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Abstract—We consider the problem of generating con-
trol policies for a team of robots moving in a stochastic
environment. The team is required to achieve an optimal
surveillance mission, in which a certain “optimizing propo-
sition” needs to be satisfied infinitely often. In addition, a
correctness requirement expressed as a temporal logic for-
mula is imposed. By modeling the robots as game transition
systems and the environmental elements as Markov chains,
the problem reduces to finding an optimal control policy for
a Markov decision process, which also satisfies a temporal
logic specification. The existing approaches based on
dynamic programming are computationally intensive, thus
not feasible for large environments and/or large numbers of
robots. We propose an approximate dynamic programming
(ADP) framework to obtain suboptimal policies with reduced
computational complexity. Specifically, we choose a set of
basis functions to approximate the optimal costs and find
the best approximation through the least-squares method.
We also propose a simulation-based ADP approach to
further reduce the computational complexity by employing
low-dimensional calculations and simulation samples.

Index Terms—Approximate dynamic programming (ADP),
Markov decision process (MDP), multiagent system,
simulation-based method, temporal logic constraints.
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I. INTRODUCTION

T EMPORAL logics, such as linear temporal logic (LTL)
and computation tree logic, have been customarily used

in formal verification to specify correctness requirements for
computer programs and digital circuits [1]. In recent years, tem-
poral logics have also been used as rich and expressive spec-
ification languages for control systems [2], [3]. Most of the
existing results focus on finite systems with perfect state infor-
mation and specifications given in LTL or fragments of LTL. For
deterministic transition systems, control strategies from speci-
fications given as LTL formulas over a set of state labels can
be found through adaptations of off-the-shelf model checking
algorithms [1], [4]–[6]. If the system is nondeterministic, the
control problem with LTL specifications can be mapped to a
Rabin game [7] in general and to a Büchi [8] or GR(1) game
[9], [10] if the specifications are restricted to fragments of LTL.
For probabilistic systems, the problem reduces to finding a con-
trol policy that maximizes the probability of satisfying an LTL
formula [1], [11]–[13].

In many application areas, policies that maximize the satis-
faction probability are generally not unique, but rather belong
to a family of policies with the same “transient response” that
maximizes the probability of reaching a specific set of accepting
states [1], [12], [14]. To find an optimal policy that optimizes
the long-term behavior of the system after reaching the ac-
cepting states, one can consider combining the temporal logic
constraints with the optimality requirements. Such a problem
was first approached in [15] for a finite weighted determin-
istic transition system model. More complicated deterministic
models with locally sensed rewards in the states of the sys-
tem were studied in [16]–[18]. For probabilistic systems, the
problem was studied in our recent work [11], [19], [20] by
modeling the system as a Markov decision process (MDP) un-
der temporal logic constraints. In particular, we formulated an
MDP optimization problem in terms of minimizing the average
cost per cycle (ACPC), where cycles are defined by successive
satisfactions of the optimizing proposition. A product MDP is
constructed using an MDP capturing the environment uncertain-
ties and an automaton representing the LTL formulas. To solve
this problem, we first transformed this MDP minimizing the
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ACPC into another equivalent MDP in terms of minimizing the
average cost per stage (ACPS), which is a more standard MDP
problem that have been well studied in the literature [21], [22].
Using such equivalence, we successfully developed a dynamic
programming (DP) algorithm to synthesize an optimal control
policy for the MDP under LTL specification constraints [20].

In this paper, we consider the problem controlling a team of
robots to perform a persistent monitoring task in a stochastic
environment. The goal is to optimize the long-term behavior
of the robot team by minimizing the average time in between
consecutive executions of the persistence task. In addition, the
team should satisfy correctness requirements expressed as LTL
formulas. We only consider a centralized control problem for
this multiagent system, i.e., there is effectively a single deci-
sion maker knowing the global state information. By modeling
the robots as game transition systems and the environments as
Markov chains, the problem reduces to finding an optimal con-
trol policy for an MDP, which also satisfies a temporal logic
specification.

The algorithm presented in [20] can be computationally ex-
pensive for problems considered here, particularly for problems
with large environments/large numbers of robots/complex tem-
poral logic constraints. First, the constructed MDP can be quite
large since it is a product of an MDP capturing environment un-
certainties and an automaton representing LTL constraints. Sec-
ond, the transition probability matrix for the transformed MDP
needs to be calculated through the inversion of the product MDP
transition matrix [20]. Third, the computational requirements of
the DP algorithm can become quite prohibitive for large-size
MDPs [21].

Motivated by these limitations, the focus of this paper is
to develop efficient algorithms with reduced complexity that
provide suboptimal solutions to the MDP problem under LTL
constraints. We propose a new ADP framework to approxi-
mately solve the MDP considered in this paper. A preliminary
version of this paper appeared in conference proceedings [23].
In addition to [23], this paper includes a simulation-based ap-
proach together with a theoretical analysis of the convergence
results and more technical details. The main contribution of
the proposed ADP framework is twofold. First, instead of di-
rectly solving the transformed MDP, we transform the Bell-
man equation into an equivalent but simpler form. In such a
way, we eliminate the need to calculate the matrix inversions
for the transformed MDP. Then, we approximately solve the
transformed Bellman equation through the linear parameteri-
zation and least-squares method. In particular, a set of basis
functions is chosen based on the Krylov space method [24]
to approximate the solution of the transformed Bellman equa-
tion. The best approximation parameters are obtained minimiz-
ing the least-squares error [21], [25]. Second, to further reduce
the complexity of the proposed ADP approach, we propose a
simulation-based method to approximate the high-dimensional
matrix multiplications involved in obtaining the least-squares
parameters [26]–[29]. We also establish the convergence re-
sults and analyze the convergence rate of the simulation-based
algorithm.

II. PROBLEM FORMULATION

A. Problem Formulation

In this paper, we consider robot missions requiring infi-
nite executions, such as surveillance, persistent monitoring,
or pickup-delivery tasks. LTL offers a formal framework for
describing such missions [1]. A detailed description of the
syntax and semantics of LTL is beyond the scope of this
paper and can be found in [1]. Roughly speaking, an LTL
formula is built up from a set of atomic propositions Π, stan-
dard Boolean operators ¬ (negation), ∨ (disjunction), ∧ (con-
junction), ⇒ (implication), and temporal operators X (next),
U (until), F (eventually), G (always). The semantics of LTL
formulas are given over infinite words over 2Π . For exam-
ple, the specification “monitor infinitely many times, and come
back to base every time after monitoring” translates to formula
φ = GF Monitor ∧G(Monitor⇒ X Base).

In addition, we define a special task, called “optimizing task,”
which is required to be executed infinitely often. We want to
minimize the time in between two consecutive executions of
this task. Specifically, our specification is an LTL formula of the
form:

φ = ϕ ∧GFψ (1)

where ϕ can be any LTL formula over Π, and ψ is a boolean
combination of atomic propositions in Π. In other words, the
satisfaction of φ requires that ϕ is satisfied and ψ is satisfied
infinitely often. We useψ to capture the optimizing task andϕ to
specify other missions or rules that must be obeyed. Our goal is
to control a team of robots to accomplish a mission in the form
of (1) and also minimize the time in between two consecutive
executions of the optimizing task ψ.

We consider a team of robots moving in an environment con-
sisting of both static and stochastically changing elements. More
specifically, we consider an indoor-like environment consisting
of rooms (static) and doors (changing and stochastic), which is
inspired from [30]. To keep the discussion focused, we sum-
marize the detailed definitions of the environment, door, and
robot models as well as control policy in Appendix A. Given
the initial room locations of the robots {vink , k ∈ R}, the control
policies {πk , k ∈ R}, and the door behaviors, we can produce
a set of robot paths {Pk , k ∈ R}, where the next room vn+1

k

for robot k is determined by both control μnk and associated
door status at time instance Tn

k . Note that the resultant robot
paths {Pk , k ∈ R} and the corresponding team behaviors of
robots are not unique due to the stochasticity of the door be-
haviors. The probability that the set of team behaviors satisfies
an LTL formula is well defined since team behaviors can be
modeled as an MDP [5]. Now, we are ready to formulate the
problem:

Problem 1: Given a partitioned environment E [see (28)], a
team of robots modeled as game transition systems {Tk , k ∈ R}
[see (30)], a set of doors modeled as Markov Chains {Ci , i ∈ D}
[see (29)], and a specification in the form of an LTL for-
mula φ [see (1)], synthesize a set of robot control poli-
cies {πk , k ∈ R} for the team, such that the team behaviors
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generated by {πk , k ∈ R} satisfyφwith the maximum probabil-
ity and J({vink , k ∈ R}) = lim supn→∞E((Tψ

team(n+ 1)−
Tψ

team(n)) is minimized, where E(·) denotes the expectation
operator and Tψ

team(n) stands for the time instance when the
optimizing task ψ is executed for the nth time.

B. MDP Construction

We first define a composition of game transition systems
modeling robots and Markov chains capturing door behaviors
in form of an MDP (see Appendix A for definitions and nota-
tions). We start by equipping each robot k ∈ R with a clock,
which keeps track of the amount of time that the robot has been
traveling between robot states in the game transition system Tk .
We initiate all the clocks at zeros. Given two room states (v, v′)
such that v →k v

′, robot k can transit from v to v′ only when
the current clock value plus 1 is equal to the travel time of this
transition. When the clock value is smaller than the required
travel time, the robot is in an intermediate state, which means
that the robot has left v and is moving toward its target loca-
tion v′. Thus, for each robot, we insert a new state denoted by
v→v

′
, ∀(v, v′) ∈→E , such that the travel time between v and v′ is

greater than 1, to represent the intermediate room state between
v and v′.

In addition, the MDP also captures how the doors affect the
motion of the robotic team. If robot k is at v and plans to move
to v′, where ∃i ∈ D such that v →k q

v
i →k v

′ (i.e., v and v′

are separated by a door), the next state of robot k is decided by
the current status of door i. If door i is open, the robot starts
moving from state v to v′, and similarly, if gk (qvi , v

′) > 1, the
robot transits to the intermediate state v→v

′
. If the door is closed,

the robot stays at the same state. Therefore, the MDP can be seen
as a special product of the game transition systems Tk with the
set of clocks and the Markov Chains Ci . Formally, it is defined
as follows (An example for constructing MDP is illustrated in
Fig. 1.):

MG = (QG , ιG , UG , PG ,ΠG , LG , gG) (2)

where
1) QG ⊂ V

|R| ×
∏

i∈D Si ×N |R| is a set of states, where
V = V ×QD × Vmid denotes an extended set of room
states in V , which is comprised of the rooms, auxiliary
door states in QD that interact with doors, and interme-
diate states in Vmid that account for travel time between
rooms; in the following, we denote qG = (str , std , clk)
to represent a state in QG , where str = (v1 , . . . , v|R|) ∈
V|R| is the vector for extended set of states, std =
(s1 , . . . , s|D|) ∈

∏
i∈D Si is the vector for door states, and

clk = (clk1 , . . . , clk|R|) ∈ N |R| is the vector for clock
values.

2) ιG is an initial distribution such that ιG(str , std , clk) =∏
i∈D ιi(std [i]), if and only if str = (vin1 , . . . , v

in
|R|) and

clk = (0, 0, . . . , 0), and ιG(str , std , clk) = 0 otherwise.
3) UG is a set of controls and UG(str , std , clk) =

(u1 , . . . , u|R|), where uk represents the control applied
to robot k ∈ R at extended set of states (if vk ∈ V

Fig. 1. MDP example for two robots moving in a simple environ-
ment with one door. At the initial state ((v1 , v1 ), s1 , (0, 0)), when con-
trol (v2 , v2 ) is taken, both robots stay at v1 in the next states (i.e.,
((v1 , v1 ), s2 , (0, 0)) and ((v1 , v1 ), s3 , (0, 0))), because the status of door
i is c (i.e., door i “closed”) at state s1 . If input (v1 , v3 ) is chosen at
the initial state, the system can transit to state ((v1 , v1

→v 3 ), s3 , (0, 1))
with probability 0.6 since P1 (s1 , s3 ) = 0.6, g1 (v1 , v1 ) = 1 = clk1 + 1,
and g2 (v1 , v3 ) = 3 > clk2 + 1. At state ((v1 , v1

→v 3 ), s3 , (0, 1)), robot
1 can move toward v2 since the status of door is o at state s3 . Since
g1 (v1 , v2 ) = 2 > clk1 + 1, the next move of robot 1 is v1

→v 2 to state
((v→v 2

1 , v1
→v 3 ), s1 , (0, 2)).

is a room state, we can apply any available control
uk ∈ Uk (vk ) for room vk ; if vk ∈ Vmid is an intermediate
state, we only apply a dummy control uk = εk with no
actions).

4) PG : QG × UG ×QG → [0, 1] is a transition probability
function such that

PG((str , std , clk), (u1 , . . . , u|R|), (st′r , st′d , clk′))

=
∏

i∈D
Pi(std [i], st′d [i])

if and only if ∀k ∈ R, one of the following conditions
holds:

a) str [k] = v, st′r [k] = v′, M(v, uk ) = v′, clkk = 0,
clk′k = 1, and FD(v, v′) = ∅, gk (v, v′) = 1 or
FD(v, v′) = i, LCi (std [i]) = o, gk (qvi , v

′) = 1;
b) str [k] = st′r [k] = v, M(v, uk ) = v, clkk = 0,

clk′k = 0, and ∃v′, i such that FD(v, v′) = i,
LCi (std [i]) = c;

c) str [k] = v, st′r [k] = v→v
′
, M(v, uk ) = v→v

′
,

clkk = 0, clk′k = 1, and FD(v, v′) = ∅, gk (v, v′)
> 1 or FD(v, v′) = i, LCi (std [i]) = o, gk (qvi ,
v′) > 1;

d) str [k] = st′r [k] = v→v
′
, uk = εk , 1 ≤ clkk < gk

(v, v′)− 1, and clk′k = clkk + 1;
e) str [k] = v→v

′
, st′r [k] = v′, uk = εk , clk′k =

0, and FD(v, v′) = ∅, gk (v, v′) = clkk + 1 or
FD(v, v′) = i, gk (qvi , v

′) = clkk + 1
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and PG((str , std , clk), (u1 , . . . , u|R|), (st′r , st′d , clk
′))

= 0 otherwise.
5) ΠG = ∪k∈RΠk is a set of atomic propositions.
6) LG : QG → 2Π is a labeling function inherited from the

game transition system such that LG(str , std , clk) =
∪k∈R{Lk (str [k]) | str [k] ∈ V}.

7) gG : QG × UG → 1 is a function that assigns 1 to all tran-
sitions.

C. Optimization Problem

As shown in [19], it is sufficient to consider stationary control
policies for the constructed MDPMG . We denote μG : QG →
UG a stationary policy forMG . Clearly, any stationary policy μG
induces a stationary control policy μk : Qk ×

∏
i∈D Si → Uk

for each robot k ∈ R. We denote Mφ the set of all policies that
maximize the probability of satisfying the LTL formula φ. It has
been shown that there typically exist many (possibly an infinite
number of) policies in the set Mφ [12], [14]. Therefore, Prob-
lem 1 reduces to finding an optimal stationary policy such that
the probability of satisfying φ is maximized, and the expected
time in between visiting states satisfying ψ is minimized. To
formalize this, we let Qψ := {q ∈ QG | ψ ∈ LG(q)} denote the
set of states where the task ψ to be optimized is feasible. We say
that each visit of the MDP path to the setQψ completes a cycle.
Given an MDP sample path q0

Gq
1
G . . ., we use C(q0

G , . . . , q
N
G ) to

denote the cycle index up to stage N , which is defined as the
total number of cycles completed at stage N plus 1, i.e., the
cycle index starts with 1 at the initial state. We define an ACPC
under control policy μG for the MDPMG :

JμG = lim sup
N→∞

E

{∑N
n=0 gG(q

n
G , μG(q

n
G ))

C(q0
Gq

1
G . . . q

N
G )

}

. (3)

Then, Problem 1 reduces to the following ACPC minimization
problem.

Problem 2: Find a stationary policy μ�G that minimizes the
ACPC over all policies that maximize the probability of satis-
fying φ, i.e., μ∗G ∈ arg minμG∈Mφ

JμG , where JμG is defined in
(3).

The existing approaches to solve Problem 2 can be found
in [1], [11], and [20] and references therein. These approaches
generally consist of two major steps.

1) LTL synthesis step, in which a policy in Mφ is com-
puted. This step proceeds with constructing a product
MDP MP =MG ×Aφ , where MG is the constructed
MDP and Aφ is a Deterministic Rabin Automaton ac-
cepting all and only words satisfying φ [1]. Then, a set of
accepting maximum end components (AMECs) ofMP
is computed. In fact, an AMEC, denoted asM, is a com-
municating sub-MDP of the MDPMP . Note that there
may exist many AMECs. As stated in [1], a stationary
policy onMP that can reach an AMEC with the maxi-
mum probability induces at least one stationary policy on
MG that satisfies the LTL formula φ with the maximum
probability. Such a policy inMφ is in general not unique,
and it can be obtained by a variety of algorithms [31].

2) Optimizing step, in which an optimal policy in Mφ mini-
mizing (3) is obtained through DP. In this step, an optimal
stationary policy in Mφ minimizing the ACPC cost (3)
is computed for each obtained AMEC through the DP
algorithm. Note that the optimization is performed on the
AMECs instead of the product MDP MP . This is be-
cause given a policy in Mφ , the states of MP outside
AMECs are transient, while the states inside AMECs are
long term. Since we aim to optimize the long-term behav-
ior of the system, we only need to solve the optimization
problem within each AMEC.

Remark 1: The computational complexity of the LTL syn-
thesis step is bounded above by O(ñ · |QP|), where QP is the
set of states of MP and ñ denotes the number of transitions
in MP with nonzero probabilities [31]. Using the algorithm
proposed in [32], a lower upper bound O(ñ ·min(|QP|

2
3 ,
√
ñ))

can be achieved. On the other hand, in the worst-case scenario
(the number of states of an AMEC is equal to |QP|), the com-
putational time for solving DP in the optimizing step is of order
O(|QP|3), e.g., using policy iteration (PI) algorithm [20]. Thus,
the optimizing step is the computational bottleneck for solving
Problem 2. Therefore, in this paper, we focus on developing
algorithms to solve the ACPC optimization problem in a more
computationally efficient way.

III. APPROXIMATE DYNAMIC PROGRAMMING APPROACH

Instead of exactly solving MDPs, numerous methods have
been proposed to obtain approximate solutions with reduced
complexity, encompassed in a framework known as approxi-
mate dynamic programming (ADP) [21], [33], [34]. Approxi-
mate policy iteration (API) is the ADP extension of PI. In this
section, we present an ADP framework for approximate pol-
icy evaluation using simulation-based function approximations.
Based on the proposed ADP framework, we develop a computa-
tionally appealing algorithm to compute a suboptimal solution
to the MDP. We also establish the convergence results of the
proposed algorithm.

A. Reformulation of the ACPC Problem

Formally, we consider the following ACPC optimization
problem for the optimizing step of Problem 2:

Problem 3: Given an AMEC M = (Q, ι, U, P,Π, L, g) (a
communicating MDP found in LTL synthesis step), and an op-
timizing task ψ, find a stationary policy μ� that minimizes the
cost defined in (3).

In the following, the number of states for M is denoted as
n = |Q|. A stationary policy μ on M induces a finite-state
Markov chain, where its set of states is Q and the transition
probability from state q to q′ is P (q, μ(q), q′). We use Pμ to
denote the transition probability matrix:

Pμ(q, q′) := P (q, μ(q), q′). (4)

We use gμ to denote the cost per stage vector:

gμ(q) := g(q, μ(q)) (5)
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which captures the travel time from the state q to another state
by taking the control μ(q). A stationary policy μ is said to be
proper if, under μ, all initial states have positive probabilities to
reach the set Qψ in a finite number of stages.

It is shown in [19] that Problem 3 can be equivalently con-
verted to a traditional ACPS problem (see [21]). To achieve this,
another new MDP is constructed such that solving the ACPS
problem for the new MDP is equivalent to finding a solution
to Problem 3. To construct the new MDP, we first denote two
n× n matrices:

←−
P μ(q, q′) =

{
Pμ(q, q′), if q′ ∈ Qψ

0, otherwise

−→
P μ(q, q′) =

{
Pμ(q, q′), if q′ /∈ Qψ

0, otherwise.
(6)

The matrix (I −−→P μ) is shown to be nonsingular for any proper

policy μ (i.e., (I −−→P μ)−1 is well defined). Given
←−
P μ and

−→
P μ ,

we obtain the transition probability matrix, denoted by P̃μ , and
the cost per stage vector, denoted by g̃μ , for the new MDP:

P̃μ := (I −−→P μ)−1←−P μ, g̃μ := (I −−→P μ)−1gμ .

As shown in [19], the matrix P̃μ is also a stochastic matrix. The
vector g̃μ is a weighted cost per stage vector compared to gμ ,
where the weight for each state is proportional to the expected
number of transitions initiated from the current state to reach
the set Qψ (the set of states for the task ψ to be optimized is
feasible). Given the new MDP with P̃μ and g̃μ , (3) in Problem 3
is proven to be equal to the following ACPS for the new MDP:

Jμ(ι) = lim
N→∞

E

{∑N
n=0 g̃(qn , μ(qn ))

N + 1

}

.

The ACPS Jμ(ι) does not depend on the initial distribution
ι [19]. Thus, we have Jμ(ι) = λμ , where λμ is a finite-valued
scalar and it is called the average cost under policyμ. In addition,
a relative cost vector hμ is defined to quantify the total deviation
from the average cost:

hμ := lim
N→∞

N∑

k=0

(P̃ k
μ g̃μ − λμ1).

A key result for the ACPS problem is that, for any policy μ,
the average cost λμ associated with the relative cost vector hμ
satisfies the Bellman equation:

λμ1 + hμ = g̃μ + P̃μhμ . (7)

This is a system of n linear equations with (n+ 1) unknowns.
The solution to (7) is unique up to a constant shift for the
relative cost vector [21]. The solution to (7) can be made unique
by eliminating one degree of freedom, such as adding one more
linear equation for hμ :

1′hμ = 0. (8)

The unique solution to (7) and (8) can be obtained by the Gauss–
Jordan elimination method or by a matrix inversion [23]. We
denote μ� as the stationary policy minimizing (3) over all poli-
cies onM. Let λ� and h� denote the average cost and relative
cost vector corresponding to the policy μ� , respectively. One
of the traditional methods to find the optimal policy μ� uses
the policy iteration algorithm (PIA) [21]. For large state spaces,
the PIA is computational intensive. At each iteration of the
PIA, the computational complexity is of order O(n3).

B. Linear Parametric Function Approximation

We employ the function approximation method to approxi-
mate the solution to the Bellman equation (7). Using our previ-
ous results, we first transform the Bellman equation (7) into an
equivalent form that is more computationally convenient.

Lemma 1 (see [19, Prop IV.10]): The Bellman equation (7)
can be represented in the following equivalent form:

λμ1 + hμ = gμ + Pμhμ + λμ
−→
P μ1. (9)

Notice that the transformed can help us avoid the calcula-
tion of the matrix inversions involved by P̃μ and g̃μ . Together
with (8), (9) can be expressed compactly as

Aμxμ = bμ (10)

where

Aμ :=

[
I − Pμ 1−−→P μ1

1′ 0

]

, xμ :=

[
hμ

λμ

]

, bμ :=

[
gμ

0

]

.

(11)
The solution to (10) is unique and can be obtained via the matrix
inversionA−1

μ bμ , whereAμ is an (n+ 1)× (n+ 1) matrix and
bμ is an (n+ 1)× 1 vector. The computational complexity to
obtain the solution is of order O(n3) due to the matrix inverse
operation. Clearly, the computational complexity mainly comes
from the high dimensionality of relative cost vector hμ . To mit-
igate the complexity of the problem, we aim to find a lower
dimension approximation for hμ , and a scalar λ ∈ R to approx-
imate λμ . Formally, we approximate hμ using a linear paramet-
ric form h(r) =

∑m
k=1 rkφk , where rk is a tunable parameter

scalar, φk is a given basis function (a vector with dimension n),
and m is a user-defined number to tradeoff between optimality
and computational complexity. For a given policy μ, we define
a basis matrix

Φμ := [φ1 | φ2 | · · · | φm ]. (12)

Then, h(r) can be expressed compactly as h(r) = Φμr, where
r = [r1 , . . . , rm ]′.

Informally speaking, we would like to select independent
basis functions to capture the dominated nonlinearities of the
relative cost vector hμ . In this paper, we employ the Krylov
subspace method to automatically generate basis functions [24].
As shown in our previous paper [23], a good candidate set of
basis functions can be taken as

Bμ = {1, gμ , Pμgμ , . . . , P m̄
μ gμ , pμ , Pμpμ , . . . , P

m̄
μ pμ} (13)

where m̄ is a user-chosen integer. In general, the vectors in the set
Bμ are not independent to each other. We usually choose m̄ large
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enough, such that we can selectm basis functions together with
the unit vector 1 that are all linear independent by eliminating
the dependencies of vectors in the set Bμ (e.g., through the
Gram–Schmidt process or Householder transformations [35]).

For any given policy μ, by choosing a set of basis functions
from Bμ [see (13)], we can approximate hμ with h(r) = Φμr
and λμ with a scalar λ ∈ R, respectively. We denote

Ψμ :=

[
Φμ 0

0′ 1

]

, x(r, λ) := Ψμ

[
r

λ

]

=
[
h(r)
λ

]

. (14)

The optimal parameter vector r̂∗μ := [r∗μ , λ
∗
μ ] can be obtained

by minimizing the least-squares error of the Bellman equa-
tion (10) [25]: minr∈Rm ,λ∈R ‖Aμx(r, λ)− bμ‖2 . By denoting

Cμ := Ψ′μA
′
μ Ξ̂AμΨμ , dμ := Ψ′μA

′
μ Ξ̂bμ (15)

with Ξ̂ := diag(1/n, . . . , 1/n) being an (n+ 1)× (n+ 1) di-
agonal matrix, we can explicitly express the optimal parameter
vector as

r̂∗μ = C−1
μ dμ . (16)

Note that Cμ is an (m+ 1)× (m+ 1) matrix and dμ is an
(m+ 1)× 1 vector. So, the matrix inverse involved in (16) is
less demanding than the one involved in obtaining the solution
to (10) since we always have m ≤ n. In particular, the compu-
tational cost can be largely reduced if one chooses much less
number of basis functions than the number of MDP states, i.e.,
m� n.

Based on the ADP framework described above, we devel-
oped an approximate policy iteration algorithm (APIA) in our
previous work [23] to compute the suboptimal solution to Prob-
lem 3 (see [23, algorithm 1] for details). Note that although the
matrices Cμ and dμ are of low dimensions, the computation
of two matrices Cμ and dμ in (16) still involves matrix mul-
tiplications of dimension (n+ 1). For problems with large n,
the explicit computation of Cμ and dμ may still be very time
and memory consuming because of the high-dimensional matrix
multiplications. In the remaining of this section, we propose a
simulation-based method called simulation-based approximate
policy iteration algorithm (S-APIA) to further reduce the com-
putational complexity of the APIA. The main idea is to ap-
proximate the high-dimensional matrix multiplications involved
in (16) using simulation samples and low-dimensional calcula-
tions; see [26]–[29] for recent results and references therein.

C. Approximation Through Simulation

We first describe a simulation mechanism to approximate Cμ
and dμ . It is based on sampling the Markov chain corresponding
to the policy μ. Let ξ = (1/n, . . . , 1/n)′ denote an n× 1 prob-
ability vector. Then, Ξ = diag(ξ) is an n× n diagonal matrix,
and Pξ = 1ξ′ is a special n× n stochastic matrix with identical
rows and columns all as ξ. Using (11), (14), and (15), we can
represent Cμ and dμ equivalently as

Cμ =

[
C11
μ C12

μ

C21
μ C22

μ

]

, dμ =

[
d1
μ

d2
μ

]

where the submatrices C11
μ = Φ′μ(I − P ′μ)Ξ(I − Pμ)Φμ +

Φ′μPξΦμ , C12
μ = Φ′μ(I − P ′μ)Ξ(I −−→P μ)1, C21

μ = 1′(I −
−→
P ′μ)Ξ(I − Pμ)Φμ , C22

μ = 1′(I −−→P ′μ)Ξ(I −−→P μ)1, d1
μ =

Φ′μ(I − P ′μ)Ξgμ , and d2
μ = 1′(I −−→P ′μ)Ξgμ .

Several simulation sequences are generated according to
probabilistic mechanisms: 1) Indices sampling: Two se-
quences {i0 , i1 , . . .} and {̂i0 , î1 , . . .} are independently gen-
erated according to the probability distribution ξ. 2) Tran-
sitions sampling: Two sequences {(i0 , j0), (i1 , j1), . . .} and
{(i0 , ĵ0), (i1 , ĵ1), . . .} are independently generated according to
the same Markov transition matrix Pμ . After collecting (t+ 1)
samples, we approximate Cμ and dμ with

C̄t =

[
C̄11
t C̄12

t

C̄21
t C̄22

t

]

, d̄t =

[
d̄1
t

d̄2
t

]

(17)

where C̄11
t = C11

t /(t+ 1), C̄12
t = C12

t /(t+ 1), C̄21
t = C21

t /
(t+ 1), C̄22

t = C22
t /(t+ 1), d̄1

t = d1
t /(t+ 1), and d̄2

t = d2
t /

(t+ 1) with submatrices defined as C11
t =

∑t
k=0(φ(ik )−

φ(jk ))(φ(ik )− φ(ĵk ))′ + nφ(ik )φ(̂ik )′, C12
t =

∑t
k=0(φ(ik )

− φ(jk ))(1−
−→
P μ(ik , ĵk )/Pμ(ik , ĵk )), C21

t =
∑t

k=0(1−
−→
P μ

(ik , jk )/Pμ(ik , jk ))(φ(ik )− φ(ĵk ))′, C22
t =

∑t
k=0(1−

−→
P μ

(ik , jk )/Pμ(ik , jk ))(1−
−→
P μ(ik , ĵk )/Pμ(ik , ĵk )), d1

t =
∑t

k=0

(φ(ik )− φ(jk ))g(ik ), and d2
t =

∑t
k=0(1−

−→
P μ(ik , jk )/Pμ

(ik , jk ))g(ik ).
Note that φ(i) is an m× 1 vector that denotes the row of

Φμ corresponding to state i, i.e., φ(i)′ is the ith row of Φμ .
Thus, at each time step t, above calculations only involve low-
dimensional matrix multiplications of dimension m, where m
can be chosen much less than n. Following the standard law of
large numbers arguments for Markov chains, with probability 1,
we have

lim
t→∞

C̄t = Cμ, lim
t→∞

d̄t = dμ . (18)

D. Iterative Least-Squares Update

In the last section, we constructed simulation-based estimates
C̄t and d̄t such that C̄t → Cμ and d̄t → dμ with probability 1
as t→∞. The most straightforward way to approximate r̂∗μ is
based on direct matrix inversion:

r̄t = C̄−1
t d̄t . (19)

However, the iteration r̄t is highly sensitive to the simulation
noise errors (C̄t − Cμ) and (d̄t − dμ) [26], [36]. The high sen-
sitivity to simulation noise errors could cause serious computa-
tional difficulties in obtaining an accurate estimate to r̂∗μ .

In the following, we describe a simulation-based recursive
algorithm, which can take advantage of a priori knowledge of
r̂∗μ and reduce the sensitivity to simulation noise errors. Instead
of using (19), we estimate r̂∗μ iteratively by solving a regularized
least-squares problem:

r̂t+1 = arg min
r̂

{
(C̄t r̂ − dt)′Σ−1(C̄t r̂ − dt) + β‖r̂ − r̂t‖2

}

(20)
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where r̂t is the step-t simulation-based approximation to r̂∗μ ,
Σ � 0 is a positive-definite matrix, andβ > 0 is a positive scalar.
In the objective of (20), the first term (C̄t r̂ − d̄t)′Σ−1(C̄t r̂ −
d̄t) quantifies the approximation quality of r̂. The second term
β‖r̂ − r̂t‖2 has the effect of biasing the estimate r̂t+1 toward the
a priori estimate r̂t . The user-specific matrix Σ can be chosen to
reduce the effect of the near-singularity of C̄t , while the scalar
β can be chosen to regularize the bias to a priori estimate [26].

By setting the gradient of the objective in (20) to zero, we
obtain the solution to (20) in a closed iterative update form

r̂t+1 = r̂t − Ḡt(C̄t r̂t − d̄t) (21)

where Ḡt is defined as

Ḡt := (C̄ ′tΣ
−1C̄t + βI)−1C̄ ′tΣ

−1 . (22)

Given the condition that scalar β > 0 and matrix Σ � 0, the
matrix Ḡt is well defined with nonsingular matrix inversions.
Denote the deterministic counterpart of Ḡt as

Gμ := (C ′μΣ−1Cμ + βI)−1C ′μΣ−1 . (23)

Using (18), with probability 1, we have

lim
t→∞

Ḡt = Gμ. (24)

E. Convergence Analysis

To perform the convergence analysis for the iteration (21),
we first consider its deterministic counterpart

r̂t+1 = r̂t −Gμ(Cμr̂t − dμ). (25)

Clearly, the iteration (25) is convergent if the mapping (I −
GμCμ) is a contraction with respect to a certain matrix norm (or
equivalently all its eigenvalues are strictly within the unit circle).
In the following lemma, we show that the mapping (I −GμCμ)
is indeed a contraction. The proof is given in Appendix B.

Lemma 2: Let Cμ be defined in (15) and Gμ be defined in
(23). For any scalar β > 0 and any matrix Σ � 0, the map-
ping (I −GμCμ) is a contraction with the operator norm
‖I −GμCμ‖ = β/(β + λn ) < 1, where λn > 0 denotes the
smallest positive eigenvalue of the matrix C ′μΣ−1Cμ .

We represent the iteration (21) equivalently as a combination
of (25) with a stochastic noise term:

r̂t+1 = r̂t −Gμ(Cμr̂t − dμ)− (Ῡt r̂t − ῡt) (26)

where Ῡt and ῡt are the stochastic noises defined as Ῡt =
ḠtC̄t −GμCμ and ῡt = Ḡt d̄t −Gμdμ . According to (18)
and (24), with probability 1, we have limt→∞ Ῡt = 0 and
limt→∞ ῡt = 0. The following proposition presents the con-
vergence result for the iteration (21). The proof appears in
Appendix C.

Proposition 1: Let C̄t , d̄t , and Ḡt be given in (17) and (22),
respectively. For any scalar β > 0 and any matrix Σ � 0, the
vector r̂t is updated using (21). Let r̂∗μ be defined in (16). Then,
with probability 1, we have r̂t → r̂∗μ as t→∞.

We also study the rate of convergence for the iteration (21).
We will show that the rate of convergence has two time scales:
the fast time scale at which r̂t tracks r̄t = C̄−1

t d̄t , and the slow
time scale at which C̄t , d̄t , and Ḡt converge to Cμ , dμ , and

Gμ , respectively. The two-time-scale convergence rate has been
vastly observed in the literature [26], [27]. The difference be-
tween r̂t+1 and r̄t+1 can be represented as

r̂t+1 − r̄t+1 = (I − ḠtC̄t)(r̂t − r̄t) + (I − ḠtC̄t)(̄rt − r̄t+1).
(27)

In what follows, we present the convergence rate analysis in two
steps. We first show that the distance between r̂t and r̄t shrinks
at the rate of O(1/t). The proof is given in Appendix D.

Proposition 2: The sequence of random variables t(r̂t − r̄t)
is bounded with probability 1.

The results of [27] and [28] show that r̄t converges to the limit
r̂∗μ at the rate of O(1/

√
t). It then follows from Proposition 2

that r̂t also converges to the limit r̂∗μ at the rate of O(1/
√
t).

Moreover, the error (r̂t − r̂∗μ) is normally distributed as a con-
sequence of the central limit theorem. The proof is given in
Appendix E.

Proposition 3: For any given initial condition r̂0 , the se-
quence of random variables

√
t(r̂t − r̂∗μ) converges in distri-

bution to a Gaussian random vectorN (0,Σc) as t→∞, where
Σc is some finite covariance matrix.

F. Simulation-Based Approximate Dynamic
Programming Algorithm

So far, all basis functions are assumed to be generated from
the set Bμ constructed from high-dimensional matrix powers
and multiplications Pm

μ pμ (or Pm
μ gμ ). In fact, basis functions

can also be generated through simulation samples of associ-
ated Markov chains [37]. We simply denote Φ̂μ,t and B̂μ,t as
simulation-based counterpart of the candidate set (12) and basis
matrix (13), respectively. All analyses and proofs presented in
previous sections are all carried through due to the ergodicity
theory of Markov chain [37]. We omit the details here for the
sake of space. In Algorithm 1, we present an S-APIA to obtain
suboptimal solutions to Problem 3.

Remark 2: The S-APIA is a simulation-based ADP algo-
rithm generalized from its deterministic counterpart APIA
proposed in our previous work [23]. Compared to the PIA (tradi-
tional DP algorithm, optimal method) and the APIA (determin-
istic ADP algorithm, suboptimal method), the S-APIA is a sub-
optimal method with much lower computational complexity due
to the involvement of simulation samples and low-dimensional
matrix calculations. For each iteration of the S-APIA, the com-
putational complexity is of order O(m3Tn), where m is the
number of independent basis functions, n is the number of MDP
states, and T is the number of simulation samples. Recall that
the complexity of the APIA is of order O(mn2) and the PIA
is of order O(n3). For large-scale MDPs, we have m� n and
T � n, which implies that the complexity of the simulation-
based suboptimal method S-APIA is linear, the deterministic
suboptimal method APIA is quadratic, and the optimal method
PIA is cubic, with respect to n. Thus, the S-APIA is the one with
the lowest computational complexity, but it only guarantees to
generate suboptimal policies and it may require more iterations
than the PIA and the APIA before the termination of the algo-
rithm. The approximation accuracy decides the suboptimality

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:32:48 UTC from IEEE Xplore.  Restrictions apply. 



4556 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017

Algorithm 1: Simulation-Based Approximate Policy Itera-
tion Algorithm.

Input: MDPM = (Q, ι, U, P,Π, L, g), integer m̄, number
of simulation samples T , scalar parameter β, and
positive matrix Σ

Output: Suboptimal policy μ̂∗m̄ ,T and average-relative cost

pair (λ̂∗m̄ ,T , ĥ
∗
m̄ ,T )

1: Initialize a proper policy μ0 and a vector r̂0 , and set
k = 0

2: repeat
3: Construct transition matrix Pμk , cost per stage vector

gμk , and auxiliary matrix
−→
P μk using (4)–(6),

respectively
4: Generate an index sequence {̃it}Tt=0 sampled

according to ĩt+1 ∼ Pμk (̃it , ·)
5: Construct a candidate set of basis functions B̂μk ,T ,

obtain m independent basis functions from Bμk , and

construct a basis matrix Φ̂μk ,T

6: Independently generate two sequences {it}Tt=0 and
{̂it}Tt=0 according to the probability distribution ξ

7: Independently generate two sequences {(it , jt)}Tt=0
and {(it , ĵt)}Tt=0 according to transition matrix Pμ

8: Iteratively compute matrices {C̄t}Tt=0 and {d̄t}Tt=0

using (17) with basis matrix Φ̂μk ,T , and sample
sequences {it}Tt=0 , {̂it}Tt=0 , {(it , jt)}Tt=0 , and
{(it , ĵt)}Tt=0

9: Iteratively compute vectors {r̂t}Tt=0 through the
iteration (21)

10: Obtain parameter vector r∗μk = [r̂T (1), . . . , r̂T (m)]′

and average cost λ∗μk = r̂T (m+ 1)

11: Compute relative cost h∗μk = (Φ̂μk ,T )r∗μk
12: Find updated policy μk+1 ∈ arg minμ [gμ +

Pμh
∗
μk + λ∗μk

−→
P μ1]

13: Set k ← k + 1
14: until μk+1 = μk

15: return μ̂∗m̄ ,T := μk , λ̂∗m̄ ,T := λ∗μk , and ĥ∗m̄ ,T := h∗μk

of the S-APIA solution. For each iteration of the S-APIA, if
μ̂∗m̄ ,T = h�μk and λ̂∗m̄ ,T = λ�μk , ∀μk (k ≥ 0), then the subopti-

mal policy ĥ∗m̄ ,T returned by the S-APIA is in fact an optimal
policy to Problem 3. More rigorous results on optimality con-
ditions and known issues of simulation-based ADP algorithms
can be found in [21] and references therein.

G. Related Work

The ADP algorithms proposed in this paper are related to
the research work in the field of control and machine learn-
ing [21], [33], [34], [38]. The overall ADP framework adopted
here follows the state-of-the-art API algorithms that employ the
linear parameterization and simulation samples to approximate
the value function [29], e.g., the actor critic algorithm [27], the
LSTD algorithm [36], [39], and LSPE algorithm [26], [40], [41].

But the ways that we use to construct the basis functions and de-
velop the simulated-based algorithm are different. In traditional
API algorithms, the transition probabilities of states are explic-
itly known a priori or can be directly learned from sampled
data [21], [34]. However, for our problem, the transition proba-
bilities of the transformed MDP need to be calculated from the
high-dimensional matrix inversion of the original MDP. Thus,
the benefits of the traditional API algorithm as well as its known
varieties cannot be fully appreciated for our problem. Moti-
vated by the MDP transformation used in the time aggregation
method [42], the ADP framework proposed in this paper trans-
forms the Bellman equation into an equivalent form. In such a
way, we eliminate the need to calculate the matrix inversions
for the transformed MDP.

The computational complexity of the simulation-based algo-
rithm is of order O(n), where n is the number of states. This
algorithm may become intractable for very largen. This is a fun-
damental difficulty for many other related algorithms aiming to
reduce the complexity for solving MDPs [21], [34]. Compared
to other traditional approaches, the proposed algorithm can be
easily extended to a more computationally efficient version us-
ing parallel computation, since the associated simulations are
easily parallelizable (see Section III-C). Besides the parallel
computation, there also exist other effective methods to further
reduce the complexity of the proposed algorithm [21], [34],
[43], such as the decentralized method (see Appendix F), the
learning-based method, and the asynchronous update method.
This will be a subject of our future work.

IV. CASE STUDY

The algorithmic framework developed in this paper was im-
plemented in MATLAB and used in conjunction with a simulator
to demonstrate the motion of a robotic team in the stochastic
environment shown in Fig. 2. The performance and complexity
of two algorithms (PIA and S-APIA) are compared for comput-
ing control policies of a case study. A computer with 2.00-GHz
CPU and with 3-GB RAM was used to generate the simulation
results.

A. Setup of Case Study

We consider two robots and assume that Robot 1 moves
twice as fast as Robot 2. We consider a persistent surveillance
task, where they are required to monitor rooms V1 and V3 and
then return to Base to report the collected information. In other
words, the robots should occupy rooms V1 and V3 at the same
time and then return to Base together, infinitely often. During
their motion in the environment, Robots 1 and 2 should always
avoid regions Unsafe1 and Unsafe2, respectively. To specify
this task, we define a set of atomic propositions in the form
Π = {Base1,Base2,M V1,M V3,Unsafe1,Unsafe2} and
assign the atomic propositions to the robots as follows: Π1 =
{Base1,M V1,M V3,Unsafe1} and Π2 = {Base2,M V1,
M V3,Unsafe2}. The labeling functions for Robots 1 and 2 are
defined as follows: L1(V1) = L2(V1) = {M V1}, L1(V3) =
L2(V3) = {M V3}, L1(V6) = {Unsafe1}, L2(V5) =
{Unsafe2}, L1(V7) = {Base1}, and L2(V7) = {Base2}.
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Fig. 2. Typical simulated paths of two robots that employ the PIA optimal policy μ� in (a) and the S-APIA suboptimal policy μ∗m̄ ,T in (b) for the
case study from time step 12 to 24, where the pink solid line is the simulated path for Robot 1 and the blue-dashed line for Robot 2. The numbers
show the time instances when robots are at the corresponding locations. At time step 12, both robots are at room V7. After two time steps, robot 1
moves to V5, while Robot 2 moves to V9 (or V6) under optimal policy (or suboptimal policy). Note that robot 2 is slower than robot 1. At time step
18, the constraint M V1 ∧M V3 is satisfied by the team under both polices; therefore, none of the robots can visit V1 or V3 before they both
reach the base simultaneously.

Our goal is to minimize the expected time in between
the robots’ simultaneous visits to V1 and V3. Therefore,
the optimizing task ψ is M V1 ∧M V3. The specification
is given as follows: φ = G(¬Unsafe1) ∧G(¬Unsafe2) ∧
GF(Base1 ∧ Base2) ∧G((M V1 ∧M V3)→ X ((¬M V1 ∧
¬M V3)U (Base1 ∧ Base2))) ∧GF(M V1 ∧M V3). GF
(Base1 ∧ Base2) ensures that both robots visit the base si-
multaneously. G(¬Unsafe1) and G(¬Unsafe2) specify that
the robots do not visit the unsafe regions. G((M V1 ∧M V3)→
X ((¬M V1 ∧ ¬M V3) U (Base1 ∧ Base2))) ensures that af-
ter monitoring both V1 and V3, none of them are visited again
before the robots visit the base together.

B. Algorithms for Computing Optimal Policies

To compute optimal policies {πk , k ∈ R} satisfying φ with
the maximum probability, we first construct an MDPMG using
(2) and translate the LTL formula φ to a DRA Aφ using the
software tool ltl2dstar [44]. Then, we compute a product MDP
MP =MG ×Aφ such that the constructedMG andMP have
2575 and 33 475 states, respectively. A procedure described
in [1] is employed to obtain all AMECs for the product MDP
MP . We found only one AMEC (i.e., a communicating MDP
denoted byM) with n = 4102 states in the product MDPMP .
In the following, we compare the performance and complexity
of two algorithms (PIA and S-APIA) to find (sub)optimal robot
policies given MDPM and optimizing task ψ.

1) PIA: The PIA proposed in [19] is taken as a baseline
(optimal) algorithm for comparisons purpose. By employing
the PIA for solving the MDP M, we obtain the optimal con-
trol policy μ� and the average-relative cost pair (λ� , h�). For
the case study considered here, the optimal average cost λ� =
12.9794 and computation time for running the PIA is around
519.45 s. The optimal policy μ� is deployed for two robots in
the simulation environment. In Fig. 2(a), we depict typical sim-
ulated paths for two robots that employ the optimal policy μ�

from time step 12 to 24.

2) S-APIA: To reduce the computational complexity of the
PIA, in this paper, we developed the S-APIA to compute the
suboptimal control polices (Algorithms 1; see Section III-F for
details). The S-APIA constructs a simulation-based iterative
update r̂t to approximate the least-squares solution r̂∗μ , where t
denotes the index of simulation samples (see (16) and (21) for
more details).

To study the behavior of the simulation-based approxima-
tions, we consider an arbitrarily chosen control policy μ̄ for one
iteration of the S-APIA. We first compute r̂∗μ̄ using the matrix
inversion formula (16) with directly computed matrices Cμ̄ and
dμ̄ . Then, we compute r̂t using the iteration (21) with matrices
C̄t and d̄t generated from simulation samples. In Fig. 3, we
depict semilog plots of approximation errors ‖C̄t − Cμ̄‖ and
‖d̄t − dμ̄‖ for t = 0, 1, . . . , 10000. We observe from Fig. 3 that
C̄t and d̄t converge to Cμ̄ and dμ̄ , respectively, as t→∞. This
demonstrates the theoretical results shown in (18). In Fig. 3(c),
we also depict a semilog plot of approximation error ‖r̂t − r̂∗μ̄‖
and the curve σ0/

√
t with respect to t, where σ0 is a scalar

denoting the initial condition. We observe that r̂t converges
to the limit r̂∗μ̄ at the rate of O(1/

√
t). This demonstrates the

theoretical results shown in Propositions 1 and 3.
Let m̄ denote the number of basis functions and T denote

the number of simulation samples for the S-APIA. By selecting
different values of m̄ and T , we can trade off the optimality
and complexity of the S-APIA. By employing Algorithm 1 for
solving the MDP M, we obtain the suboptimal policy μ̂∗m̄ ,T

and the average-relative cost pair (λ̂∗m̄ ,T , ĥ
∗
m̄ ,T ). Similarly, to

quantify the optimality of the S-APIA, we compute the cost
errors ||λ̂∗m̄ ,T − λ� || and ||ĥ∗m̄ ,T − h� || for m̄ = 1, 2, . . . , 30 and
T = 500, 1000, . . . , 8000 (see Fig. 4(a) and (b) for illustrations).
In Fig. 4(c), we depict the computation time for running the
S-APIA with respect to different m̄ and T . We observe from
Fig. 4 that the cost error decreases, while the computation time
increases as the number of basis functions m̄ or the number of
simulation samples T increases. We also observe from Fig. 4(a)
and (b) that the optimality of S-APIA mainly depends on the
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Fig. 3. Semilog plots of approximation errors (a) ‖C̄t − Cμ̄ ‖, (b)‖d̄t − dμ̄ ‖, and (c) ‖r̂t − r̂∗μ̄ ‖ with respect to the simulation sample index t.

Fig. 4. (a) Average cost error ‖λ̂∗m̄ ,T − λ� ‖, (b) relative cost error ‖ĥ∗m̄ ,T − h� ‖, and (c) computation time (seconds) for running the S-APIA with

respect to number of basis functions m̄ and number of simulation samples T , where (λ̂∗m̄ ,T , ĥ
∗
m̄ ,T ) is obtained from the S-APIA and (λ� , h� ) is

obtained from the PIA.

number of basis functions m̄ but not very sensitive to the number
of simulation samples, i.e., the cost error largely decreases as m̄
increases but only slightly decrease as T increases. For the case
study considered here, even with a small T (e.g., T ≈ 1000−
2000), the S-APIA can achieve comparably good performance
with a large T (e.g., T > 5000).

Using Fig. 4, one can easily make a tradeoff between optimal-
ity and complexity of the S-APIA by properly choosing m̄ and
T . For example, if we choose m̄ = 21 andT = 1500 for running
the S-APIA (simulation-based algorithm) to obtain a suboptimal
policy μ∗m̄ ,T , the average cost error ‖λ̂∗m̄ ,T − λ�‖ = 0.0195, the

relative cost error ‖ĥ∗m̄ ,T − h�‖ = 1.1908, and the computation
time is around 38.59 s [see Fig. 4(a)–(c)]. Recall that, by run-
ning the PIA (optimal algorithm) to obtain the optimal policy
μ� , the average cost λ� = 12.9794 and the computation time is
around 519.45 s. Thus, one can run the S-APIA with m̄ = 21 and
T = 1500 to obtain a fairly good suboptimal policy μ∗m̄ ,T to ap-
proximate μ� with a largely reduced computational complexity
(i.e., the S-APIA achieves less than 0.5% approximation error
on average cost and more than 90% reduction on computation
time compared to the PIA).

In Fig. 2(b), we also depict typical simulated paths for two
robots that employ the suboptimal policy μ∗m̄ ,T from time step
12 to 24, where the simulation is set up the same as the optimal

policy μ� for comparison purpose [see Fig. 2(a)]. We observe
from Fig. 2 that the simulated paths generated by employing
μ∗m̄ ,T and μ� are similar with differences coming from alter-
native control/motion actions taken by the suboptimal policy
μ∗m̄ ,T . For short time steps considered here, the average costs
corresponding to the simulated paths deployed using both po-
lices are the same, and all temporal logic constraints are satisfied
by both policies. For long run of the simulation, the average cost
associated with the optimal policy μ� is slightly better/smaller
than the one with the suboptimal policy μ∗m̄ ,T , which is con-
sistent with our observation that μ∗m̄ ,T achieves less than 0.5%
approximation error on average cost compared to μ� .

V. CONCLUSION

In this paper, we considered the problem of generating con-
trol control policies for a team of robots in a stochastic en-
vironment to complete an optimal surveillance mission. We
modeled the robots as game transition systems and the envi-
ronmental elements as labeled Markov Chains. The problem
reduced to finding an optimal control policy of an MDP while
satisfying a temporal logic specification. We presented an ADP
framework to generate (sub)optimal control policies. Compared
to the existing approaches based on DP, the proposed ADP
framework allows us to trade off between the solution optimality
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and computational complexity for obtaining the control policies
in a suboptimal manner. Two algorithms were developed to im-
plement the proposed ADP framework. The effectiveness and
efficiency of the proposed ADP approaches are demonstrated
using a case study in simulation environment.

APPENDIX A
ENVIRONMENT, DOOR, AND ROBOT MODELS

Definition 1 (Environment model): The environment is mod-
eled as a tuple

E = (V,→E ,Π, LE) (28)

where V is a set of room states, →E⊆ V × V is an adjacency
relation of the rooms, Π is a set of atomic propositions, and
LE : V → 2Π is a labeling function with LE(v) representing the
set of atomic propositions that hold true in room v.

An atomic proposition α ∈ Π can be used to represent a
service request occurring in the environment (e.g., v needs to
be monitored), or a property of a location (e.g., v is unsafe).
We denote D as a set of doors located in the environment E .
To capture the door locations, we define a partial function FD :
V × V → D ∪ {Δ}, where FD is defined for all (v, v′) ∈→E
such that FD(v, v′) = i means that the adjacent rooms v and
v′ are separated by door i, whereas FD(v, v′) = {Δ} means
that there exists no door in between v and v′. We assume that
the doors behave independently of each other, and each door
changes its open or closed status in a stochastic manner modeled
as a labeled discrete-time Markov chain (DTMC).

Definition 2 (Door model): Each door i ∈ D is modeled as
a labeled DTMC

Ci = (Si, ιi , Pi, Li) (29)

whereSi is a set of door states, ιi : Si → [0, 1] is an initial distri-
bution with

∑
s∈Si ιi(s) = 1, Pi : Si × Si → [0, 1] is a transi-

tion probability function such that
∑

s ′∈Si Pi(s, s
′) = 1 for any

s ∈ Si , and LCi : Si → Ω is a labeling function with Ω = {o, c}
being a status set with {o} standing for “open” and {c} for
“closed.”
An example of door model C1 is shown in Fig. 1(top left). There
are three door states S1 = {s1 , s2 , s3} for door 1, where the
states evolve according to a DTMC. The transition probabilities
are shown on top of the corresponding arrow and omitted when
the probabilities are 1. The incoming arrow indicates the initial
state. The status corresponding each state is given by LC1(s1) =
LC1(s2) = c and LC1(s3) = o.

We consider a team of robots moving in the environment E ,
whose motions are restricted by their motion primitives (con-
trols) and doors’ statuses. We denote R as a set for robots.
For any k ∈ R and v ∈ V , we denote Uk (v) as a finite set
of available motion controls at room v for robot k, where
a motion function M : V × Uk → V is defined such that for
(v, v′) ∈→E , M(v, u) = v′ represents that robot k can move
to room v′ by applying the motion control u ∈ Uk (v) at room
v. If there is no door separating two adjacent rooms v and v′,
robot k in room v can take a control u such that M(v, u) = v′

to moves from v to v′. If there is a door separating v and v′,
then robot k needs to interact with the door for moving. For

any door i ∈ D, if it separates rooms v and v′, we introduce
a set of auxiliary door states associated with door i denoted
by Qd

i = {qvi , qv
′

i | i = FD(v, v′), v, v′ ∈ V}. For example, to
move from room v to an adjacent room v′, which are separated
by door i, the robot k takes two steps: the first step is that the
robot k moves from v to qvi by taking a control u such that
M(v, u) = qvi ; the second step is that the door status decides
the next room for the robot k such that it moves from qvi to the
next room v′ if the door i is open or it moves from qvi back to
the room v if the door i is closed. We denoted QD =

∏
i∈DQ

d
i

as a set of all auxiliary door states. We model each robot k ∈ R
as a game transition system, denoted by Tk .

Definition 3 (Robot model): Each robot k ∈ R is modeled
as a game transition system

Tk = (Qk, v
in
k , Uk ,→k ,Πk , Lk , gk ) (30)

where Qk = V ×QD is a finite set of robot states; vink ∈ V
is an initial state of the robot, representing its initial posi-
tion; Uk is a set of controls; →k⊆ Qk ×Qk is a transition
relation such that for v, v′ ∈ V and u ∈ Uk (v), we have 1)
(v, v′) ∈→k iff M(v, u) = v′ and FD(v, v′) = {Δ}, and 2)
(v, qvi ) ∈→k , (qvi , v) ∈→k , and (qvi , v

′) ∈→k iff M(v, u) = v′

and FD(v, v′) = i; Πk ⊆ Π is a set of atomic propositions;
Lk : V → 2Πk is a labeling function over the states of the robot
such thatLk (v) = LE(v); and gk :→k→ N is a weight function
that assigns a nonnegative integer that captures the travel time
between of each transition.

The states of Tk is partitioned in two subsets: the setV of room
states, at which robots take controls, and the setQD of auxiliary
door states, at which robots interact with doors. A run of Tk is an
infinite sequence {qn}n≥0 such that q0 = vinl and qn →k q

n+1 ,
∀n ≥ 0. By removing all door states from the run of Tk , we
obtain an infinite path of the robot, denoted by Pk = {vnk }n≥0 .
A path of the robot Pk generates an output word (behavior)
of the robot, denoted by Ok = {Lk (vnk )}n≥0 , and an infinite
sequence of time instances Tk = {Tn

k }n≥0 such that Lk (vnk )
is satisfied at time instance Tn

k . A history-dependent control
policy for robot k ∈ R is defined as an infinite sequence πk =
{μnk }n≥0 , where μnk : (Qk )n ×

∏
i∈D(Si)n → Uk . If μnk = μk

for all k ≥ 0, then it is a stationary control policy, and we simply
denote πk = μk : Qk ×

∏
i∈D Si → Uk as the stationary policy

for robot k.

APPENDIX B
PROOF OF LEMMA 2

Since the matrixCμ is invertible, the matrixC ′μΣ−1Cμ is pos-
itive definite with eigenvalues λ1 ≥ . . . ≥ λn > 0. Let singular
value decomposition of C ′μΣ−1Cμ be UμΛμU

′
μ , where Λμ =

diag{λ1 , . . . , λn} and Uμ is a unitary matrix (i.e., U ′μUμ =
UμU

′
μ = I). Then, we have

I −GμCμ = I − Uμ(Λμ + βI)−1U ′μUμΛμU
′
μ

= Uμ(Λμ + βI)−1βIU ′μ .

It follows that the eigenvalues of (I −GμCμ) are β/(β + λi)
for i = 1, . . . , n, which all lie in the interval (0, 1). Note that
(I −GμCμ) is a symmetric matrix. So the operator norm of
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(I −GμCμ) is corresponding to its largest eigenvalue, i.e., ‖I −
GμCμ‖ = β/(β + λn ). Since bothβ and λn are positive scalars,
we have ‖I −GμCμ‖ < 1. Thus, we conclude the proof that the
mapping (I −GμCμ) is a contraction.

APPENDIX C
PROOF OF PROPOSITION 1

Using (26), we have the following representation:

r̂t+1 − r̂∗μ = (I −GμCμ − Ῡt)(r̂t − r̂∗μ)− (Ῡt r̂
∗
μ − ῡt).

(31)
As shown in Lemma 2, we know the mapping (I −GμCμ) is
a contraction with ‖I −GμCμ‖ < 1. For any sample trajectory
such that Ῡt → 0, there exists t̄ such that, for all t ≥ t̄, we
have ‖I −GμCμ − Ῡt‖ < (1− ε) for some positive ε. Thus,
from (31), for all t ≥ t̄, we have

‖r̂t+1 − r̂∗μ‖ ≤ (1− ε)‖r̂t − r̂∗μ‖+ ‖Ῡt r̂
∗
μ − ῡt‖. (32)

For all sample trajectories such that Ῡt → 0 and ῡt →
0, the stochastic noise term (Ῡt r̂

∗
μ − ῡt) diminishes to 0

(so that ‖Ῡt r̂
∗
μ − ῡt‖ → 0). For ‖r̂t − r̂∗μ‖ ≥ 2‖Ῡt r̂

∗
μ − ῡt‖/ε,

according to (32), we have ‖r̂t+1 − r̂∗μ‖ ≤ (1− ε/2)‖r̂t −
r̂∗μ‖, which implies ‖r̂t+1 − r̂∗μ‖ monotonically decreases to
2‖Ῡt r̂

∗
μ − ῡt‖/ε. For ‖r̂t − r̂∗μ‖ ≤ 2‖Ῡt r̂

∗
μ − ῡt‖/ε, we have

‖r̂t − r̂∗μ‖ → 0 since the right-hand side of the inequality di-
minishes to 0 as t→∞. Note that the set of all these sam-
ple trajectories has probability 1. We conclude the proof that
r̂t → r̂∗μ with probability 1.

APPENDIX D
PROOF OF PROPOSITION 2

The proof of Proposition 2 is based on the analysis of the
iteration (26). To find the shrinking rate of r̂t to r̄t , we need
to bound the convergence rate of the difference of term (r̄t −
r̄t+1). The following lemma shows that the norm of (r̄t − r̄t+1)
changes at the rate of O(1/t). The proof appears at the end of
this section.

Lemma 3: Consider a convergent sample path such that C̄t ,
d̄t , and Ḡt converge to Cμ , dμ , and Gμ , respectively. Then,
there exists a constant C such that ‖r̄t+1 − r̄t‖ ≤ C/t for all t
sufficiently large.

Proof of Proposition 2: We consider a convergent sample
path such that C̄t , d̄t , and Ḡt converge to Cμ , dμ , and Gμ ,
respectively. Clearly, as shown in (18) and (24), all such sample
paths form a set of probability 1, and both r̂t and r̄t converge
to r̂∗μ . Thus, the sequence of random variables t(r̂t − r̄t) is
bounded for any finite t. Then we only need to consider the
situation when t is sufficiently large.

Using Lemma 2, we know that ‖I −GμCμ‖ < 1. Then, there
exists a scalar γ ∈ (0, 1) such that, for all t sufficiently large

‖I − ḠtC̄t‖ ≤ γ. (33)

Using (27), we have ‖r̂t+1 − r̄t+1‖ ≤ ‖I − ḠtC̄t‖ ‖r̂t − r̄t‖+
‖I − ḠtC̄t‖ ‖r̄t − r̄t+1‖. Applying Lemma 3 and (33), we

obtain, for all t sufficiently large,

‖r̂t+1 − r̄t+1‖ ≤ γ‖r̂t − r̄t‖+
γC

t
. (34)

Denote t̄ = γ/(1− γ) + 1 and γ̄ = γ(t̄+ 1)/t̄. It is clear that
t̄ <∞ since γ < 1. For all t ≥ t̄, we have γ(t+ 1)/t ≤ γ̄ < 1.
Using (34), we have, for all t ≥ t̄,

(t+ 1)‖r̂t+1 − r̄t+1‖ ≤ γ
t+ 1
t

t‖r̂t − r̄t‖+ γ
t+ 1
t

C

≤ γ̄t‖r̂t − r̄t‖+ γ̄C. (35)

By recursively applying (35), we have, for all t ≥ t̄,
(t+ 1)‖r̂t+1 − r̄t+1‖

≤ γ̄(t−t̄+1) t̄‖r̂t̄ − r̄t̄‖+ γ̄C + · · ·+ γ̄(t−t̄+1)C

≤ t̄‖r̂t̄ − r̄t̄‖+
γ̄C

1− γ̄ .

We conclude the proof by noting that t̄‖r̂t̄ − r̄t̄‖+ γ̄C/(1− γ̄)
is always finite. �

Proof of Lemma 3: Clearly, along such a convergent sample
path, both r̂t and r̄t converge to r̂∗μ . By the definition of r̄t , we
have

‖r̄t+1 − r̄t‖ = ‖C̄−1
t d̄t − C̄−1

t−1 d̄t−1‖

≤ ‖C̄−1
t − C̄−1

t−1‖ ‖d̄t‖+ ‖C̄−1
t−1‖ ‖d̄t − d̄t−1‖.

(36)

Since C̄t → Cμ and d̄t → dμ , then ‖C̄−1
t−1‖ → ‖C−1

μ ‖ and
‖d̄t‖ → ‖dμ‖. Thus, for sufficiently large t, there exist some
constants B1 and B2 such that

‖C̄−1
t−1‖ ≤ C1 , ‖d̄t‖ ≤ C2 . (37)

Using recursive representation, we can express d̄t as

d̄t = d̄t−1 −
1

t+ 1
d̄t−1

+
1

t+ 1

[
(φ(it)− φ(jt))g(it)

(1−−→P μ(it , jt)/Pμ(it , jt))g(it)

]

.

Then, for sufficiently large t, we have

‖d̄t − d̄t−1‖ ≤
C3

t
(38)

for some constantC3 (since d̄t ,φ(it),φ(jt) g(it), and
−→
P μ(it , jt)

are all bounded for all t, and Pμ(it , jt))g(it) are bounded and
nonzero for all t). Using definition of C̄t [see (17)], we have

‖C̄−1
t − C̄−1

t−1‖ = ‖C−1
t + t(C−1

t − C−1
t−1)‖

≤ ‖C−1
t ‖+ t‖C−1

t − C−1
t−1‖. (39)

Using recursive representation, we can express Ct as

Ct = Ct−1 + u(it , jt)u(it , ĵt)′ + v(it)v(̂it)′ (40)

where the vector functions u(·, ·) and v(·) are defined as

u(i, j) =

[
φ(i)− φ(j)

1−−→P μ(i, j)/Pμ(i, j)

]

, v(i) =
√
n

[
φ(i)

0

]

.
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Note that the vectors u(it , jt), u(it , ĵt), v(it), and v(̂it) are all
bounded for all t ≥ 0.

By applying Sherman–Morisson formula for matrix inversion
to (40), we obtain

C−1
t = Ĉ−1

t−1 −
Ĉ−1
t−1v(it)v(̂it)

′Ĉ−1
t−1

1 + v(̂it)′Ĉ−1
t−1v(it)

(41)

where Ĉt−1 is defined as

Ĉt−1 = Ct−1 + u(it , jt)u(it , ĵt)′. (42)

By applying the Sherman–Morisson formula again to (42), we
obtain

Ĉ−1
t−1 = C−1

t−1 −
C−1
t−1u(it , jt)u(it , ĵt)

′C−1
t−1

1 + u(it , ĵt)′C−1
t−1u(it , jt)

. (43)

Note that Ct−1 = tC̄t−1 . Then, with probability 1, we have

lim
t→∞

tC−1
t−1 = lim

t→∞
t(tC̄t−1)−1 = lim

t→∞
C̄−1
t−1 = C−1

μ . (44)

Denote ̂C−1
t−1 = tĈ−1

t−1 . Using (43) and (44), we have

lim
t→∞

̂C−1
t−1 = lim

t→∞

(

tC−1
t−1 −

tC−1
t−1u(it , jt)u(it , ĵt)

′tC−1
t−1

t+ u(it , ĵt)′tC−1
t−1u(it , jt)

)

= C−1
μ . (45)

Substituting (43) into (41), and using (44) and (45), we have

t‖C−1
t − C−1

t−1‖

= t

∥
∥
∥
∥
∥

C−1
t−1u(it , jt)u(it , ĵt)

′C−1
t−1

1 + u(it , ĵt)′C−1
t−1u(it , jt)

+
Ĉ−1
t−1v(it)v(̂it)

′Ĉ−1
t−1

1 + v(̂it)′Ĉ−1
t−1v(it)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

C̄−1
t−1u(it , jt)u(it , ĵt)

′C̄−1
t−1

t+ u(it , ĵt)′C̄−1
t−1u(it , jt)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
∥

̂C−1
t−1v(it)v(̂it)

′̂C−1
t−1

t+ v(̂it)′̂C−1
t−1v(it)

∥
∥
∥
∥
∥
∥

≤ C4

t
(46)

for some constants C4 and t sufficiently large. Substituting (46)
into (39), we have, for t sufficiently large,

‖C̄−1
t − C̄−1

t−1‖ ≤
1

t+ 1
‖C̄−1

t ‖+
C4

t
≤ C1

t
+
C4

t
. (47)

Substituting (37), (38), and (47) into (36), we conclude the
proof. �

APPENDIX E
PROOF OF PROPOSITION 3

Consider a convergent sample path such that C̄t , d̄t , and Ḡt

converge to Cμ , dμ , and Gμ , respectively. As shown in (18)
and (24), all such sample paths form a set of probability 1, and
r̂t and r̄t converge to r̂∗μ . Using (19) and (21), we can write
√
t+ 1(r̂t+1 − r̂∗μ)

=
√
t+ 1(I − ḠtC̄t)(r̂t − r̄t+1) +

√
t+ 1(r̄t+1 − r̂∗μ).

(48)

Using Lemma 2, we know that ‖I −GμCμ‖ < 1. Then, there
exists a scalar γ ∈ (0, 1) such that ‖I − ḠtC̄t‖ ≤ γ for t suffi-
ciently large. Thus, for t sufficiently large, we have

‖
√
t+ 1(I − ḠtC̄t)(r̂t − r̄t+1)‖

≤
√
t+ 1‖(I − ḠtC̄t)‖(‖r̂t − r̄t‖+ ‖r̄t − r̄t+1‖)

≤ γ
√
t+ 1

(
C̄

t
+
C

t

)

(49)

where we obtain (49) using Lemma 3 and Proposition 2 for
some finite constants C and C̄. Thus, with probability 1, we
have
√
t+ 1(I − ḠtC̄t)(r̂t − rt+1)→ 0, as t→∞. (50)

A convergence rate analysis of r̄t is provided by Konda [27].
As shown in [27, Th. 6.3], the sequence of random variables√
t+ 1(r̄t+1 − r̂∗μ) converges in distribution toN (0,Σc) as t→
∞. The covariance matrix Σc can be computed asC−1

μ Γ(C ′μ)−1 ,
where Γ is the covariance matrix of the Gaussian distribution
to which

√
t(C̄t r̂∗μ − d̄t) converges in distribution. Combining

this with (48) and (50), we conclude the proof.

APPENDIX F
DECENTRALIZED EXTENSION TO THE S-APIA

The S-APIA (see Algorithm 1) proposed in Section III is
a centralized algorithm. The computational complexity of S-
APIA is of order O(n), where n is the number of MDP states
(see Remark 2). In the following, we extend the S-APIP to a
decentralized version such that the computational complexity
of the algorithm does not depend on the number of MDP states.

For the multiagent persistent monitoring problem, the state
transitions of the constructed MDP only occur between the
neighboring states, which is due to the geometry constraints of
the environment model and the motion constraints of the robot
model [20], [30]. Denote N (i) the set of neighboring states of
the state i and we assume that there exists a finite number N̄
such that |N (i)| ≤ N̄ for i = 1, . . . , n. For the considered mul-
tiagent problem, we have N̄ � n, that is, the maximum number
of neighboring states is much less than the number of total MDP
states.

The centralized computations involved in the S-APIA mainly
come from the model construction and policy update steps in the
API approach (see lines 3 and 12 in Algorithm 1). In the model
construction step, we construct the full transition matrix and cost
vector for the entire state space. In the policy update step, the
improved policy is obtained by minimizing the evaluated cost
vector for the entire space. Using the neighboring-transition
structure of the considered MDP, we propose a distributed way
in the following to generate simulation samples and update the
policy only using neighboring transition probabilities and cost
values.

The main idea of the distributed algorithm is to obtain C̄t
and d̄t by averaging samples collected using the controls cor-
responding to the (approximately) improved policy. In the fol-
lowing, we briefly presented the main changes of the distributed
version compared to the original S-APIA algorithm. Given the
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generated simulation transitions, we update the parameter vector
r̂t using the iteration

r̂t+1 = r̂t − γḠt(C̄t r̂t − d̄t) (51)

where γ ∈ (0, 1] is a stepsize, Ḡt is defined the same as (22),
and C̄t and d̄t are defined the same as (17) but with all sub-
matrices defined equivalently in the following iterative form:
C̄11
t = t

t+1 C̄
11
t−1 + 1

t+1 ((φ(it)− φ(jt))(φ(it)− φ(ĵt))′ + nφ

(it)φ(̂it)′), C̄12
t = t

t+1 C̄
12
t−1 + 1

t+1 (φ(it)− φ(jt))(1−
−→
P μ(it ,

ĵt)/Pμ(it , ĵt)), C̄21
t = t

t+1 C̄
21
t−1 + 1

t+1 (1−−→P μ(it , jt)/Pμ(it ,

jt))(φ(it)− φ(ĵt))′, C̄22
t = t

t+1 C̄
22
t−1 + 1

t+1 (1−−→P μ(it , jt)/

Pμ(it , jt))(1−
−→
P μ(it , ĵt)/Pμ(it , ĵt)), d̄1

t = t
t+1 d̄

1
t−1 + 1

t+1

(φ(it)− φ(jt))g(it), and d̄2
t = t

t+1 d̄
2
t−1 + 1

t+1 (1−−→P μ(it ,
jt)/Pμ(it , jt))g(it).

In the centralized algorithm, each policy is evaluated with a
very large number of samples using the full transition matrix and
cost vector, and the improved policy is obtained for the entire
state space during each iteration of policy improvement. In the
distributed algorithm, the simulated transitions are generated
using a policy that is updated every few samples using neigh-
boring transition probabilities and cost values, and the policy
is only updated for the index state that has been generated. In
the extreme case of a single sample between policies, when the
next index state it+1 is generated according to distribution ξ, we
only need to update the policy associated with the state it+1 as

μt+1(it+1) = arg min
u∈U (it+ 1 )

∑

j∈N (it+ 1 )

(g(it+1 , u)

+ p(it+1 , u, j)φ(j)′rt+1

+ λt+1
−→p (it+1 , u, j))

where recall that N (it+1) denotes the set of neighboring states
of it+1 , and r̂t+1 = [r′t+1 , λt+1]′ is updated using the itera-
tion (51). Then, we generate the state transitions (it+1 , jt+1) and
(it+1 , ĵt+1) independently using the updated policy μt+1(it+1).
The generated simulation transitions will be used to update the
parameter vector r̂t+1 in the next iteration and so on.

Compared to the centralized algorithm, the distributed one
presented above is an iterative algorithm with each iteration
only depending on neighboring transition probabilities and cost
values. The policy is updated every few samples only to the
states that have been processed. In such a way, the computational
complexity of the distributed algorithm does not depend on the
number of MDP states. Generally, in distributed algorithm, a
substantial number of samples may need to be collected with
the same policy before switching policies, in order to reduce the
variance of C̄t and d̄t . The convergence results of the distributed
algorithm will be studied in our future work.
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