
460 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

An Automated Framework for Formal Verification of
Timed Continuous Petri Nets

Marius Kloetzer, Cristian Mahulea, Member, IEEE, Calin Belta, Member, IEEE, and Manuel Silva

Abstract—In this paper, we develop an automated framework
for formal verification of timed continuous Petri nets (ContPNs).
Specifically, we consider two problems: (1) given an initial set of
markings, construct a set of unreachable markings and (2) given
a Linear Temporal Logic (LTL) formula over a set of linear predi-
cates in the marking space, construct a set of initial states such that
all trajectories originating there satisfy the LTL specification. The
starting point for our approach is the observation that a ContPN
system can be expressed as a Piecewise Affine (PWA) system with
a polyhedral partition. We propose an iterative method for anal-
ysis of PWA systems from specifications given as LTL formulas
over linear predicates. The computation mainly consists of polyhe-
dral operations and searches on graphs, and the developed frame-
work was implemented as a freely downloadable software tool. We
present several illustrative numerical examples.

Index Terms—Discrete-event systems, formal analysis, piecewise
affine (PWA) systems.

I. INTRODUCTION

D ISCRETE Petri nets (PNs) are a powerful mathematical
formalism with an appealing graphical representation,

suitable for modeling, analysis and synthesis of discrete-event
systems. Their main feature is the capacity to graphically
represent and visualize primitives such as parallelism, synchro-
nization, and mutual exclusion. Petri nets are successfully used
in multiple complex automated and distributed systems, such
as manufacturing systems [2]–[7], energy or railway transport
networks [8], and petrochemical plants [9]. Such complex
systems have to satisfy a broad area of objectives, including
safety and liveness requirements. Formal methods provide rich
specification languages, such as temporal logics, to express
such requirements, and algorithms, such as model checkers,

Manuscript received October 14, 2009; revised March 08, 2010; accepted
April 27, 2010. Date of publication May 27, 2010; date of current version
August 06, 2010. This work was supported in part by Grant NSF CNS-0834260
from Boston University and by Grant CICYT – FEDER DPI2006-15390 from
the University of Zaragoza. The research leading to these results has received
funding from the European Community’s Seventh Framework Programme
(FP7/2007-2013) under Grant 224498. Paper no. TII-09-10-0259.

M. Kloetzer is with the Department of Automatic Control and Applied Infor-
matics, Technical University “Gheorghe Asachi,” 700050 Iasi, Romania (e-mail:
kmarius@ac.tuiasi.ro).

C. Mahulea and M. Silva are with the Aragón Institute for Engineering Re-
search (I3A), University of Zaragoza, Maria de Luna 1, 50018 Zaragoza, Spain
(e-mail: cmahulea@unizar.es; silva@unizar.es).

C. Belta is with the Department of Mechanical Engineering and the Division
of Systems Engineering at Boston University, Boston, MA 02215 USA (e-mail:
cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2010.2050001

to verify the satisfaction of the specifications. Despite its use-
fulness from a conceptual point of view, formal verification of
Petri nets is, in general, a hard problem, mainly because most
“realistic” Petri nets have very large state-spaces.

A general approach when dealing with state explosion prob-
lems is to use abstraction techniques for constructing computa-
tionally manageable quotients. In the case of discrete PN with
a time interpretation, the construction of a state space abstrac-
tion using the concept of “state-classes” have been introduced in
[10] and [11]. This technique allows to represent the state graph
of a timed PN, while preserving marking and complete traces,
and therefore it is suitable for reachability analysis and model
checking. Another way of tackling the state explosion problem
in discrete systems is the approximation by fluidification [12],
[13], which leads to a so-called fluid Petri net. This approxima-
tion technique is not new and has been applied in many other
discrete formalisms such as queuing networks leading to fluid
queuing networks [14]–[16]. The fluid model has the advan-
tage that many design and analysis techniques based on integer
linear programming problems correspond to linear program-
ming problems, hence they have polynomial time complexity.

Although fluidification proves its advantage by reducing the
computation complexity in problems of practical interest [13],
[17], even basic properties of timed continuousnet models are
undecidable [18]. For timed continuous PN, two firing seman-
tics are mainly encountered in literature: finite and infinite server
semantics [12], [13], [19]. The problem of formal verification
of fluid PN was considered in the case of finite server seman-
tics [20]. However, it was recently proven that continuous Petri
nets systems with infinite server semantics provide, in general, a
better approximation of the underlying discrete net [21]. Since
a ContPN is a subclass of hybrid systems, it can be modeled
as a discrete hybrid automaton [22]. However, for better ex-
ploiting the structural properties of Petri nets (e.g., continuous
vector field at the region borders), we limit our attention only to
ContPN systems instead of considering general hybrid systems.
On the other hand, this implies that the obtained results cannot
be extended to any hybrid system.

In this paper, we develop an approach for performing formal
analysis of timed continuous Petri nets with infinite server se-
mantics. As far as we know, the proposed framework is the first
one of this kind. More specifically, we provide algorithmic so-
lutions to two general problems: (1) given an initial set of mark-
ings, construct a set of unreachable markings and (2) given a
Linear Temporal Logic (LTL) formula over a set of linear pred-
icates in the marking space, construct a set of initial states such
that all trajectories originating there satisfy the LTL specifi-
cation. This paper extends the results from [1] by providing
more technical details, a description of the software implemen-
tation, and by applying the developed framework to two very

1551-3203/$26.00 © 2010 IEEE
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 461

challenging Petri net problems: (1) finding timed implicit arcs
and (2) finding initial markings from where the system reaches
deadlock.

Technically, the approach presented in this paper is based on
the Piecewise Affine (PWA) representation of the dynamics of a
deterministically timed continuous Petri net with infinite server
semantics. As part of the solution, we develop an iterative proce-
dure for analyzing PWA systems, which starts by embedding a
PWA system into an infinite transition system, and continues by
constructing a finite quotient of this transition system. Then, the
obtained quotient is iteratively analyzed and refined until a ter-
mination condition is encountered. The formal analysis problem
we solve for PWA systems relates to [23], where a richer class
of hybrid affine systems is analyzed only against reachability
properties. Temporal logic analysis problems for PWA systems
are also studied in [24] (in continuous time) and [25] (in dis-
crete time). However, in these works, the refinement is based
on an (approximate) implementation of the bisimulation algo-
rithm, and on the computation of the Pre image of sets through
the vector fields of the system. In this paper, the iterative refine-
ment is achieved through simple cuts, and resembles our pre-
vious work [26] for multiaffine systems and rectangular sets.
Thus, our approach can be regarded as incorporating techniques
from abstraction and analysis of continuous systems into tools
for analyzing Petri nets. The framework described in this paper
was implemented in Matlab as a freely downloadable software
tool [27].

Formal analysis of hybrid systems using model checking
techniques has been studied by the computer science com-
munity using the so called linear hybrid automata (LHA)
[28], [29]. This is an autonomous nondeterministic model
mainly used for simulation and verification of hybrid systems.
Recently, some results have been obtained related to the equiv-
alence between PWA and LHA systems [30]. It is shown that
every PWA system can be written as a LHA system and the
obtained LHA system can generate all trajectories of the PWA
system. Unfortunately more trajectories are obtained making
the solution of the formal analysis based on the equivalent
LHA an over-approximation of the solution obtained using the
original PWA formulation.

The remainder of this paper is organized as follows. After
some preliminaries concerning Petri nets, transition systems
and temporal logic (Section II), Section III formulates the
addressed problems and outlines the main ideas for solving
them. Section IV translates the initial problems to PWA for-
mulations, while Section V deals with formal analysis of PWA
systems such that the proposed problems are solved. Some
aspects regarding the implementation and complexity are given
in Section VI. Section VII applies the developed approaches
to two important problems concerning timed continuous Petri
nets, and Section VIII formulates some concluding remarks.

II. PRELIMINARIES

A. Timed Continuous Petri Nets

Definition 2.1: Continuous Petri Net System: A Contin-
uous Petri Net (ContPN) system is a pair , where

is a net structure and is the
initial marking. is the set of places, is the set of transitions,

Fig. 1. A (timed) continuous Petri Net (ContPN).

and are the pre and post incidence
matrices, respectively.

Let , and , denote the places
and transitions. For a place and a transition ,

and represent the weights of the arcs from to
and from to , respectively. Each place has a token

load denoted by . The vector of all token loads is
called marking, and is denoted by . The preset and
postset of a place or transition are denoted by
and , and represent the input and output transitions and places
of , respectively. More specifically, if ,

and . Similarly,
if , and

.
It is important to note that the marking of a ContPN can take

real non-negative values, while in discrete Petri Nets (PN) only
natural values are possible. In fact, this is the only difference
between a continuous and a discrete PN.

1) Example 2.2: Let us consider the ContPN in Fig. 1. For
this net, ,

means that there exists an arc from to of
weight 2. signifies that there exists an arc from
to of weight 3. and .

A transition is enabled at if and only if ,
. Its enabling degree is

(1)

which represents the maximum amount in which can fire.
An enabled transition can fire in any real amount

, leading to a new marking , where
is the token-flow matrix and is its

column. If is reachable from through a finite sequence ,
a state (or fundamental) equation can be written

(2)

where is the firing count vector, i.e., is the cumula-
tive amount of firing of in the sequence .

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

462 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Definition 2.3: The set of all reachable markings from
is called reachability set, and it is denoted by . For
simplicity, notation will be used when there is no confusion
on and . In the case of a ContPN system, is a convex
set [13].

Definition 2.3 is trivially extended when a whole set
of initial markings is specified, by

.
A ContPN is bounded when every place is bounded, i.e.,

with at any reachable marking .
Right and left non negative annullers of the token flow matrix

are called T- and P-semiflows, respectively. If non negativity
is not required, the annullers are called T- and P-flows.

If a timed interpretation is included in the model, the fun-
damental equation depends on time: ,
which, through time differentiation, becomes .
The derivative of the firing sequence is called
the (firing) flow, and leads to the following equation for the dy-
namics of the ContPN

(3)

Definition 2.4: Timed Continuous Petri Net System: A
Timed Continuous Petri Net system is a pair , where

is a continuous Petri net system and is the
firing rate vector.

From now on, we will refer only to timed continuous Petri
Nets, and, with a slight abuse of notation, we will denote them
by ContPN.

This paper deals with infinite server semantics, which was
shown to provide a good approximation of the underlying dis-
crete net for a broad class of systems [21]. Under this semantics,
the flow of transition is given by

(4)

where is its firing rate and the enabling function is given by
(1). From (3), (4), and (1), it can be easily seen that a ContPN
system with infinite server semantics is a piecewise linear
system with polyhedral regions and everywhere continuous
vector field. In other words, the dynamics of the markings are
given by

(5)

where , is a polyhedral set, and is a set of
labels for the modes of the piecewise linear system (see [31] for
more details).

2) Example 2.5: Consider the ContPN in Fig. 1 with
and . Transition

has two input places, and and has also two input
places: and . According to (4) and (1), the flows through
the transitions of the system are given by

if

if

if
if

and .

This net has two token conservation laws (P-semiflows)

(6)

Since each place appears in at least one P-semiflow, the net
system is bounded. Substituting (4) into (3) leads to the piece-
wise linear representation (5). For example, one of the modes in
this representation of the system is described by

, and

The number of regions of a ContPN system is upper
bounded by , and in the case of a bounded net system
they are closed polytopes. For a given initial marking, some
places can be implicit [17] (given a ContPN system ,

is implicit if and only if such that
). For example, in

the ContPN in Fig. 1 with , is an implicit
place. Therefore, region
is included in since

is satisfied only as equality. In fact, is a frontier
of . Also, is included in

for the same reason. In our
approach we consider only the regions that are full-dimensional
polytopes in . Note that this is not a limitation, since
at the common border of two regions, the corresponding linear
systems provide the same vector field according to (4) and (1).

B. Transition Systems and Temporal Logic

Definition 2.6: Transition System: A transition system is a
tuple , where is a (possibly infinite)
set of states, is a set of initial states, is a
transition relation, is a finite set of atomic propositions, and

is a satisfaction relation.
For an arbitrary proposition , we define

as the set of all states satisfying it. Conversely, for an
arbitrary state , let , ,
denote the set of all atomic propositions satisfied at . An ini-
tialized trajectory or run of starting from is an infinite
sequence with the property that ,

, and , for all . A trajectory
generates a word ,

where . The set of all generated words is called the
language of , and is denoted by .

An equivalence relation over the state space of
is proposition preserving if for all and all ,
if and , then . A proposition pre-
serving equivalence relation naturally induces a quotient tran-
sition system . is the
quotient space (the set of all equivalence classes), and the set of
initial states is , where

is the concretization map corresponding to .
The transition relation is defined as follows: for

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 463

, if and only if there exist and
such that . The satisfaction relation is de-

fined as follows: for , we have if and only if
there exists such that . It is easy to see that

(7)

The quotient transition system is said to simulate the orig-
inal system , which is written as .

In this work, we consider system specifications given as
formulas of a fragment of Linear Temporal Logic (LTL)
[32], called , which we will simply denote by LTL
throughout the paper. A formal definition for the syntax and
semantics of LTL formulas is beyond the scope of this paper.
Informally, LTL formulas are recursively defined over a set of
atomic propositions , by using the standard Boolean operators
and a set of temporal operators. The Boolean operators are:
(negation), (disjunction), (conjunction), and the temporal
operators that we use are: (“until”), (“always”), (“even-
tually”). LTL formulas are interpreted over infinite words over
the set , such as those generated by the transition system

from Definition 2.6. If and are two LTL formulas
over and is a word produced by , then formula
means that (over the word) will eventually become true,
and is true until this happens. Formula means that
becomes eventually true, whereas indicates that is true
at all positions of . More expressiveness can be achieved by
combining the mentioned operators.

Classical LTL allows for an additional temporal operator
called “next.” We do not allow for the “next” operator because,
as shown in [33], it is meaningless when abstracting a con-
tinuous system to a finite discrete one, as considered in this
paper. On the other hand, (LTL without the “next”
operator) cannot distinguish between words with different num-
bers of finitely many consecutive repetitions of a symbol, e.g.,

satisfies exactly the same formulas as .
Given a transition system and an LTL formula over its

set of propositions, checking whether satisfies is called
model checking. For finite transition systems, there exist off-
the-shelf tools for model checking [34]. Note that if a proposi-
tion-preserving quotient satisfies , then by the language
inclusion (7), the initial transition system also satisfies the
formula.

III. PROBLEM FORMULATION AND APPROACH

Consider a ContPN system and let be a user-defined set
of strict linear inequalities over its marking , which will be
simply called predicates. Formally, each element of has the
form , with ,

, . Without restricting the generality of
the problem, we assume that the set also includes all the affine
functions in necessary to define the full-dimensional regions

.
Remark 3.1: For technical reasons that go beyond the scope

of this paper, we limit the specifications in the set of predicates
to strict linear inequalities. Also, we will regard the negation of
any predicate from set as meaning multiplication with of
the corresponding inequality. This means that we only include
open halfspaces and full-dimensional polytopes. However, this
assumption does not seem restrictive from an application point

Fig. 2. Reachability set of the ContPN in Fig. 1 with ��� �
��� �������������� and ��� � �.

of view. If the predicates in model sensor information, it is
unrealistic to check for the attainment of a specific value due to
sensor noise. Moreover, if a specific value is of interest, it can be
included in the interior of a polytope defined by other predicates.
Our formalism ignores markings of ContPN that lie on the hy-
perplanes obtained by setting to zero the linear inequalities from

, . This fact leads to a slightly increased con-
servativeness when solving the problems formulated in this sec-
tion only in the case when there are trajectories “disappearing”
inside such hyperplanes. Reducing this conservativeness would
require a much more complex and computationally slow em-
bedding in Section V, the gain being noticeable only in the very
particular (and unrealistic) mentioned situations.

1) Problem 3.2 (Construction of Safe Sets): Given a set of
initial markings defined as the conjunction of predicates from a
set , find a subset of the reachability set that cannot be
reached by trajectories of ContPN originating in the initial set.

2) Problem 3.3 (Initial Set Satisfying LTL Specification):
Given an LTL formula over , find a set of initial markings of
ContPN from where all possible trajectories satisfy the formula.

To illustrate the importance of the formulated problems, in
Section VII we will use the algorithm solving Problems 3.2
and 3.3 for providing solutions to two open questions in the
ContPN area, namely finding timed implicit arcs and finding ini-
tial marking from where the system reaches a deadlock state.
The algorithm for solving Problems 3.2 and 3.3 was imple-
mented in Matlab as a freely downloadable software tool [27].

To fully specify Problems 3.2 and 3.3, we need to define the
semantics of an LTL formula over a continuous trajectory. A
formal definition is given in Section V through an embedding
into a transition system. However, an informal and intuitive def-
inition can be given as follows: an evolving trajectory produces
the set of predicates from that are true at the current marking,
with no finite consecutive repetitions of the set of predicates, and
with infinitely many repetitions of the set of predicates satisfied
by a region that is an invariant for the trajectory. Note that this
is consistent with our choice of LTL without the “next” oper-
ator. For example, in Fig. 2, if the regions satisfy the sets of
predicates , , respectively, then the shown
trajectory, starting from and converging to , generates
the word .

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

464 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Our approach to solving Problems 3.2 and 3.3 consists of two
main steps. The first step is required if the ContPN system has at
least one P-flow, i.e., at least one left annuller of the incidence
matrix. In this step, we compute a set of linearly independent
P-flows of ContPN and then construct a reduced representation
of the ContPN in the form of a PWA, as in Section IV. Second,
we perform formal analysis of the corresponding PWA system
based on discrete abstractions (finite quotients) and refinement,
and by employing convexity properties of affine systems in full-
dimensional polytopes [33], [35], [36], as shown in Section V.

IV. DERIVATION OF THE PWA FOR A ContPN

The token conservation laws (P-flows) introduce a number of
dependent variables [31]. By removing these

variables, a reduced system with a piecewise affine behavior is
obtained. Let and let be
a matrix whose rows form a basis of P-flows, i.e.,

. Since is a basis, , and
can be written in the form

(8)

where . By premultiplying the state (2) by ,
we obtain

(9)

By considering , with and
, from (9) and (8), we obtain

(10)

Let

Equation (5) can be rewritten as

(11)

such that . By premultiplying (11) by ,
we obtain

(12)

and according to (10)

(13)

Therefore, the piecewise linear dynamics (5) are equivalent
with the piecewise affine dynamics (13) in a reduced dimension,
plus some equalities (10). For simplicity, we use a slight abuse
of notation and denote the obtained PWA system by

(14)

with the implicit understanding that the state (marking)
has already been reduced and ’s are the corresponding new
system matrices. The regions and the set are the same as
in (5), with the observation that are now expressed using a
smaller number of variables. The linear inequalities from the set
of specification predicates are also transformed accordingly,
while the predicate symbols remain the same. It is easy to see

that, as in the piecewise linear representation, the vector field
of (14) is continuous everywhere.

The trajectories of the PWA system (14) produce words ac-
cording to the informal definition from Section III. In the re-
mainder of this paper, when we refer to Problems 3.2 and 3.3,
we assume that they are formulated for the PWA representation
(14) of the ContPN system.

1) Example 4.1: The net in Fig. 1 has two token conservation
laws (P-semiflows) given in (6), thus two variables are redun-
dant. If and are chosen as free variables, then a planar
PWA representation of the form (14) can be constructed. The
reachability set in the reduced () – plane is sketched in
Fig. 2. The dynamics corresponding to region (defined in
Example 2.5) are given by

(15)

V. FORMAL ANALYSIS OF PWA REPRESENTATIONS OF ContPN

Assume there are feasible sets of the form
, where . Since the

affine functions necessary to define the regions are among
, , each of these sets is a full dimensional

polytope included in the reachability set of the PWA system,
and it corresponds to a feasible combination of predicates
from inside each region . We denote these sets by

.
Definition 5.1: For the PWA system (14) and the set of predi-

cates , the (infinite) embedding transition system is defined as

(16)

where , , and .
The satisfaction relation is obviously defined as if
and only if verifies the strict linear inequality . The tran-
sition relation is defined according to the following two rules:
(1) with , , if
and only if the polytopes and are adjacent1 and there ex-
ists a trajectory of (14) () such that

, , and is included in the clo-
sure of and (2) with if
and only if there exists a trajectory of (14) such that

and .
Note that the trajectories of satisfy the informal defini-

tion from Section III. Formally, we have the following.
Definition 5.2: The language of the transition

system (16) is defined as the set of all words produced by
trajectories of the PWA system (14) representing the ContPN
system.

The embedding transition system (16) has infinitely many
states and cannot be model checked. To provide (conservative)
solutions to Problems 3.2 and 3.3, we propose an iterative pro-
cedure that produces a finite quotient and then refines it if nec-
essary. At each step, the language of the obtained quotient in-
cludes the language of .

1Throughout the paper, we call two full dimensional polytopes in adjacent
if their closures share a facet that is a full dimensional polytope in .

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 465

A. Construction and Analysis of the Quotients

Let be a polytopal proposition-preserving equivalence re-
lation over that does not violate the polytopes ,

. In other words, each equivalence class in is
a polytope included in exactly one of , . Ac-
cording to Definition 5.1, to compute the transitions of ,
we need to solve the following two problems: (i) for all pairs
of equivalence classes corresponding to adjacent polytopes, de-
cide if there is a trajectory of penetrating from one to an-
other, and (ii) for all equivalence classes, decide if there exists
a trajectory of for which the corresponding polytope is an
invariant.

For both problems (i) and (ii) above, we propose to use
the computational framework developed in [36]. In [36], it
is shown that an affine system has a trajectory contained in
a full dimensional open polytope for all times if and only
if the affine system has an equilibrium inside the polytope.
Therefore, solving problem (ii) in a polytopal equivalence class
reduces to checking the nonemptiness of the polyhedral set
given by the equations of the polytope plus the equation setting
the corresponding vector field to zero. In addition, in [36],
it is shown that, given two adjacent polytopes, there exists a
trajectory penetrating from one to another in finite time if and
only if there exists a vertex on the common facet at which the
projection of the vector field on the outer normal of the facet
pointing from the first to the latter is strictly positive. Recall that
the vector field of our system is continuous everywhere, so the
vector fields of two affine systems on adjacent polytopes agree
on the common facet. In conclusion, solving both problems (i)
and (ii) reduces to checking nonemptiness of polyhedral sets,
for which there exist several powerful tools [37].

Having a finite quotient , we can provide a (conser-
vative) solution to Problem 3.2 as follows. First, we define the
set of initial states as the set of states of that
satisfy the predicates from . Then, by using a simple search
on a graph, we find all states of that are not reach-
able from . Enabled by the language inclusion prop-
erty (7), a solution to Problem 3.2 can be presented in the form

, where is the concretization map
defined in Section II-B.

Problem 3.3 can be solved by model checking from
each initial state using an off-the-shelf model checker. If the
formula is satisfied at a state of , then, by the lan-
guage inclusion property (7), all trajectories of (and of
ContPN) starting at satisfy the formula. If we denote
by the set of all initial states of from which the
formula is satisfied, then a set of initial states of (and
of ContPN) from which the formula is satisfied is given by

. In our implementation, we used the
LTL planning tool developed in [33] and further improved in
[38]. This is computationally more attractive, because our algo-
rithm reuses some computations from the previously considered
initial state, instead of completely reiterating a model checker
for each new initial state (for details, see [38]).

B. Iterative Analysis and Refinement

We first construct and analyze the “roughest” quotient
, which corresponds to partitioning with respect to

Fig. 3. The first quotient of the PWA system from Fig. 2.

predicates from the initial set , and to the equivalence relation
defined by if and only if there exists , ,
such that . If the safe set is not large enough (or
empty) in Problem 3.2, or if the set of initial states is not large
enough (or empty) in Problem 3.3, then we construct “finer”
quotients.

1) Example 5.3: For the ContPN from Fig. 1 with
and , if the set contains only the

linear predicates necessary to define the regions , , 2, 3,
4, then the first quotient is shown in Fig. 3. If we are interested
in constructing a safe set (Problem 3.2), then it is easy to see that
this set is empty. However, this set becomes non-empty through
refinement, as shown below.

We construct finer quotients by adding to the current set
some new predicates (from a set), and then recomputing the
new feasible polytopes , as explained at the beginning of
Section V. Let us denote by the quotient obtained as in
Section V-B, but corresponding to the set of predicates
instead of (for simplicity and since no confusion is possible,
we use the same notation for the polytopal proposition-pre-
serving equivalence relation, even if it refers to a new partition).
It is immediate to observe that , simply
because the new partition2 is a subpartition of the one corre-
sponding to . Therefore,

, which means that by using instead of
we can obtain less conservative solutions for Problems 3.2 and
3.3.

We start with , and for each pair of states
, , such that

and , a new predicate is added to . This
denotes the halfspace whose supporting hyperplane has the

following property: it cuts the common facet of and
, such that it separates (on this facet) the points where

the vector field projection on the outer normal of the common
facet has positive and negative values, respectively. Assumption

guarantees that we do not create two propositions for
the same pair of states of . Results from [36] guarantee
that such a separation is possible by a single linear predicate.
For avoiding some new notations, we do not include the ex-
plicit equation of , and we just mention that its computation
requires only matrix multiplications. Our method of adding
transitions between states of the discrete quotients implies that

can help in increasing the difference between
and , as explained next.

2The regions induced by the proposition-preserving equivalence relation at
each step do not really produce a partition of the state space. Because we con-
sider only strict inequalities, we “lose” points at each step.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

466 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Assume that and are each split by in two
subpolytopes, labelled in by , , and , , re-
spectively. Note that and are adjacent, and each of them
is adjacent with only one of , (not with both), and vice
versa. Assume that is adjacent with and is adjacent
with . Then, the above mentioned sign separation provided
by , and the way of adding transitions from Section V-B, guar-
antee that in there exist either transitions and

, or transitions and . Therefore, we hope
that is less conservative than (this fact cannot
be guaranteed before testing transitions between and ,
and , respectively, and these transitions are not resulting from
properties of , but from tests as in Section V-B).

Note that there are infinitely many choices of predicates
yielding the same separation of the common facet of
and . Alternatively, one can focus on different splitting
methods (instead of linear predicates), as long as the same sign
separation is enforced. The motivation for our choice of cut-
ting is threefold. First, is very easy to compute, and second,
when splitting with some additional linear predicates we use the
same algorithms as before, but with a larger input set . Third,
we have the guarantee that the adjacent polytopes from the par-
tition exactly share facets (as needed for adding transitions in
the discrete quotients). The drawback is that will not split
only and , but also other polytopes from the par-
tition corresponding to , and thus the number of states
of can increase significantly. Another way of cutting
could involve a triangulation of and that pre-
serves (contains as edge) the sign separating set we want. How-
ever, there are no algorithms for performing such a constrained
triangulation in space dimensions higher than 2.

Even if the solutions to Problems 3.2 and 3.3 at a given step
are not satisfactory, there are two situations when we do not
perform refinement: either no more predicates are found, or a
certain imposed complexity limit is reached (e.g., a maximum
number of states in the discrete quotient is reached). We note
that, even if refinement in the current step does not produce a
better solution to one of our problems, the refinement in the
next step might yield an improvement, as it can be seen in the
example concluding this section.

The above ideas are summarized in Algorithm 5.4, which
presents the main steps to be taken for solving the discrete ver-
sions of Problems 3.2 and 3.3, respectively. By “discrete ver-
sions” we understand the problems of finding the discrete sets

and . Note that notation does not explicitly ap-
pear in Algorithm 5.4, since it just stands for the to be
constructed at the next iteration.

Algorithm 5.4 (Discrete Solutions to Problems 3.2 and 3.3):

1: For Problem 3.2 skip lines 13–21, and for Problem 3.3
skip lines 8–12

2:

3: while do

4: Find feasible polytopes induced by predicates from
and construct

5: if then

6:

7: end if

{For Problem 3.2:}

8:

9:

10: if then

11:

12: end if

{For Problem 3.3:}

13:

14: for all do

15: if LTL formula is satisfied by any word of
starting from then

16: Add in

17: end if

18: end for

19: if then

20:

21: end if

22: if then

23: Break “while” loop

24: end if

{Refinement}:

25:

26: for all s.t.
and do

27: Construct predicate

28:

29: end for

30: if then

31:

32: else

33:

34: end if

35: end while

Once the sets and are found, the solutions to Prob-
lems 3.2 and 3.3 are immediate, by using the concretization map

as shown at the end of Section V-B.
2) Example 5.5: Consider the ContPN system in Fig. 1 with

, and the problem of con-
structing a safe set (Problem 3.2) for the initial region . It
has been seen in Example 5.3 that at the first iteration, no safety
regions are obtained [Fig. 4(a)]. Through refinement, three new
cutting predicates are obtained [the thin lines from Fig. 4(b)],

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 467

Fig. 4. Iterative construction of a safe set for the initial region � shown in yellow (light gray). The safe set obtained at each iteration is shown in green (dark
gray).

and at the second step the transition system will contain 14 dis-
crete states and a safety region depicted in Fig. 4(b). At the next
iteration, the number of discrete states of the transition system
grows to 24, but the safety region is exactly the same as in
previous step [Fig. 4(c)]. Refining more, a number of 30 dis-
crete states is obtained and the safety region is increased a little
[Fig. 4(d)]. Since no other cutting is possible, the procedure is
finished.

VI. SOFTWARE IMPLEMENTATION, CONSERVATIVENESS

AND COMPLEXITY

In this section, we briefly present the software implementa-
tion of the proposed techniques, and we discuss the conserva-
tiveness and complexity of our approach for solving Problems
3.2 and 3.3.

We implemented our approach as a user friendly software
package for formal verification of ContPN under Matlab. The
tool takes as inputs the ContPN (defined by the and
matrices, as in Definition 2.1), the user-defined propositions
from set , and the set of initial markings defined by (for
Problem 3.2), respectively, the LTL formula (for Problem 3.3).
The initial ContPN is automatically projected into a PWA repre-
sentation (together with the defined predicates), as described in
Section IV, and then the approach from Section V is employed
for solving the proposed problems. The software tool is freely
downloadable from [27], and it also uses the next mentioned

free packages. The first one is a mex-file calling CDD in Matlab
[39], and it is used for finding the feasible polytopes induced
by predicates from and for converting between edge repre-
sentation and vertex representation of a polytope. For solving
Problem 3.3, we embedded the LTL planning tool from [33],
[38], which in turn uses LTL2BA [40], a free package that con-
verts an LTL formula into a so-called Büchi automaton.

The approach we developed can be used for analyzing any
bounded ContPN. Constructing a PWA representation of the
ContPN does not introduce conservativeness, nor complex com-
putations (as described in Section IV), and therefore our subse-
quent analysis on conservativeness and complexity will focus
on the approach described in Section V.

The abstraction of the PWA system to a finite quotient is
a general source of conservativeness, because we look for
whole polytopes instead of investigating distinct markings and
trajectories in the reachability set. More specifically, the way
we create transitions in the discrete quotient induces conserva-
tiveness in the following sense. The existence of a set of states

, such that does
not necessarily imply that there exists a continuous trajectory
starting from a marking in and crossing and then

. Such a situation can be called lack of transitivity, and
it is fundamental in distinguishing between simulation (as in
our case) and bisimulation relations among transition systems.
The refinement aims to reduce this kind of conservativeness.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

468 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

Fig. 5. Using safety analysis to reduce the size of a ContPN: (a) the safe set for the yellow (light gray) region� is shown in green (dark gray) and (b) the reduced
ContPN.

However, the refinement that we develop is again conservative,
because we restrict ourselves to linear cuts, as described in
Section V-C.

From the complexity point of view, solving Problem 3.2 ba-
sically reduces to searches on a graph, where complexity is de-
pendent on the number of nodes (states in our finite quotient).
The complexity for solving Problem 3.3 depends on both the
size of the LTL formula (chosen by user) and on the size of the
finite quotient. We mention that although the upper bound com-
plexity induced by the LTL formula (through the corresponding
Büchi automaton) is exponential in the length of the formula,
this limit is rarely reached in practice. Therefore, the necessary
time for running Algorithm 5.4 strongly depends on the number
of regions in our partition, and thus the bottleneck of our ap-
proach is resulting from the refinement procedure. As explained
in Section V-C, each hyperplane we use in a refinement step cuts
all the existing regions from the current partition (rather than
cutting only those implied in finding the hyperplane), and this
fact can significantly increase the number of states of the finite
quotient from one refinement step to another. At each iteration
of Algorithm 5.4, the resulted partition has at most regions.
However, if is greater that the state space dimension () of
the PWA system (which is usually the case, due to refinement),
there will be much less than regions. Also, it is worth men-
tioning that in our implementation we use an iterative procedure
to construct the set of feasible polytopes, while at the same time
taking into consideration new predicates. This way, especially
for a large cardinality of , we end up with testing a number
of predicate combinations much smaller than . Finally, to
give a rough idea about the computation time, we can mention
that the computation for any example presented here took less
than 10 s.

VII. FORMAL ANALYSIS OF ContPN SYSTEMS

In this section we use the tools developed in this paper to
answer some open questions in the analysis of timed continuous
Petri Nets.

A. Timed Implicit Arc

Definition 7.1: Timed Implicit Arc: Given a timed ContPN
system , an input arc is called timed implicit
if and only if for all .

In other words, an input arc is timed implicit if and
only if the timed evolution of the ContPN system starting from

is such that never gives the enabling degree of ,
for all . In this case, the corresponding linear system is
redundant and can be removed, since it will never govern the
evolution of the ContPN. Moreover, if all output arcs of one
place are timed implicit, that place can be removed, resulting
in a reduced number of state variables. Therefore, any analysis
technique inducing either a reduced set of linear systems or a
reduced number of state variables is useful because of its direct
impact on the computational complexity. Until now, this prop-
erty has been structurally characterized only for the special case
of par-begin par-end nets [41]. Using the solution to the safety
Problem 3.2, Algorithm 7.2 can be used to determine if an arc
is implicit.

Algorithm 7.2 (Check if is a Timed Implicit Arc):
1) let , i.e., a very small

region near the initial marking
2) let be the set of predicates necessary to define
3) let be the set of predicates necessary to define ’s and

4) Use Algorithm 5.4 to obtain a solution to Problem 3.2
5) Check if all regions in which

are safe, i.e., nonreachable.
1) Example 7.3: Let us apply Alg. 7.2 for the ContPN in

Fig. 1 with , , and initial set .
By applying the previous procedure, after three iterations, the
safe set is shown in Fig. 5(a). We also show three individual
trajectories originating in . Note that all states in and
are safe. Since only in these two regions, the arc

will never constrain the enabling degree of during the
evolution, and therefore it is a timed implicit arc [41]. Since it is
the only output arc of , it can be removed together with the
place, and the equivalent obtained net is shown in Fig. 5(b).

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 469

Fig. 6. Computation of an initial set leading to deadlock: (a) the deadlock states, and (b), (c), (d) successive iterations for the computation of an initial set leading
to deadlock [green (dark gray) regions].

B. Deadlock Analysis

In this subsection, we use the procedure of solving Problem
3.3 to provide a solution to the deadlock problem, i.e., the total
inactivity of the servers (transitions). Deadlock avoidance is a
necessity for correct and safe functioning of a system. There-
fore, it is an important problem for many engineering applica-
tions, and it has been extensively investigated in the last decades
[7], [42], [43]. In this subsection, we present a procedure for
computing a set of “bad” initial states, starting from which the
system eventually deadlocks. Obviously, this set can be used in
the deadlock avoidance problem of timed systems. Even if the
untimed system has a deadlock state, the time interpretation to-
gether with an initial state not in the “bad” set can induce that a
steady-state different by the deadlock one is reached.

In the case of continuous Petri nets, the deadlock implies
in steady state, hence, the corresponding LTL formula for

computing the initial markings that brings the system to dead-
lock is

meaning that from any initial marking, including a deadlock
one, eventually () the evolution will end (– always) in a
state in which the flow of all transitions is null (

). The null flow of a transition signifies the emptiness
of at least one input place, and to codify it we define a predicate
corresponding to a small region where the marking is close to

zero. For example, the corresponding predicate for a place ap-
proaching to zero is: , where is a (very)
small constant. Using these predicates, the following algorithm
computes the initial states bringing the system to deadlock.

Algorithm 7.4 (Computes Initial Markings Leading to
Deadlock):

1) let be the set of predicates necessary to define ’s and
the regions corresponding to the zero markings

2) Use Algorithm 5.4 to obtain a solution to Problem 3.3.
1) Example 7.5: For the same ContPN of Example 7.3, but

now with and , we compute the
initial set leading to deadlock using Alg. 7.4. It has been seen in
Section II-A that is an implicit place for this . Therefore,
only two full-dimensional regions are possible:

and (with the corresponding
predicates included in set).

Since the deadlock signifies the total inactivity of the servers,
i.e., , let us define the following predicates:

, ,
and where is a small constant [in
Fig. 6(a), these regions are the ones near the borders, where we
chose]. According to (4), the deadlock is: (i)
or () and (ii) or () and
(iii) (). Hence, the LTL formula that computes
the initial states bringing the ContPN system to deadlock is

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

470 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 6, NO. 3, AUGUST 2010

By applying our algorithm, the whole polytope is obtained after
three iterations, as shown in Fig. 6. This means that from any
initial marking, the system will eventually reach a deadlock
state. In the same figure, two trajectories originating in are
illustrated.

VIII. CONCLUSION

The focus of this paper was on developing an automated
framework for formal analysis of timed continuous Petri
nets. We addressed two important problems, namely: (1)
the construction of a safe region for a given initial set and
(2) the construction of an initial set such that an arbitrary LTL
specification is satisfied by all trajectories originating in this
set. The solutions to both these problems start with reducing
the initial ContPN to an equivalent PWA system. Then, a finite
(and conservative) abstraction of this PWA system was con-
structed by using computationally attractive results that mainly
involve polyhedral operations. Intermediate solutions for the
initial problems were obtained by using the discrete abstraction
and standard tools as searches on graphs and model checking
algorithms. Finally, a refinement procedure was developed,
allowing us to iteratively reduce the modeling conservativeness
and improve the solutions to the initial problems. The proposed
framework was implemented as a freely downloadable software
tool [27] and it was successfully used for providing solutions
to two important problems concerning ContPN, namely finding
timed implicit arcs and finding initial markings from where the
system reaches deadlock.

ACKNOWLEDGMENT

This paper is written in memoriam of Prof. L. Recalde, co-
author of the conference version of the paper [1], who passed
away in December 2008.

REFERENCES

[1] M. Kloetzer, C. Mahulea, C. Belta, L. Recalde, and M. Silva, “Formal
analysis of timed continuous Petri nets,” in Proc. 47th IEEE Conf. De-
cision and Control (CDC 2008), Dec. 2008, pp. 245–250.

[2] M. C. Zhou and F. DiCesare, Petri Net Synthesis for Discrete Event
Control of Manufacturing Systems. Reading, MA: Kluwer Aca-
demic, 1993.

[3] M. Allam and H. Alla, “Modeling and simulation of an electronic com-
ponent manufacturing system using hybrid Petri nets,” IEEE Trans.
Semiconductor Manuf., vol. 11, no. 3, pp. 374–383, 1998.

[4] F. Balduzzi, A. Giua, and C. Seatzu, “Modelling and simulation of
manufacturing systems with first-order hybrid Petri nets,” Int. J. Prod.
Res., vol. 39, no. 2, pp. 255–282, 2001.

[5] A. Desrochers, Ed., Modeling and control of automated manufacturing
systems, IEEE Computer Society Press, 1989.

[6] M. Dotoli, M. Fanti, A. Giua, and C. Seatzu, “First-order hybrid Petri
nets. An application to distributed manufacturing systems,” Nonlinear
Analysis: Hybrid Systems, vol. 2, no. 2, pp. 408–430, Jun. 2008.

[7] J. Ezpeleta, J. M. Colom, and J. Martínez, “A Petri net based deadlock
prevention policy for flexible manufacturing systems,” IEEE Trans.
Robot. Autom., vol. 11, no. 2, pp. 173–184, 1995.

[8] A. Giua and C. Seatzu, “Modeling and supervisory control of railway
networks using Petri nets,” IEEE Trans. Autom. Sci. Eng., vol. 5, pp.
431–445, Jul. 2008.

[9] R. Zurawski and M. C. Zhou, “Petri nets and industrial applications: A
tutorial,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 567–583, 1994.

[10] B. Berthomieu and M. Diaz, “Modeling and verification of time depen-
dent systems using time Petri nets,” IEEE Trans. Softw. Eng., vol. 17,
no. 3, pp. 259–273, 1991.

[11] B. Berthomieu and M. Menasche, “An enumerative approach for ana-
lyzing time Petri nets,” in Proc. IFIP, 1983, pp. 41–46.

[12] R. David and H. Alla, Discrete, Continuous and Hybrid Petri Nets.
Berlin, Germany: Springer-Verlag, 2005.

[13] M. Silva and L. Recalde, “On fluidification of Petri net models: From
discrete to hybrid and continuous models,” Annu. Rev. Control, vol. 28,
no. 2, pp. 253–266, 2004.

[14] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis, “Stability conditions for
multiclass fluid queueing networks,” IEEE Trans. Autom. Control, , vol.
41, no. 11, pp. 1618–1631, Nov. 1996.

[15] G. Sun, C. G. Cassandras, and C. G. Panayiotou, “Perturbation anal-
ysis of multiclass stochastic fluid models,” Discrete Event Dynamic
Systems, vol. 14, no. 3, pp. 267–307, 2004, issn 0924-6703. [Online].
Available: http://dx.doi.org/10.1023/B:DISC.0000028198.41139.20

[16] H. Chen and D. D. Yao, Fundamentals of Queueing Networks: Perfor-
mance, Asymptotics, and Optimization. New York: Springer-Verlag,
2001, Stochastic Modelling and Applied Probability.

[17] M. Silva, E. Teruel, and J. M. Colom, “Linear algebraic and linear
programming techniques for the analysis of net systems,” in Lectures
in Petri Nets. I: Basic Models, G. Rozenberg and W. Reisig, Eds. :
Springer, 1998, vol. 1491, LNCS, pp. 309–373.

[18] L. Recalde, S. Haddad, and M. Silva, “Continuous Petri nets: Expres-
sive power and decidability issues,” in Proc. 5th Int. Symp. Autom.
Technol. Verification Anal. (ATVA2007), 2007, vol. 4762, pp. 362–377.

[19] F. Balduzzi, G. Menga, and A. Giua, “First-order hybrid Petri nets: A
model for optimization and control,” IEEE Trans. Robot. Autom., vol.
16, no. 4, pp. 382–399, 2000.

[20] S. Troncale, J.-P. Comet, and G. Bernot, “Verification of biological
models with timed hybrid Petri Nets,” in Proc. Int. Symp. Comput.
Models Life Sciences, 2007, vol. 952, pp. 287–296.

[21] C. Mahulea, L. Recalde, and M. Silva, “Basic server semantics and per-
formance monotonicity of continuous Petri nets,” Discrete Event Dy-
namic Systems: Theory and Applications, vol. 19, no. 2, pp. 189–212,
2009.

[22] F. Torrisi and A. Bemporad, “HYSDEL — A tool for generating com-
putational hybrid models,” IEEE Trans. Contr. Syst. Technol., vol. 12,
no. 2, pp. 235–249, Mar. 2004.

[23] L. Habets, P. Collins, and J. van Schuppen, “Reachability and con-
trol synthesis for piecewise-affine hybrid systems on simplices,” IEEE
Trans. Autom. Control, vol. 51, pp. 938–948, 2006.

[24] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic
systems using approximate quotient transition systems,” IEEE Trans.
Autom. Control, vol. 46, no. 9, pp. 1401–1410, 2001.

[25] B. Yordanov, C. Belta, and G. Batt, “Model checking discrete time
piesewise affine systems: Application to gene networks,” in Proc. Eur.
Control Conf., Kos, Greece, 2007, CD-ROM.

[26] M. Kloetzer and C. Belta, J. Hespanha and A. Tiwari, Eds., “Reach-
ability analysis of multi-affine systems,” in Proc. 9th International
Workshop Hybrid Systems Computation and Control, Berlin/Heidel-
berg, 2006, vol. 3927, LNCS, pp. 348–362.

[27] M. Kloetzer, C. Mahulea, C. Belta, and M. Silva, Software tool for
formal verification of timed continuous Petri nets. [Online]. Available:
http://webdiis.unizar.es/~cmahulea/research/formal_contPN.zip

[28] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. H. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic anal-
ysis of hybrid systems,” Theoretical Comput. Sci., vol. 138, no. 1, pp.
3–34, 1995.

[29] T. Henzinger, P. Ho, and H. Wong-Toi, “HyTech: A model checker for
hybrid systems,” Int. J. Softw. Tools Technol. Transfer, vol. 1, no. 1–2,
pp. 110–122, 1997.

[30] S. D. Cairano and A. Bemporad, “An equivalence result between linear
hybrid automata and piecewise affine systems,” IEEE Trans. Autom.
Control, vol. 55, no. 2, pp. 498–502, 2010.

[31] C. Mahulea, A. Ramírez, L. Recalde, and M. Silva, “Steady state con-
trol reference and token conservation laws in continuous Petri net sys-
tems,” IEEE Trans. Autom. Sci. Eng., vol. 5, no. 2, pp. 307–320, 2008.

[32] E. M. M. Clarke, D. Peled, and O. Grumberg, Model Checking. Cam-
bridge, MA: MIT Press, 1999.

[33] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287–297, 2008.

[34] G. Holzmann, The SPIN Model Checker, Primer and Reference
Manual. Reading, MA: Addison-Wesley, 2004.

[35] C. Belta and L. Habets, “Constructing decidable hybrid systems with
velocity bounds,” in Proc. 43rd IEEE Conf. Decision and Control, Par-
adise Island, Bahamas, 2004, vol. 1, pp. 467–472.

[36] L. Habets and J. van Schuppen, “A control problem for affine dynam-
ical systems on a full-dimensional polytope,” Automatica, vol. 40, pp.
21–35, 2004.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

KLOETZER et al.: AN AUTOMATED FRAMEWORK FOR FORMAL VERIFICATION OF TIMED CONTINUOUS PETRI NETS 471

[37] K. Fukuda, CDD/CDD+ Package, 1997. [Online]. Available: http://
www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html

[38] M. Kloetzer, “Symbolic motion planning and control,” Ph.D. disserta-
tion, Boston Univ., Boston, MA, 2008.

[39] F. Torrisi and M. Baotic, Matlab interface for the CDD solver. [Online].
Available: http://control.ee.ethz.ch/~hybrid/cdd.php

[40] P. Gastin and D. Oddoux, H. C. G. Berry and A. Finkel, Eds., “Fast
LTL to Büchi automata translation,” in Proc. 13th Conf. Comput. Aided
Verification (CAV’01), 2001, Lecture Notes in Computer Science, pp.
53–65.

[41] L. Recalde, C. Mahulea, and M. Silva, “Improving analysis and simu-
lation of continuous Petri nets,” in Proc. 2nd IEEE Conf. Autom. Sci.
Eng., Shanghai, China, Oct. 2006, pp. 7–12.

[42] S. Reveliotis, Real-Time Management of Resource Allocation Systems:
A Discrete Event Systems Approach. New York: Springer, 2005.

[43] Z. Li and M. C. Zhou, Deadlock Resolution in Automated Manufac-
turing Systems: A Novel Petri Net Approach. New York: Springer,
2009.

Marius Kloetzer received the B.S. and M.Sc. de-
grees in computer science from the Technical Uni-
versity of Iasi, Iasi, Romania, and the Ph.D. degree in
systems engineering from Boston University, Boston,
MA.

He is currently an Assistant Professor at the Tech-
nical University of Iasi. His research interests include
symbolic motion planning, discrete abstractions, and
linear temporal logic.

Cristian Mahulea (M’09) received the B.S. and
M.Sc. degrees in control engineering from the
Technical University of Iasi, Iasi, Romania, in 2001
and 2002, respectively, and the Ph.D. degree in sys-
tems engineering from the University of Zaragoza,
Zaragoza, Spain, in 2007.

He is currently an Assistant Professor at the Uni-
versity of Zaragoza. He has been a Visiting Professor
at the University of Cagliari, Italy, and a Visiting
Researcher at the University of Sheffield (U.K.),
the University of Cagliari, and Boston University,

Boston, MA. He has participated in the development and implementation of
Petri Net Toolbox, MATLAB software for simulation, analysis and synthesis of
discrete-event systems modeled with Petri nets. His research is mainly related
to the study of qualitative and quantitative properties of discrete and continuous
Petri nets.

Calin Belta (M’03) received the B.S. and M.Sc.
degrees in control and computer science from the
Technical University of Iasi, Iasi, Romania, the M.Sc.
degree in electrical engineering from Louisiana State
University, Baton Rouge, LA, and the M.Sc. and
Ph.D. degrees in mechanical engineering from the
University of Pennsylvania, Philadelphia.

He is currently an Assistant Professor at Boston
University. His research interests include dynamics
and control, formal verification, motion planning,
and bio-molecular networks.

Dr. Belta received the Best Paper Award at the International Conference Sys-
tems Biology in 2004 and was a Finalist for the ASME Design Engineering
Technical Conference Best Paper Award in 2002 and for the Anton Philips Best
Student Paper Award at the IEEE International Conference on Robotics and Au-
tomation in 2001. He is an Associate Editor for the SIAM Journal on Control and
Optimization (SICON) and for the RAS and CSS Conference Editorial Boards.
He received the AFOSR Young Investigator Award in 2008 and the NSF CA-
REER Award in 2005.

Manuel Silva received the Industrial-Chemical
Engineering degree from the University of Sevilla,
Sevilla, Spain, in 1974, and the Postgraduate and
Ph.D. degrees in control engineering from the In-
stitut National Polytechnique de Grenoble, Grenoble,
France, in 1975 and 1978, respectively.

From 1975 to 1978, he worked for the Centre Na-
tional de la Recherche Scientifique, the Laboratoire
d’Automatique de Grenoble. In 1978, he started
the group of Systems Engineering and Computer
Science at the University of Zaragoza, where he was

named Professor of Systems Engineering and Automatic Control in 1982. He
is author of Las Redes de Petri en la Automática y la Informática (AC, 1985;
reprinted: Thomson, 2003), coauthor of Practice of Petri Nets in Manufacturing
(Chapman & Hall, 1993), and coeditor of one Special Issue on CIM of the
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. His research interests
include modeling, validation, performance evaluation, and implementation of
distributed concurrent systems using Petri nets, binary decision graphs, and
robots programming and control.

Prof. Silva was Dean of the Centro Politécnico Superior, University of
Zaragoza, from 1986 to 1992 and President of the Aragonese Research
Council (CONAI) and of the Research and Innovation Committee of the
French-Spanish Comisión de Trabajo de los Pirineos (CTP) from 1993 to
1995. He has been Associate Editor of the IEEE TRANSACTIONS ON ROBOTICS

AND AUTOMATION and Associate Editor of the European Journal of Control.
He is an Advisory Member of the IEICE Transactions on Fundamentals on
Electronics, Communications and Computer Sciences, Associate Editor of
the Journal of Discrete Event Systems and the Transactions on Petri Nets and
Other Models of Concurrency. He is a member of the Steering Committees
of the International Conferences on Application and Theory of Petri Nets,
WODES and IFAC ADHS, and founder member of the Asociación Española
de Robótica. Interested in the History of Technology and Engineering. He is
Editor of the collection of books about Técnica e Ingeniería en España. He
received a medal from Lille and by the Association of Telecommunication
Engineers of Aragón and Doctor Honoris Causa by the Université de Reims.
He is member of the Royal Academy of Engineering of Spain.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:26:24 UTC from IEEE Xplore. Restrictions apply.

