
Adaptive Sampling-based Motion Planning with Control Barrier
Functions

Ahmad Ahmad, Calin Belta, and Roberto Tron

Abstract— Sampling-based algorithms, such as Rapidly Ex-
ploring Random Trees (RRT) and its variants, have been
used extensively for motion planning. Control barrier functions
(CBFs) have been recently proposed to synthesize controllers
for safety-critical systems. In this paper, we combine the
effectiveness of RRT-based algorithms with the safety guar-
antees provided by CBFs in a method called CBF-RRT∗. CBFs
are used for local trajectory planning for RRT∗, avoiding
explicit collision checking of the extended paths. We prove that
CBF-RRT∗ preserves the probabilistic completeness of RRT∗.
Furthermore, in order to improve the sampling efficiency of the
algorithm, we equip the algorithm with an adaptive sampling
procedure, which is based on the cross-entropy method (CEM)
for importance sampling (IS). The procedure exploits the tree
of samples to focus the sampling in promising regions of
the configuration space. We demonstrate the efficacy of the
proposed algorithms through simulation examples.

I. INTRODUCTION

Many state-of-the-art single query motion planning algo-
rithms rely on randomized sampling to explore the configu-
ration space, and build a path from a starting point to a goal
region incrementally. Such algorithms are appealing because
they avoid building the configuration space explicitly, which
might be challenging in high-dimensional spaces. Rather, in
the search for a path to the goal, they generate exploration
paths and check if they do not coincide with obstacles.
Moreover, given the fact that paths are typically built in-
crementally, one can impose differential constraints on the
samples to generate paths that are dynamically feasible.

Rapidly-exploring random trees (RRT) [1] and its variants
(see, e.g. [2]) are sampling-based motion planning algorithms
are simple to implement and are probabilistically complete
[3]. RRTs aim to rapidly explore the configuration space
and build a tree rooted at a starting configuration to find a
path to a goal region. Karaman and Frazzoli [4] proposed
RRT∗, where each newly added vertex to the RRT tree
is rewired with a possible better connection, for which
the cost to reach the rewired vertex from the root vertex
is reduced. This approach makes the path asymptotically
optimal [5]. Given its success in motion planning, in the past
decade, there has been a large number of research efforts to
improve RRT∗ sampling. Examples include informed-RRT∗

[6], which constructs an informed elliptical sampling region
that shrinks as the length of the path decreases, which leads

This work was partially supported by the NSF under grant IIS-2024606,
by the MIT / Lincoln Lab, and by the ONR under MURI N00014-19-1-
2571.

The authors are with the Division of System Engineering, Boston
University, Boston, MA 02215, USA ahmadgh@bu.edu,
cbelta@bu.edu, tron@bu.edu

to faster convergence to the optimal path. Kobilarov [7]
introduced CE-RRT∗, which uses the cross-entropy method
(CEM) [8] for importance sampling (IS).

The work in [9] imposes differential constraints on the
vertices of RRT∗ to produce feasible paths according to
the robot kinodynamics. Recently, Wu et al. [10] developed
rapidly-exploring random reachable set trees (R3T), which
constrain the expansion of RRT to be in the vertices’ ap-
proximated reachable sets, which helps with finding dynam-
ically feasible, and collision-free, paths using fewer samples.
Recent developments in controlling safety-critical systems
using control barrier functions (CBF) ([11] and references
therein), are exploited by Yang et al. in CBF-RRT [12].
The authors model a safe set that contains the collision-
free configurations, which is then used with a CBF-based
controller to generate inputs that expand the tree in the safe
set. In [13], CBF-RRT is used to generate safe trajectories
to navigate in environments with moving humans.

In this work, we develop two variants of RRT∗ in which
we leverage the optimality of RRT∗ with safety guarantees
provided by local planners in which we use CBFs. Based
on our knowledge, this is the first work to utilize safety-
based local planners with optimal sampling-based motion
planner. The contributions of the proposed work are as
follows. First, CBF-RRT∗ (§IV), an RRT∗ variant that is
equipped with two local motion planners that generate CBF-
based control inputs for expanding the RRT∗ tree (§III-A.2),
and for steering to desired configurations when rewiring
a vertex (§III-A.1). Using these local planners, we avoid
the collision-checking procedure, where the trajectories are
guaranteed to be in a safety set. Second, Adap-CBF-RRT∗

(§V), a variant in which we exploit the exploration tree
to focus the sampling in promising regions. To do so, we
incorporate the algorithm with adaptive sampling procedure
using the cross-entropy method (CEM) with nonparametric
density estimation (§V-A). The proposed work is validated
through simulation example in §VI.

II. PROBLEM FORMULATION AND APPROACH

Consider a robot with a configuration q ∈ Q ⊂ Rd, where
Q is the configuration space and Rd is the d-dimensional
Euclidean space. Let the robot dynamics be modeled as the
following nonlinear affine control dynamics,

q̇ = f(q) + g(q)u, (1)

where u ∈ U ⊂ Rm is the control input, U is the allowable
control set, and f : Rd → Rd and g : Rd → Rd×m are
assumed to be locally Lipschitz functions.

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 4513

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e

on
 D

ec
is

io
n

an
d

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
32

78

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

Obstacle i, i = 1, . . . , n, is denoted by Oi ⊂ Q 1. The
obstacle-free configuration space, which we denote it as the

safe configuration space, is given by Qsafe = Q \
n⋃

i=1

Oi.

Following [7], for a time horizon T ∈ R>0, let φ : [0, T]×
R>0 → U ×Q, φ(t, T) := (u(t), q(t)) be pairs of a control
input u(t) ∈ U , ∀t ∈ [0, T] and the produced trajectory
q(t) ∈ Q that satisfies system (1).

For a given starting configuration qstart ∈ Qsafe and a
goal region Qgoal ⊂ Qsafe, we define the set G as the set of
control inputs and the produced trajectory pairs, for which
the trajectory to be inQsafe, starts at qstart and fall inQgoal.
I.e., G := {φ(t, T) | q(0) = qstart, qT ∈ Qgoal, q(t) ∈
Qsafe, (1),∀t ∈ [0, T], T ∈ R>0}. The cost functional of
φ ∈ G is defined as J(φ) :=

∫ T

0
C(φ(t, T))dt, where C :

U ×Q → R>0 is the running cost.
Problem 2.1 (Optimal Motion Planning Problem (OMPP)):

Given a robot with system dynamics (1), a starting
configuration qstart ∈ Qsafe, a goal region Qgoal ⊂ Qsafe,
and the obstacle-free configuration space Qsafe, find φ∗ ∈ G
that minimizes J(φ), i.e., φ∗ = argmin

φ∈G, T∈R>0

J(φ).

OMPP imposes a subsequent control problem of generating
control inputs that guarantee that the produced system trajec-
tory to be in Qsafe. Moreover, OMPP is PSPACE-hard [14].
Kinodynamic RRT∗ [9] is used to approximate a solution for
the problem, where a tree is built incrementally starting at
qstart and expanded towards Qgoal while satisfying differ-
ential constraints on the expanded vertices. φ∗ is approached
asymptotically by rewiring the vertices of the tree.

Approach We develop an RRT∗ variant, in which we
use local motion planners that generate control inputs which
render the safe set Qsafe forward invariant in system (1).
That is, under such control inputs, for an initial state that lies
in Qsafe, the system trajectory will lie in Qsafe for all future
times. Furthermore, we improve the sampling performance
by biasing the sampling density function (SDF) towards
generating more samples in promising regions of Qsafe.

III. LOCAL MOTION PLANNING

In this section, we develop local motion planners that we
use with RRT∗ (§IV). In such planners, we use controller
syntheses in which CLFs and higher order CBFs (HOCBFs)
are utilized to generate control inputs to steer system (1) to
a desired equilibrium state or to steer towards an exploratory
sample while avoiding obstacles.

1) Control Lyapunov Functions: Consider steering the
state of (1) to an equilibrium state qeq (i.e. f(qeq) = 0).

Definition 3.1 (CLF [15]): Let V (q) : Q → R be con-
tinuously differentiable function. V (q) is said to be CLF if
there exist c1, c2, c3 > 0, such that

c1||q − qeq||2 ≤ V (q) ≤ c2||q − qeq||2,
V̇ (q) = £fV (q) +£gV (q)u,

inf
u∈U

[V̇ (q) + c3V (q)] ≤ 0, ∀q ∈ Q.
(2)

1We present the obstacles in the workspace directly as their image in Q,
i.e., robot’s configurations that cause it to collide with obstacles.

where £fV (q) = ∂V (q)
∂q f(q), and £gV (q) = ∂V (q)

∂q g(q).
Theorem 3.1 ([11]): Let V (q) be a CLF, then any Lip-

schitz continuous control input u ∈ {u ∈ U|£fV (q) +
£gV (q)u + c3V (q) ≤ 0} asymptotically stabilizes (1) to
qeq .

2) Higher Order Control Barrier Functions: Consider
system (1) and a differentiable function h(q) : Q → R
with relative degree ρ > 0, where ρ reads as the number
of times that we need to differentiate h(q) until the control
input u appears. Let a series of functions ψj(.) : Q → R,
j = 0, 1, ..., ρ, be defined as follows. ψ0 := h(q), and for
j ≥ 1, ψj := ψ̇j−1 + αj(ψj−1), where αj : Q → R is a
class K function [16].

Having defined ψj , let the sets Cj , j = 1, . . . , ρ, be defined
by Cj := {q ∈ Q |ψj−1(q) ≥ 0}.

Definition 3.2 (HOCBF [16]): Given ψ0, ...ψρ with the
corresponding series of sets C1, ..., Cρ, the differentiable
function h(q) is said to be HOCBF of relative degree ρ for
system (1), if there are α1, ..., αρ class K functions such
that ∀ q ∈ C1 ∩ C2 ∩ ... ∩ Cρ,

£ρ
fh(q) +£g£

ρ−1
f h(q)u+

∂ρh(q)

∂tρ
+O(h(q))+

αρ (ψρ−1(q)) ≥ 0
(3)

where O(h(q)) is the partial derivatives with respect to t
with relative degree ≤ ρ−1 and the remaining Lie derivatives
along f [16].

Theorem 3.2 ([16]): Let h(q) be a HOCBF, then any
Lipschitz continuous control input u, such that, u ∈
{u ∈ U |£ρ

fh(q) + £g£
ρ−1
f h(q)u + ∂ρh(q)

∂tρ + O(h(q)) +
αρ (ψρ−1(q)) ≥ 0}, renders the set C1∩ C2 ∩ ... ∩Cρ forward
invariant in (1).

A. Formulation of Local Motion Planning

The work in [11] uses CLF-CBF-QP controller synthesis,
where the control inputs are generated in a discrete-time
manner. At each time step t, a control input is computed
by solving a quadratic program (QP) subject to CLF and
CBF constraints, and then applied for ∆t time to evolve
system (1). The CLF constraint certifies liveness of the
trajectory, that is the trajectory is progressing towards a
desired equilibrium state, qf . The CBF constraints certify
the safety of the trajectory, which reads that Qsafe is
forward invariant in system (1). Let V (q(t)) be a CLF
as defined in Definition 3.1 and h(q(t)) be a HOCBF as
defined in Definition 3.2, we reformulate the CLF-CBF-QP
controller synthesis by constraining it with CLF and HOCBF
constraints; the corresponding QP is given by:

uLP (t) = argmin
u(t)∈U

||u(t)− uref (t)||2 + δ2

s.t. £fV (q(t)) +£gV (q(t))u(t) + c3V (q(t)) ≤ δ
£ρ

fh(q(t)) +£g£
ρ−1
f h(q(t))u(t)+

∂ρh(q(t))
∂tρ +O(h(q(t))) + αρ (ψρ−1(q(t))) ≥ 0

(4)
where δ is a slack variable to ensure the feasibility of
the HOCBF constraint; uref (t) is a reference control input

4514

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

which could be assigned if it is desirable to track reference
control inputs while certifying safety and liveness; and
uLP (t) denotes the local planner control input at time t.

Remark 3.1 ([16]): CBF [11] is HOCBF with ρ = 1. In
this paper, we use HOCBFs instead of CBFs to make the
proposed algorithm amenable for planning for systems with
relative degree ρ ≥ 1.

At each iteration of kinodynamic RRT∗, a uniform sample
qs ∈ Qsafe is generated; the configuration of its nearest
vertex is used as an initial condition in steering the system
to a configuration in the direction of qs. If such configuration
is not reachable, or the trajectory to reach it is in collision
with an obstacle, the sampling iteration is rejected. In [10],
[17], the reachable set of each vertex is approximated and
is used to guide the expansion of the tree. In this work,
however, by using a variant of the synthesis (4), all explo-
ration samples are accepted, see §III-A.2. The asymptotic
optimality (AO) of RRT∗ is ensured by rewiring the vertices
of the exploratory tree. For this phase, we propose to use the
synthesis (4) to generate control inputs that certify steering
to exact desired configurations while certifying the safety of
the system trajectory, see §III-A.1.

1) Exact Local Motion Planning: We set uref = 0 in (4),
and given qinit and qf , let V (q) be a CLF with qeq = qf .
For Qsafe, assume that we are given a HOCBF h(q). Using
the this setting of (4), discrete control inputs are generated
to steer from qinit to qf . In the planner implementation,
we assign the QP (4) to be solved with at most T times to
generate control inputs to steer (1) to qf . Given that the CLF
constraint is relaxed with the slack variable δ, the planner
might fail to steer to qf and will stuck in local solution. In
such scenario, the local motion plan will be disregarded. The
time horizon of the produced trajectory is determined by the
number of instances the QP is solved times ∆t.

2) Exploratory Local Motion Planning: In this setting the
goal is to steer form qinit ∈ Qsafe to an exploratory con-
figuration qf ∈ Q. We use a relaxed variant of (4), denoted
as CBF-QP, in which HOCBF are the only constraints. As
it will become clear in shortly, the computed control inputs
will generate safe trajectory to approach qf . Such steering
helps in exploring Q while using RRT ∗, see §IV.

Assumption 3.1: In the absence of obstacles (i.e.,
Qsafe = Q), assume that for any qf ∈ Q that is reachable
from any configuration qinit ∈ Q, there is an avilable
sequence of control inputs uOL(t), t ∈ [0, TOL] to steer
system (1) from q(0) = qinit to q(TOL) = qf .

In the following, we detail the setting of (4) to implement
the CBF-QP. Based on Assumption 3.1, let the control inputs
uOL(t), t ∈ [0, TOL] be computed offline in the absence of
obstacles to steer to qf . The quadratic cost is set as ||u(t)−
uOL(t)||2. For t ∈ [0, TOL], uLP (t) is computed by solving
the aforementioned settings of QP (4) and is applied for ∆t
time duration to evolve system (1).

The utilities of using such exploratory and exact control
inputs are: first, mitigate the conventional collision-checking
procedure, which is computationally expensive, and second,
any sample in Q is accepted for exploration, where the

synthesis certify that the produced trajectory is in Qsafe,
thus, the number of samples that are used to yield an
acceptable solution is reduced (see Fig. 2).

Example 3.1: Consider a unicycle robot with configura-
tion q = [x, y, θ]⊤ ∈ R2 × [−π, π], where (x, y) ∈ R2 and
θ ∈ [−π, π] are the robot position and heading, respectively,
with respect to the fixed frame O − x0y0 which is fixed
at the origin. The elements of q evolve with respect to the
following dynamics: ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω,
where ω ∈ [ω, ω], ω, ω ∈ R, and v ∈ [v, v], v, v ∈ R
are the angular and translational velocity inputs with their
corresponding upper and lower bounds, respectively. We
assume the obstacles are modeled as circles or ellipsoids.

The HOCBF of ellipsoid i is defined using the following:

hi(q(t)) = [x(t)− xi, y(t)− yi]E
[
x(t)− xi
y(t)− yi,

]
− 1 (5)

where (xi, yi) ∈ R2 is the center of the obstacle with respect
to O − x0y0; and the matrix E is given by

E =

[
(
cos(ϕ)

ã)2 +(
sin(ϕ)

b̃
)2 − sin(ϕ) cos(ϕ)((1

b̃
)2−(1

ã)2)
− sin(ϕ) cos(ϕ)((1

b̃
)2−(1

ã)2) (
sin(ϕ)

ã)2 +(
cos(ϕ)

b̃
)2

]
with ã = a + rr and ˜b = b+ rr being safety distances of
the center of the robot along the major and minor axes,
respectively; a, b, rr ∈ R are the lengths of the major and
minor axes of the ellipsoid, and the radius of the robot,
respectively, and ϕ ∈ [−π, π] is the orientation of the
obstacle with respect to O − x0y0. If a = b, then Eq. (5)
degenerates to a circle.

Given an initial configuration (x0, y0, θ0), we want to gen-
erate motion plans for the following two cases: (i) steering
the robot to (xd, yd, θd) using the exact local motion planner
(§III-A.1), and (ii) steering towards (xd, yd, θd) using the
exploratory motion planner (§III-A.2).

Exact local motion planner formulation. Following the
approach in [18], we consider controlling a look-ahead point
that is d distance from the center of the wheels axis and
along the sagittal axis of unicycle robot. The dynamics of
a look-ahead point, (xl, yl) ∈ R2 is given by the integrator
dynamics,[

ẋl
ẏl

]
=

[
u1
u2

]
=

[
cos θ −d sin θ
sin θ d cos θ

] [
v
ω

]
. (6)

where u1, u2 ∈ R. Let V := ||[xl − (xd + d cos θ), yl −
(yd+d sin θ)]

⊤||2 be a CLF with qeq = (xd+d cos θ), yd+
d sin θ)). For each obstacle we define a HOCBF (5) while
substituting the look-ahead state variables xl(t) and yl(t)
instead of x(t) and y(t), respectively. The CLF and HOCBF
are both with relative degree ρ = 1 with respect to the
control u = [u1, u2]

⊤. We compute the HOCBF constraint
using inequality (3) where ψ0(q) = h(q) and we assign
α1(ψ0(q)) = h(q); in the CLF constraint in (4) c3 is set to
1. The control inputs are computed by solving the QP (4) at
each time step, then they could be mapped to the linear and
angular velocities v, u via the static map[

v
ω

]
=

[
cos θ −d sin θ
sin θ d cos θ

]−1 [
u1
u2

]
, (7)

4515

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

where the matrix in (7) is always invertible unless d = 0. In
Fig. 1.c we show the generated trajectory of the look-ahead
state using the exact local motion planner control inputs.

Exploratory local motion planner formulation. In the
exploratory CBF-QP (see §III-A.2) we compute uOL as
follows. (xl,0, yl,0) = (x0 + d cos θ0, y0 + d sin θ0) and
(xl,d, yl,d) = (xd + d cos θd, yd + d sin θd) are the initial
and desired configurations of the look ahead point, respec-
tively, given the integrator dynamics (6) we define uOL as
piecewise linear controls that represents the line between
(xl,0, yl,0) and (xl,d, yl,d). In Fig. 1.b we show the produced
trajectory of the look-ahead state using the exploratory local
motion planner control input, where the trajectory is deviated
from following uOL due to the presence of obstacles.

IV. CBF-RRT∗

In this section we detail the formulation of the proposed
algorithm, CBF-RRT∗, which approximates a solution of the
OMPP 2.1. The exploratory and exact local motion planners
(see §III-A.2, and §III-A.1) are used to expand the RRT tree
and to rewire the tree, respectively. We show that, under
some assumptions, the probabilistic completeness of RRT∗

is preserved using such local motion planning.

A. The Algorithm

Considering tree T = (V, E) on Qsafe, with vertices set
V ⊂ Qsafe and edges E = V × V , we define the following
primitive functions that are used in the proposed work: (i)
Sample(G,adapFlag) : G × {True, False} → Q,,
given a set of φ ∈ G and adapFlag, the function returns
a sample in Q. If adapFlag = False, the function
returns a uniform sample from Q, otherwise the SDF will
be adapted (see §V) and will be used to generate a sample
in Q. (ii) Comp uOL(qs, v) : Qsafe×V → U , given sample
qs, vertex v and Assumption 3.1, the function computes
the control inputs uOL(t) ∈ U , t ∈ [0, TOL] and a
time horizon TOL to steer from vertex v towards qs. (iii)
ExpLPlng(v,uOL, TOL) : V ×U ×R>0 → V , given vertex
v and control inputs uOL, the function steers system (1) form
v using the exploratory CBF-QP local motion planner (see
§III-A.2) with uref = uOL, and then establishes a vertex,
vnew, at the last configuration of the produced trajectory,
which, as detailed in §III, is certified to be in Qsafe. (iv)
ExtLPlng(v1, v2) : V × V → V , given v1 and v2, the
function steers from v1 to v2 using the exact CLF-CBF-QP
local motion planner (see §III-A.1).

CBF-RRT∗ is initialized with a root vertex, vstart, at
qstart (Line 2 in Alg. 1). Exploration is done by sampling
qs ∈ Q, which is used guide the expansion of its nearest
vertex, vnearest (Line 6 - Line 8). We compute uOL(t), t ∈
[0, TOL] that, if ||qs−vnearest < η||, steers (1) from vnearest
to qs, otherwise, steers (1) to qnew (which is toward qs)
such that ||qnew − vnearest = η||, where η ∈ RR>0(Line
7). η := ε

4 + µ + 2ι, where ε is a parameter imposed by
the robot environment, µ is a parameter measured by tuning
the HOCBF, and 0 < ι < ε

4 − µ (see the completeness
analysis §IV-B in [19]). The computed uOL is used with the

Algorithm 1: Adap-CBF-RRT∗

1 Input: qstart; Qgoal; Qsafe; N , el, and ∆t
2 Initialization: vstart = (qinit, index = 0), i = 1, V = {vinit},
E = ∅, G = ∅, GoalReached = False, adapFlag = True,
optSDFflag = False, and r = η

3 T ← (V, E)
4 while i < N do
5 qs ← Sample(G, adapFlag)
6 vnearest ← Nearest(qs)
7 uOL = Comp uOL(qs, vnearest)
8 V ← V ∪ {vnew ← ExpLPlng(vnearest,uOL)}
9 r = min{λ(log(|V|)/|V|)1/(d+1), η}

10 Vnear ← Near(T , r, vnew)
11 foreach vnear ∈ Vnear do
12 v′ ← ExtLPlng(vnear, vnew)
13 c′ = vnear.cToCome+ Cost(v′, vnear)
14 if c′ < cmin then
15 v′

new ← v′; vmin ← vnear; cmin ← c′

16 T ← AddChild(T , vmin, vnew)
17 foreach vnear ∈ Vnear do
18 v′ ← ExtLPlng(vnew, vnear)
19 if (vnew.cToCome+ Cost(vnew, v′) < vnear.cToCome)

then
20 T ← Reconnect(vnew, vnear, T)
21 UpcToCome(vnear, cToCome(vnew + Cost(v′)))

22 T , G ← extToGoal(T , vnew, adapFlag); i← i + 1

23 return T

exploratory local motion planner ExpLPlng to extend to
vnew (Line 8).

The ideal case of the exploration phase is to steer to qnew

such that ||vnearest − qnew|| = η and in the direction of
sample qs, however, if qnew lies within or close to an ob-
stacle, the produced trajectory will deviate from reaching the
desired configuration. Such deviation, however, is acceptable
under some assumptions to preserve the completeness of the
algorithm, see Theorem 4.1. Moreover, since the trajectories
are guaranteed to be safe, no collision check is needed, which
reduces the computational burden of the algorithm.

The rewiring procedure (Line 11 - Line 21) is similar to
RRT∗ [4]. Rewiring v1 ∈ V to a vertex that is reachable
from, v2 ∈ V , is accomplished through the exact local motion
planner (§III-A.1), see Line 12 and Line 18.

Remark 4.1: Theorem 1 in [5] concludes that the AO of
a path generated using Kinodynamic RRT∗, is guaranteed
if, for v ∈ V , the vertices that lie within a d-dimensional
hypersphere of radius λ(log(|V|)/|V|)1/(d+1) are considered
for searching for better parent vertex for v, where λ ∈ R>0

and |V| is the number of vertices of tree T . The rewiring
procedure of CBF-RRT∗ is assigned as such (Line 9 in Alg.
1), however, having used local motion planners based on
CBF-based synthesis, the AO of CBF-RRT∗ still requires
further investigation.

B. Probabilistic Completeness of the Algorithm

In the following, the probabilistic completeness of CBF-
RRT∗ is established.

First, We formulate some definitions that are needed for
the analysis. For any φ ∈ G, let φq := {projQ(φ(t, T))|φ ∈
G, t ∈ [0, T]} and φu := {projU (φ(t, T))|φ ∈ G, t ∈
[0, T]}, where projU : U×Q → U and projQ : U×Q → Q
are the projection of the control inputs and the produced

4516

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: qs ← Sample(G, T ,m)

1 u ∼ Uniform(0, 1)
2 if u ≤ 0.5 ∧ G ̸= ∅ then
3 if optSDFflag then
4 X ∼ ĝ∗(q) return (q)
5 else
6 if mod(|G|, nv) = 0 then
7 E← Quantile(G, ϱ) ▷ Assign the elite set
8 ĝ(q)← CE Estimate (E,m) ▷ Compute PDF of E
9 return q ∼ ĝ(q)

10 else
11 return q ∼ Uniform(Q)

12 else
13 return q ∼ Uniform(Q)

trajectory of φ, respectively, i.e., projU (φ(t, T)) = u(t)
and projQ(φ(t, T)) = q(t).

Following [4], we say that OMPP 2.1 is robustly feasible
with minimum clearance ε > 0, if there exist control inputs
φu which produce trajectory φq , and φ ∈ G, such that the
distance between any configuration q ∈ φq and any obstacle
configuration qo ∈ Q \ Qsafe is at least ε/2.

Theorem 4.1: CBF-RRT∗ is probabilistically complete.
Proof: See [19], in which we detail the proof.

V. ADAPTIVE SAMPLING FOR CBF-RRT∗

We leverage CBF-RRT∗ with an adaptive sampling pro-
cedure, in which we use CEM to focus sampling around the
optimal trajectory φ∗q . The motivation behind this approach
is to approximate the solution of the OMPP 2.1 with a fewer
number of samples by focusing the sampling in promising
regions of Qsafe.

A. Adaptive Sampling using the cross-entropy Method

CEM [8] has been used to estimate the probability of rare
events using IS. CEM is a multi-stage stochastic optimization
algorithm that iterates upon two steps: first, it generates
samples from a current SDF and computes the cost of each
sample; second, it chooses an elite subset of the generated
samples for which their cost is below some threshold; finally,
the elite subset is used to estimate a probability density
function (PDF) as if they were drown as i.i.d samples. The
estimated PDF will be used as the SDF for the next iteration.
The algorithm terminate when it converges to a limiting PDF.
It has been proven in [20] that CEM with parametric SDF
converges to a limiting distribution.

Going into more technical details, let a random variable
Q : Ω→ Q be defined over the probability space (Ω,F , P),
where Ω is the sample space,Q is the range space, F denotes
the σ-algebra subset of Q, and P is the probability measure
over F . CEM aims to find rare events with probability
P (J (q) ≤ γ), where γ ∈ R>0 is the optimal cost and
J : Q → R>0 is the cost of a sampled solution q. Com-
puting P (J (q) ≤ γ) is equivalent to find the expectation
E[I({J (q) < γ})], where I(.) is the indicator function.

The work in [8] proposes to evaluate the expectation
E[I({J (q) < γ})] using the following estimator: ℓ̂ =

1
N

N∑
i=1

I({J (q) < γ}) f(qi)
g(qi)

, where f(qi) is the PDF of a

sampled solution, qi, and g(qi) is an underlying IS PDF.
Choosing g∗(q) = I({J (q) < γ})f(q)/ℓ̂ will yield the
best estimate of ℓ̂. However, this solution is hypothetical,
since it involves ℓ̂. Instead, g∗(q) is computed in a multi-
stage manner, where at each stage the elite subset is used
to estimate g(q) until the CE between g(q)∗ and g(q) is
minimized. The CE is related to the Kullback-Leibler diver-
gence, DKL(g

∗(q)||g(q)) =
∫
Q g∗(q) ln(g∗(q)/g(q)) dq,

and minimizing it implies minimizing the CE.

B. Adap-CBF-RRT∗

In the context of CBF-RRT∗, one could ask the following
question: what is the probability of sampling configurations
that lie on the OMPP solution φ∗q? It can be easily seen that
it is an extremely small probability. Kobalirov [7] proposes
to use CEM to estimate the probability of generating samples
that lie on φ∗q using a mixture of Gaussian models (GMM)
for the proposal distribution g(q). However, it is hard to
know, prior to planning, how promising regions of Q are
distributed in order to choose a suitable number of GMM.

The challenge above has motivated us to use a non-
parametric density estimate, namely the weighted Gaussian
Kernel Density Estimate (WGKDE), instead of a GMM.

To improve the SDF of CBF-RRT∗ using CEM, we need
to generate a population of approximated solutions of the
OMPP 2.1. extToGoal procedure (Line 22 in Alg. 1)
attempts to steer system (1) from vnew to qg ∈ Qgoal

using ExpLPlng. If the final configuration of the produced
trajectory lies in Qgoal, a vertex, vg , at that configuration, is
created and added to V . Accordingly, the generated control
inputs and system trajectory, φ, is added to G.

Adapting the SDF of CBF-RRT∗ is detailed in Alg. 2.
Consider an iteration of CBF-RRT∗ (Alg. 1) with G ̸= ∅, the
elite set, E, is assigned by choosing the trajectories of all φ ∈
G with J(φ) ≤ γ, i.e E = {φq | (φu, φq) = φ ∈ G; J(φ) ≤
γ}. We pick γ as the ϱth percentile cost of φ ∈ G; it is
advised to assign ϱ ∈ [0.01, 0.1] [8]. Since the SDF samples
in Q, we will use a sparse set of configurations of the elite
trajectories (E) to estimate a PDF that will be used as an SDF
for the next iteration. Let d elite be a set of pairs of e
configurations of each φq ∈ E with cost of the corresponding
elite trajectory, i.e., d elite(E, e) = {(qi,J (qi))|i ∈
{1, . . . ,m}, qi ∈ φq, ∀φq ∈ E,J (qi) = J(φ)}. The
WGKDE of the discretized elite trajectories is computed
by: ĝ(q) =

∑
(qi,J (qi))∈d elite(E,m)

w̃i K(q), where the

normalized weight w̃i and the GK function K(q) are com-
puted, respectively, by: w̃i = 1− J (qi)∑

(qj ,J (qj))∈d elite(E,m)

(J (qj))

and Ki(q) = 1√
2πσ

exp
(
−||q−qi||2

2σ2

)
. The procedure

CE Estimate (E,m) (Line 8 in Alg. 2) performs the
WGKDE from the elite trajectories and checks if the DKL

between the current estimate and the previous estimate is
bellow a certain threshold and update optSDFflag accord-
ingly. Finally, the algorithm converges to a limiting PDF
(where in this case optSDFflag is set to True).

4517

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. (a) Trajectories generated using CBF-RRT (green path), CBF-RRT∗

(magenta path), Adap-CBF-RRT∗ (blue path), and CLF-CBF-QP (magenta
triangles path); (b) trajectories generated using CBF-QP exploratory motion
planner, and (c) trajectories CBF-CLF-QP exact motion planner.

VI. SIMULATION EXAMPLE

We consider generating motion plans using CBF-RRT,
RRT∗, CBF-RRT∗, Adap-CBF-RRT∗, and the CLF-CBF-
QP-based exact motion planner for the unicycle drive robot
of Example 3.1. The generated paths are depicted in Fig.
1, where the Adap-CBF-RRT∗ (shown in solid blue path)
appears to be the smoothest path because the algorithm keeps
the extensions of the vertices to the goal as part of the tree.
Even though keeping such extensions requires additional
memory, they help to produce acceptable paths with fewer
vertices, see Fig. 2.

Fig. 2 shows the evolution of the path length with respect
to the number of vertices. For 20 runs of Adap-CBF-RRT∗

the algorithm needed, on average, 392 vertices to converge to
a limiting SDF, which leads to more efficient refinement of
the path, see Fig. 2. On the other hand, the other algorithms
were able to find a path after the 200th vertex.

−5 0 5 10 15 20

x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Initial State

Goal State

−5 0 5 10 15 20x

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Initial State

Goal State

0 1000 2000 3000 4000 5000

Number of vertexes

16

18

20

22

24

P
at

h
le

n
gt

h

CBF-RRT

RRT∗

CBF-RRT∗

Adaptive CBF-RRT∗

Fig. 2. Adap-CBF-RRT∗ tree and the corresponding φq (shown in green),
at the 1st (left fig.) and 4th (middle fig.) iterations of adapting the SDF
(depicted using level sets), respectively. The average path length (right fig.)
of 20 runs of RRT∗, CBF-RRT, CBF-RRT∗, and Adap-CBF-RRT∗.

VII. CONCLUSION AND FUTURE WORK

Two variants of RRT∗, (Adaptive) CBF-RRT∗, are in-
troduced to approximate a solution for the optimal motion
planning problem. Inspired by CBF-RRT [12], we utilized
the recent advances in controlling safety-critical systems via
CBFs to generate feasible motion plans that are guaranteed
to be collision-free. We prove, that CBF-RRT∗ is proba-
bilistically complete. Furthermore, and for efficient explo-
ration, we equip CBF-RRT∗ with an IS procedure, which
is inspired by CE-RRT∗ [7], and uses CEM algorithm with
WGKDE to estimate IS density functions. The procedure
adapts the SDF of CBF-RRT∗ to focus the sampling around
the optimal path. The proposed variants are demonstrated
through numerical simulation, and they have been shown
to outperform analogous algorithms in terms of number of
iterations. In future work, we consider using more efficient

ways of utilizing CBF-based local planner, and we consider
planning for robots other than unicycles.

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” in Ames, IA, USA, 1998.

[2] G. Yang, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-
based motion planning via control barrier functions,” ICACR 2019:
Proceedings of the 2019 3rd International Conference on Automation,
Control and Robots, pp. 22–29, 2019.

[3] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin,
“Probabilistic completeness of rrt for geometric and kinodynamic
planning with forward propagation,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. x–xvi, 2019.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[5] K. Solovey, L. Janson, E. Schmerling, E. Frazzoli, and M. Pavone,
“Revisiting the asymptotic optimality of rrt,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2020, pp.
2189–2195.

[6] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

[7] M. Kobilarov, “Cross-entropy motion planning,” International Journal
of Robotics Research, vol. 31, no. 7, pp. 855–871, 2012.

[8] R. Rubinstein, “The Cross-Entropy Method for Combinatorial and
Continuous Optimization,” Methodology And Computing In Applied
Probability, vol. 1, no. 2, pp. 127–190, 1999.

[9] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” Proceedings of the IEEE
Conference on Decision and Control, pp. 7681–7687, 2010.

[10] A. Wu, S. Sadraddini, and R. Tedrake, “R3T: Rapidly-exploring
Random Reachable Set Tree for Optimal Kinodynamic Planning
of Nonlinear Hybrid Systems,” IEEE International Conference on
Robotics and Automation (ICRA), pp. 4245–4251, 2020.

[11] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
arXiv, pp. 3420–3431, 2019.

[12] G. Yang, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-
based motion planning via control barrier functions,” in Proceedings
of the 2019 3rd International Conference on Automation, Control and
Robots, 2019, pp. 22–29.

[13] K. Majd, S. Yaghoubi, T. Yamaguchi, B. Hoxha, D. Prokhorov,
and G. Fainekos, “Safe navigation in human occupied environments
using sampling and control barrier functions,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2021, pp. 5794–5800.

[14] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
20th Annual Symposium on Foundations of Computer Science (sfcs
1979), pp. 421–427, 1979.

[15] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 7,
no. PART 1, pp. 462–467, 2007.

[16] W. Xiao and C. Belta, “Control Barrier Functions for Systems with
High Relative Degree,” Proceedings of the IEEE Conference on
Decision and Control, pp. 474–479, 2019.

[17] A. Weiss, C. Danielson, K. Berntorp, I. Kolmanovsky, and
S. Di Cairano, “Motion planning with invariant set trees,” in 2017
IEEE Conference on Control Technology and Applications (CCTA),
2017, pp. 1625–1630.

[18] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control of
multirobot systems,” IEEE Control Systems Magazine, vol. 40, no. 1,
pp. 26–44, 2020.

[19] A. Ahmad, C. Belta, and R. Tron, “Adaptive sampling-based motion
planning with control barrier functions,” 2022. [Online]. Available:
https://arxiv.org/abs/2206.00795

[20] J. Hu, M. C. Fu, and S. I. Marcus, “A model reference adaptive search
method for global optimization,” Operations Research, vol. 55, no. 3,
pp. 549–568, 2007.

4518

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 03:35:53 UTC from IEEE Xplore. Restrictions apply.

