ∈ Q0, we have Ω(q0 . . .qn) = σ, where

σ = π(sn,qn), si+1 = τ(si,qi), and qi+1 ∈ δ(qi,π(si,qi)), for

all i ∈ {0, . . . ,n}. It is easy to see that the product automaton

of T and C will have the same states as P but contains only

transitions of P closed under πP . Then, all trajectories of the

closed loop T (Q0,Ω) satisfy φ.

The solution to Problem 2 allows us to generate a control

strategy for the finite Tc, which can then be adapted to a

control strategy for the infinite Te (Def. 5). This provides a

solution to Problem 1.

2Control strategies for Rabin automata (such as P ) are defined by a set
of initial states WP 0 and a control function πP as for transition systems
(Def. 2). The behavior of the closed loop system is analogous.

x1

x2

x3 x4

l1

l2

l3
l1 l2 l3

u
u

u

u u

A B

Fig. 1: A trajectory remaining forever in state l2 exists in the finite
abstraction B), although such behavior is not necessarily possible
in the concrete system A)

VI. STUTTERING PHENOMENON

In order to generate a control strategy for an infinite

transition system such as Te (Problem 1) we described the

construction of a finite control abstraction Tc in Sec. IV.

However, due to spurious trajectories (i.e., trajectories of Tc

not present in Te) we cannot guarantee that a control strategy

will be found for Tc even if one exists for Te and therefore,

the overall method is conservative. In [26] we eliminated

spurious trajectories through state refinement but the states

of Tc cannot be refined since a control strategy cannot

differentiate between states having the same observation.

In the following, we present an alternative approach for

reducing this conservatism.

We characterize only a specific class of spurious trajec-

tories, which we introduce through an example (Fig. 1).

Assume that a constant input uuu . . . produces a trajectory

x1x2x3x4 . . . in Te where o(x1) = l1, o(x2) = o(x3) = l2,

o(x4) = l3 (Fig. 1-A). The corresponding word l1l2l2l3 . . . is a

trajectory of Tc (i.e., l1, l2, l3 ∈ Qc) and from the construction

described in Sec. IV it follows that l2 ∈ δc(l1,u) and {l2, l3}⊆
δc(l2,u) (Fig. 1-B). Then, there exists a trajectory of Tc that

remains infinitely in state l2 ∈ Qc under input u, which is

not necessarily true for Te. Such spurious trajectories do

not affect the correctness of a control strategy but increase

the overall conservativeness of the method. We address this

by characterizing stuttering inputs, which guarantee that

the system will leave a state eventually, rather than in a

single step, and using this additional information during the

construction of the control strategy for Tc.

Definition 6: Given a state l ∈ Qc and a set of states L′ ∈
2Qc , the set of inputs UL′

l is stuttering if and only if l ∈ L′

and for all input words u0u1 . . ., where ui ∈UL′

l , there exists

a finite k > 1 such that the trajectory x0x1 . . . produced in Te

by the input word satisfies o(xi) = l for i = 1, . . . ,k−1 and

o(xk) = l′ ∈ L′, l′ 6= l.

Using Def. 6 we identify a stuttering subset Σls
c ⊆ Σl

c of

the inputs available at a state l ∈ Qc. Let u = uL′

l ∈ Σl
c for

some L′ ∈ 2Qc be an input of Tc computed as described in

Sec. IV. Then u ∈ Σls
c if and only if UL′

l is stuttering. Note

that a transition δc(l,u) = L′ from a state l ∈ Qc where u

is stuttering is always nondeterministic (i.e., |L′| > 1) and

contains a self loop (i.e., l ∈ L′) but the self loop cannot

be taken infinitely in a row (i.e., a trajectory of Te cannot

remain infinitely in region Xl under input word uuu . . .). We

denote the rest of the inputs by Σlu
c = Σl

c \Σls
c .

Note that while we only characterize spurious infinite self

loops (i.e., cycles of length 1), in general, it is possible
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that cycles of arbitrary length are spurious in Tc. Con-

sidering higher order cycles is computationally challenging

and decreases the conservativeness of the approach only for

very specific cases, while spurious self loops are commonly

produced during the construction of Tc and can be identified

using polyhedral operations as described in Prop. 2.

Proposition 2: Given a state l ∈ Qc and a set of states

L′ ∈ 2Qc , input region UL′

l is stuttering if and only if l ∈ L′

and 0 6∈ (Al − IN)Xl ⊕BlU
L′

l + cl , where IN is the identity

matrix and ⊕ denotes the Minkowski (set) sum.

A proof of Prop. 2 is available in [23].

The algorithm by Horn [10] from Sec. V can be adapted

to handle the additional information about stuttering inputs

captured in Tc, while the correctness and completeness of

the control strategy computation for the product automaton

P is still guaranteed. P is constructed as in Sec. V and

therefore it naturally inherits the partitioned input set Σl
c =

Σls
c ∪Σlu

c for each state l ∈ Qc. Going back to the Rabin game

interpretation of the control problem discussed in Sec. V, we

need to account for the fact that the adversary cannot take

transitions under the same stuttering input infinitely many

times in a row. As a result, the construction of the control

strategy is still performed using Horn’s algorithm and only

the computations of the attractors are modified as follows.

Let l ∈ Qc and u ∈ Σls
c be a state and a stuttering input of

Tc (Def. 6). We are interested in edge (s,u,s′) of transition

δP (s,u) = S′, where α(s) = l and s′ ∈ S′. Edge (s,u,s′) is

called u-nontransient edge if α(s) = α(s′) = l and transient

otherwise. Note that, even though (l,u, l) is a self loop in

Tc, (s,u,s′) is not necessarily a self loop in P . In addition,

since there is at most one self loop at a state l ∈ Qc and

R is deterministic, there is at most one u-nontransient edge

leaving state s.

We refer to a sequence of edges (s1,u1,s2)(s2,u2,s3) . . .
(sn−1,un−1,sn), where si 6= s j for any i, j ∈
{1, . . . ,n} as a simple path, and to a simple path

(s1,u1,s2) . . .(sn−1,un−1,sn) followed by (sn,un,s1) as

a cycle. We can observe that any sequence of u-nontransient

edges (i.e. a run of the product automaton, or its finite

fragment) is of one of the following shapes: a cycle (called

a u-nontransient cycle), a lasso shape (a simple path leading

to a u-nontransient cycle), or a simple path ending at a state

where the input u is not available at all. Informally, the

existence of a stuttering self loop in a state l under input u

in Tc means that this self loop cannot be followed infinitely

many times in a row. Similarly, any u-nontransient cycle

in the product graph cannot be followed infinitely many

times in a row without leaving it. This leads us to the new

computation of protagonist’s and adversary’s attractor.

Definition 7: The protagonist’s direct attractor of S′, de-

noted by A
1
P(S′), is the set of all states s∈ SP , such that there

exists an input u satisfying

(1) δP (s,u) ⊆ S′, or

(2) s lies on a u-nontransient cycle, such that each state s′

of the cycle satisfies that s′′ ∈ S′ for all transient edges

(s′,u,s′′)
In other words, the protagonist can enforce a visit to S′ not

only by entering S′, but also by following a u-nontransient

cycle finitely many times and eventually leaving it to S′.

Definition 8: The adversary’s direct attractor of S′, de-

noted by A
1
S(S

′), is the set of all states s ∈ SP , such that for

each input u there exists a state s′ such that

(1) s′ ∈ δP (s,u)∩S′, and

(2) s′ does not lie on a u-nontransient cycle

In other words, the adversary cannot enforce a visit to S′ via

an edge of a u-nontransient cycle. This edge can be taken

only finitely many times in row and eventually different edge

under input u has to be chosen.

The protagonist’s attractor of S′ is then computed it-

eratively as the converging sequence A
∗
P0(S

′) ⊆ A
∗
P1(S

′) ⊆
A
∗
P2(S

′) ⊆ . . ., where A
∗
P0(S

′) = S′ and A
∗
Pi+1(S

′) =
A

1
P(A∗

Pi(S
′)). The adversary’s attractor is computed analo-

gously and the rest of the construction of the control strat-

egy for Te remains unchanged. The additional computation

described above allows us to consider information about

stuttering and reduce the conservativeness of our method.

VII. COMPLEXITY AND CONSERVATIVENESS

The complexity of the overall method is the cumulative

complexity of (1) the construction of the control transition

system Tc and (2) the generation of a control strategy

for Tc. The computation of Tc described in [25] involved

enumerating all subsets of L at any element of L, which

gives O(|L| · 2|L|) iterations, although this was significantly

reduced through additional optimizations. At each iteration,

polyhedral operations were performed, which scale exponen-

tially with N, the size of the continuous state space. The

characterization of stuttering inputs described in this paper

checks each element from Σc through polyhedral operations.

In [25] we also described a procedure for reducing the size

of Tc by eliminating ”more nondeterministic” transitions

and showed that no solutions are lost in this process. This

reduction can also be applied for the extended method

described in this paper, but transitions under inputs in the

sets Σls
c and Σlu

c must be considered separately.

The overall complexity of the control strategy synthesis by

Horn is O(k!nk), where n is the size of the product automaton

and k is the number of pairs in the Rabin condition of the

product automaton. The modifications we made in order to

adapt the algorithm to deal with stuttering behavior do not

change the overall complexity. Note that, in general, Rabin

games are NP-complete, so the exponential complexity with

respect to k is not surprising. However, LTL formulas are

usually translated into Rabin automata with very few tuples

in their acceptance condition.

Our solution to Problem 1 is obviously conservative. Note

that the only source of conservativeness is the construction

of the control transition system Tc - the solution to the LTL

control problem for Tc is complete.

VIII. IMPLEMENTATION AND CASE STUDY

The method described in this paper was implemented

in MATLAB as the software package conPAS2, where all

polyhedral operations were performed using the MPT tool-

box [17]. The tool takes as input a PWA system (as defined in
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A B

Fig. 2: A) Trajectories of the uncontrolled PWA system go towards
one of two possible stable equilibria located in regions X10 and
X27. B) Trajectories of the closed loop PWA system originating
anywhere in the satisfying region (light gray) satisfy the specifica-
tion and eventually reach and remain in region X10, while avoiding
regions X17,X18,X19, and X20 (dark gray).

Eqn. (1)) and an LTL formula and produces a set of satisfying

initial regions and a feedback control strategy for the system.

The tool is available at http://hyness.bu.edu/software.

We analyzed a planar PWA system (N = M = 2 in Eqn. (1))

with 36 polytopes (Fig. 2-A, where only the labels of the

polytopes are shown). The exact dynamics of the system

are omitted due to space constraints. Trajectories of the

uncontrolled system (shown in Fig. 2-A) go towards one

of two possible stable equilibria located in regions X10 and

X27. We are interested in finding a control strategy, satisfying

specification ”eventually visit region X10 and remain there

forever and always avoid X17,X18,X19, and X20”, which can

be written as φ = ♦�10∧�¬(17∨ 18∨ 19∨ 20). Formula

φ can be translated into a deterministic Rabin automaton

containing one tuple in the Rabin acceptance condition.

A control transition system Tc with 36 states was con-

structed. Out of the total 396 nonempty input regions found

(denoted by UL′

l in Sec. IV), 274 were ”large enough” (the

radii of their inscribed spheres were larger than ε = 0.05) to

be considered for a robust control strategy. The computation

of Tc required 30 sec. and the construction of the control

strategy an additional 1.5 min. on a 3.4 GHz, Intel Pentium 4

machine with 1GB of memory. The satisfying initial region

identified by conPAS2 is shown in light gray in Fig. 2-B.

Starting from random initial conditions, trajectories of the

closed loop system were simulated (Fig. 2-B), where at each

step applied inputs were corrupted by noise. All simulated

trajectories avoid the unsafe regions (shown in dark gray in

Fig. 2-B) and satisfy the specification, thereby demonstrating

the correctness and robustness of the control strategy. For

this particular case study, satisfying control strategies can be

identified only from region X10 unless the method is extended

to deal with stuttering (Sec. VI).

IX. CONCLUSION

We described a computational framework for automatic

generation of feedback control strategies for discrete-time

continuous-space PWA systems from rich specifications

given as LTL formulas over polyhedral regions in its state

space. Our approach consists of two main steps: (1) abstract-

ing the original control system to a finite control system, and

(2) generating a control strategy for the finite control system.
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