53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

Anomaly Detection in Cyber-Physical Systems: A Formal Methods
Approach

Austin Jones, Zhaodan Kong, Calin Belta

Abstract— As the complexity of cyber-physical systems in-
creases, so does the number of ways an adversary can disrupt
them. This necessitates automated anomaly detection methods
to detect possible threats. In this paper, we extend our recent
results in the field of inference via formal methods to develop
an unsupervised learning algorithm. Our procedure constructs
from data a signal temporal logic (STL) formula that describes
normal system behavior. Trajectories that do not satisfy the
learned formula are flagged as anomalous. STL can be used to
formulate properties such as “If the train brakes within 500
m of the platform at a speed of 50 km/hr, then it will stop
in at least 30 s and at most 50 s.” STL gives a more human-
readable representation of behavior than classifiers represented
as surfaces in high-dimensional feature spaces. STL formulae
can also be used for early detection via online monitoring and
for anomaly mitigation via formal synthesis. We demonstrate
the power of our method with a physical model of a train’s
brake system. To our knowledge, this paper is the first instance
of formal methods being applied to anomaly detection.

I. INTRODUCTION

Cyber-physical systems (CPSs) integrate physical pro-
cesses with computational resources via communication net-
works. In light of high-profile attacks, such as the Maroochy
water breach [1], there has been a surge of interest in
understanding how an adversary can disrupt a cyber-physical
system and how such attacks can be identified and potentially
mitigated [2], [3]. In all the cited works, the designer of
the controllers and/or estimators is assumed to have perfect
knowledge of the physical systems under consideration,
which are assumed to be described by linear models. These
assumptions are not consistent with the growing complexity
of modern CPSs and the involvement of agents, such as
humans, whose behavior is generally quite hard to predict.

In this paper, we apply formal methods to an anomaly de-
tection framework to identify whether or not a given CPS is
under attack. Anomaly detection is the problem of detecting
patterns from data that do not conform to expected behavior
[4]. In our case, we are looking for patterns in the output of
a CPS that lead us to believe that the underlying dynamics of
the system have changed due to attack. Tools from machine
learning, such as Gaussian processes, have been adapted to
anomaly detection [5]. In general, existing techniques infer
a surface embedded in a high-dimensional feature space that
separates normal and anomalous data. However, it is hard
to interpret the meanings of the surfaces, especially in the

Austin Jones and Calin Belta are with the Division of Systems Engineer-
ing. Zhaodan Kong and Calin Belta are with the Department of Mechanical
Engineering at Boston University, Boston, MA 02115. Email: {austinmj,
zhaodan, cbelta} @bu.edu

978-1-4673-6090-6/14/$31.00 ©2014 IEEE

context of prediction, knowledge base construction and on-
line monitoring (i.e. determining on-line whether a behavior
is anomalous).

Our approach to the problem circumvents the over-
specificity of model-based CPS security methods and the
low usability of existing anomaly detection techniques. We
present a model-free unsupervised learning algorithm for
inferring a signal temporal logic (STL) formula from system
output data that can be used to classify data as normal or
anomalous. STL can express system properties that include
time bounds and bounds on physical system parameters, e.g.
“If the boat remains in region A while maintaining its speed
below 10 kph for 10 min., it is guaranteed to reach the
port within 15 min.” STL formulae are easy to formulate in
natural language and have a rigorous mathematical definition,
meaning they can be used for both human-in-the-loop and
automated on-line monitoring.

Our procedure is an extension of our previous work [6]
(which, in turn, was inspired by [7]), in which we developed
a supervised learning algorithm for inferring formulae to
distinguish between desirable (e.g. “the car successfully stops
before hitting an obstruction’) and undesirable (e.g. “The car
strikes the obstruction”) behavior. We defined a fragment of
STL, called reactive STL (rSTL), whose formulae can also
indicate possible causes for each set of behaviors (e.g. “If
the speed of the car is greater than 15 m/s within 0.5s of
brake application, the obstruction will be struck”). By using
the concept of a robustness degree [8], [9], we showed how
to perform a directed search over this set. In contrast, in this
paper, we address the problem of finding such a formula
when the system output data is not labeled. We use many of
the same concepts and theoretical results from [6], but due
to the different problem formulations, we use a fragment of
rSTL that does not require a causal structure.

We use two case studies, a simple academic example and
a more realistic model of an electronically controlled pneu-
matic train brake system (adapted from [10]), to demonstrate
that our algorithm is able to correctly identify anomalies.
Although the focus of our paper is on detecting anomalies,
we use the case studies to also demonstrate how the inferred
formula can be used for on-line monitoring. Further research
will approach this integration in a more formal and rigorous
manner.

II. MATHEMATICAL PRELIMINARIES

A signal z is a map = : Rt — X C R"™ We denote
the value of x at time ¢ as z(t) and the suffix of signal x
from time ¢ as z[t]. In this paper, given a system § (e.g. a

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

set of ODEs or a hybrid automaton), we call the set of its
trajectories the language of S, denoted L(S8).

Signal temporal logic (STL) [11] is a predicate temporal
logic defined over signals. In this work, we focus on the frag-
ment called inference STL (iSTL), which is a generalization
of reactive STL (rSTL), a fragment we previously defined
in [6]. iSTL differs from rSTL in that the syntax does not
require every formula to contain Boolean implication (=).
The syntax of iSTL is defined as

¢ = Flor)(oe)
G 1= F[a,b)€| G[a,b)£|¢c A ¢c|¢c V ¢

where T is the maximum duration of z, [a,b) is a time
interval, £ is a rectangular predicate of the form (z(; ~
c),~€ {<,>}, ¢ € R, and z(; is a one-dimensional
element of the signal z. V and A are conjunction and
disjunction, respectively. Fj, ;) and G|,) are the temporal
operators “finally” (“eventually”) and “globally” (“always”),
respectively. The external operator Fo) means that we are
searching for properties that can occur at any point in a
signal.
The semantics of iSTL is defined recursively as

(1a)
(1b)

zlt] | (xey ~c) iff () ~c
e[l F o1 Ao i 2[t] = @1 and 2[l] = o
x[t] ':¢1 \/(bg iff l‘[t] ':(bl or x[t] ':¢2
)| E Fape iff 3t clt+a,t+0)stzft’]=o
2[t] | Guawé iff z[t] = ¢Vt € [t +a,t +b)

?)

A signal x satisfies an iSTL formula ¢ if z[0] = ¢. The

language of an STL formula ¢, L(¢), is the set of all signals
that satisfy ¢.

The robustness degree of a signal x with respect to an

iSTL formula ¢ at time ¢ is given as r(z, ¢,t), where r can

be calculated recursively via the quantitative semantics [8],

[9]

r(x, (T > ¢),t) =x(t) —c
r(@, (zp) <c),t) =c—z(t)

(I ¢1 A ¢2)) = min(r(m,¢1,t),r(x,¢2,t))
T‘(l‘ ¢1 \ ¢27) = maX(T(Z,¢1,t),T($,¢2,t))
(@, Flapn®t) =t,€[gr+1%§+b)r(w,¢,t’)

(@, Glapndt) =t,e[g£{lt+b)r(w,¢,t’)

The robustness degree of the entire signal is denoted as
r(xz,¢) = r(x,¢,0). If r(x,¢) is large and positive (nega-
tive), then z satisfies (violates) ¢ and a large perturbation
to would be required in order for the resulting signal z’
to violate (satisfy) ¢. If r(x,¢) = 0, then if even a small
perturbation is applied to x, whether or not z’ satisfies ¢ is
unpredictable.

Inference parametric signal temporal logic iPSTL) [12] is
an extension of iSTL where the bound ¢ and the endpoints of
the time intervals [a,b) are parameters instead of constants.
We denote them as scale parameters m = [m1,..., 7,]
and fime parameters T = [ry,...,T,_], respectively. A full
parameterization is given as [, 7]. The syntax and semantics

849

of iPSTL are the same as those for iSTL. To avoid confusion,
we will use ¢ to denote an iSTL formula and ¢ to refer to
an iPSTL formula. A valuation 6 is a mapping that assigns
real values to the parameters appearing in an iPSTL formula.
A valuation 6 of an iPSTL formula ¢ induces an STL
formula ¢y. For example, if ¢ = Fj;)(r1 > m) and
9([77177—1a7_2]) = [07073}’ then ¢y = F[0,3)(1'1 > 0)

n [6], we showed that the set of iSTL and the set of
iPSTL formulae admit partial orders. Further, the set of all
iPSTL formulae can be organized into a directed acyclic
graph (DAG) where there exists a path from ¢ to @9 if Vz, 0,
r(z,¢1,0) < r(x,¢24). Therefor, if we use the robustness
degree as a fitness measure, we can search for an iSTL
formula that best fits a given set of data by iteratively using
the DAG to perform a search over the set of iPSTL formula
and using continuous optimization methods in order to find
its optimal valuation.

ITI. PROBLEM FORMULATION
A. Cyber-Physical Systems Under Normal Operation

We denote a cyber-physical system under normal operation
(i.e. operating as intended in the absence of an attack) as a
system Sy. A trajectory of Sy is a signal z : RT — X,
where X C R,, is the (possibly) high-dimensional physical
state space of the CPS. The operation of the system is
observed via an output signal

y(t) = g(x(t),t,w), (3)

where w is a noise process. This concept is illustrated in the
following scenario which will serve as a running example
throughout this paper.

Example 1 (Normal system). Consider a train using an
electronically-controlled pneumatic (ECP) braking system.
The train has 3 cars, each of which has its own braking
system. The state of the train system is defined by the
velocity v of the train. Our model of the train system is
modified from [10]. See Section V-B for more details.

In this model, the braking system is automated to regulate
the velocity below unsafe speeds and above low speeds to
ensure that the train reaches its destination. If v(t) exceeds
a threshold vy,q, (28.5 m/s), the velocity of the un-braked
system increases (shown in green in Fig. 1). Each of the
brakes responds to the threshold crossing after a random
time delay by engaging. The brakes decrease the velocity of
the train (shown in black in Fig. 1) until it passes a second
threshold v,,;,, (20 m/s). After random delays, the brakes
disengage.

The system is observed via the output signal

y(t) = v(t) + w, 4)

where w is a white noise process with variance 0.3. Some
traces of the output signal are shown in Fig. 1. Note that there
is quite a bit of variability in the signals due to noisy inputs
and delays between brake engagement and disengagement,
but they all maintain v(t) below v,,4, and above v, for
most of the time. O

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

@ w
20 T 20
= =
100 50 100 100 50 100
t (s) t (s
30 30
@ w
20 T 20
= =
100 50 100 100 50 100
t(s) t (s

Fig. 1. Four output signals of the velocity of the train controlled by three
ECP braking systems when all three brakes are functioning normally. The
colors refer to modes of the hybrid automaton that describes the system
(given in Section V-B): blue indicates the system oscillates between low
and high velocities, green indicates the system is moving too fast, and black
indicates the system is being braked.

b 1
Ego \ §2O \
0 0 100
t(s (9
b=2
M
320 320
t(s

Fig. 2. Outputs of the train velocity system under different attack scenarios.
An adversary has the ability to disable one, two, or three of the trains brakes
in order to deregulate its velocity. The variable b is the number of brakes
affected by attack.

B. Cyber-Physical Systems Under Attack

In the previous subsection, we described cyber-physical
systems under normal operation. However, we are interested
in the case in which an adversary can affect the sensors
or actuators of the system in order to disrupt its normal
operation. Given a system 8y under normal operation, we
define a system with attack vulnerabilities as a system Sp
such that L(Sy) C L(8t). That is, 87 behaves normally
(produces the same outputs as Sp) when no attacks take
place and behaves qualitatively differently if an adversary
disrupts it.

Example 1 (Attacked system). An adversary has the possi-
bility to disable each of the brakes of the train. A few sample
outputs from the system S, are shown in Fig. 2.

The behavior of the system depends on how much access
the adversary has, i.e. the number of brakes b that can
be disabled. All three attacked outputs behave qualitatively
differently from each other, but they all clearly violate the
desired invariant behavior demonstrated in Fig. 1. Although
the difference between normal and attacked outputs is visu-
ally obvious, it is difficult to quantify the difference between
the two sets of behaviors due to a large variability in each
output set. Our procedure is able to separate these two

850

sets automatically with no a priori knowledge of system
dynamics or attack models. [

C. Problem Definition

We are interested in determining whether a cyber-physical
system is under attack or not. As illustrated in Example 1,
a CPS may exhibit a wide range of behaviors. Thus we
must compare individual system executions to some global
property that all normal executions of the system need to
satisfy. The logic iSTL (defined in Section II) is well-
suited for compactly and precisely describing CPS behavior.
Logical operators describe how different components of the
output signal interact. Temporal operators describe how the
system changes over time. The bounds given by rectangular
predicates and the time bounds on the temporal operators
incorporate physical parameters into the description. Further,
the set of iSTL formulae may be searched in an efficient and
principled manner as demonstrated in Section IV.

Example 1 (iSTL properties). From examining the outputs
shown in Fig. 1, it is clear that each output satisfies the iSTL
formula

Flo,100) (Flo,10)(y > 25) A Go,30)(y < 30)). %)

In plain English, this means “At some point, the output
exceeds 25 m/s within the next 10s while remaining below
30 m/s for the next 30 s [

Given a model 87 of a cyber-physical system, it is in
general difficult to determine analytically an iSTL formula
that describes only the normal behaviors of the system.
Further, in many applications, explicit models of the CPS
are unavailable for analysis. Therefore, we propose to find
such a formula directly from system output data.

In the ideal case, we would be able to construct a formula
that can perfectly distinguish normal and attacked behaviors.
However, since the CPS under consideration may involve
process and observation noise, and only a finite number of
traces are available, we focus our attention on the more
realistic goal given by Problem 1.

Problem 1. A CPS with attack vulnerabilities 87 produces
a set of trajectories {z;}¥ . Given the set {y;}~ , with y;
being the observed output associated with z;, find an iSTL
formula ¢ such that the misclassification rate, given by

Hyilyi = ¢, 2 & LISn)H + Hyily: = ¢,2: € L(SN)}|
N b
(6)

is minimized.

That is, we want to find a formula that has a high correct
detection rate (correctly flags outputs from systems under
attack as anomalous) and a low false alarm rate (rarely
flags outputs from the system under normal operation as
anomalous). In order to simplify the problem, we make
the following two key assumptions. First, attacks happen
infrequently, i.e., given an output y; from a CPS Sp, the
a priori probability that it was produced by 8, under attack
is low. Second, the outputs of a system under attack differs

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

qualitatively from the outputs of a system under normal
operation. Otherwise, it is impossible to infer any classifier
to separate the two sets of outputs. These assumptions are
plausible for real-world scenarios and are commonly made
in other anomaly detection problems [4].

IV. SOLUTION

Since Problem 1 is an unsupervised learning problem,
we use some notions from classical unsupervised learning
to aid in our approach. In particular, we consider one-class
support vector machines (SVMs). A one-class SVM is an
optimization that, given a set of data, lifts the data to a
higher-dimensional feature space and constructs a surface in
this space that separates normal data from anomalous data
[13]. We adapt the objective function used in one-class SVM
and map Problem 1 to the following optimization.

min d(g0) *fzﬂﬁe 7
such that
;= 0 (y17¢0)>€/2 .
“”_{ ¢/2 = r(yi.¢p) else i, ®
where ¢p is an iSTL formula, e is the “gap” in signal

space between outputs identified as normal and outputs
defined as anomalous, v is the upper bound of the a priori
probability that the CPS is under attack, p is a slack variable,
which is positive if y; does not satisfy ¢y with minimum
robustness €/2, and the function d is a “tightness” function
that penalizes the size of L(¢g).

Minimizing the sum of the p; minimizes the number of
traces the learned formula ¢¢ classifies as anomalous. This
is consistent with a low prior attack probability. Maximizing
the gap € maximizes the separation between normal and
anomalous outputs. Minimizing the function d(¢y) prevents
the learned formula from trivially describing all observed
signals, i.e. finding a formula s.t. y; |= ¢g, Va; € L(87).

Solving (7) requires searching over the set of continuous
variables (f and €) as well as over the discrete set of
iPSTL formula structures (the structure ¢ of ¢g). We showed
in our previous work [6] how the set of reactive PSTL
(rPSTL) formulae may be efficiently searched and developed
an algorithm to solve the supervised learning problem by
iterating between the discrete structure search and continuous
variable optimization via simulated annealing. Algorithm 1
is an adaptation of this procedure to solve (7).

Algorithm 1 begins by organizing all of the iPSTL formu-
lae of length 1, e.g., the set of all formulae Oy, .,)(z; ~ 7)
where O € {F,G},z; € V, and ~€ {<, >}, into a DAG
(DAGInitialization). The set of formulae in the graph is then
organized into a ranked list (ListInitialization). The ranking
of the formulae in the list is generated randomly during
initialization, as no a priori knowledge of the fitness of the
formulae exists.

After the graph and list are initialized, the iterative learning
procedure begins. The parameter estimation loop (lines 9-
13) iterates over formulae structures ¢ in the list List from

Algorithm 1 Anomaly detection algorithm. L, is the limit
of the length of the mined formula. V' is the set of variables
that can appear in rectangular predicates. d is a tightness
function. J is an acceptable performance threshold.

1: function FindFormula(L,,q., V, {y;} ¥ iq,d,0)
2: for : =1 to L,,4, do

3 if i = 1 then

4 G1 < DAGlInitialization(V');
5 List + ListInitialization(G1);
6: else
;

8

9

G; + PruningAndGrowing(G;_1);
List + Ranking(G; \ Gi—1,);
while List # () do

10: @ < List.pop();
11: (6, cost, €) < ParameterEstimation({y; } Y, ¢, d);
12: if cost < § then
13: return (¢, 0).

14: return MinimumCostNode(§

Loas)’

lowest rank to highest rank (Line 10). ParameterEstimation
uses simulated annealing to solve (7) to find the optimal
values of 0 and € for each formula structure .

The ParameterEstimation procedure uses the heuristic
tightness function d when calculating the objective function
in (7). In this paper, we use the heuristic given by Algorithm
2. The subroutine Normalize normalizes the value of a
parameter to [0, 1]. For each linear predicate in , Tightness
penalizes the size of the parameter 7y, as for monitoring
purposes we prefer formulae that describe behaviors of the
early parts of the system’s outputs. If ~=<, the size of =
is penalized, as L(x; < m) grows with 7. If ~=>, then
small values of 7 are penalized. The sum of the penalized
quantities is normalized over the interval [0, 1] so that the
magnitude of the output remains invariant with the length of
[|©]|- This value is then multiplied by a constant A that takes
into account the total number of trajectories and the ranges
of 6.

Algorithm 2 Tightness Function
1: function Tightness(d,y)
2: k=0
3: for all (71, 7o, 7) € 6 such that O, ,,yz; ~ 7) in ¢ do

4 tightness[k] = Normalize(r1); k + +;

5 if ~ is < then

6: tightness[k] = Normalize(r); k + +;
7 else

8 tightness[k] = 1-Normalize(r); k + +;
9: return /\%

If the optimal cost cost from ParameterEstimation is small
enough (less than §), the current formula is returned. If no
acceptable solution is found, the set of iPSTL formulae is
searched (Lines 6-8). At the ith iteration, PruningandGrow-
ing uses logical rules to grow the graph of searched formula
to include iPSTL formulae of length ¢+ 1. This function also

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

prunes a constant proportion of formulae of length ¢ whose
optimal cost found by parameter estimation was too high.
This prevents the algorithm from searching over formulae
that we can assume have poor performance. After the graph
is grown, the formulae of length ¢+ 1 are organized into a list
ranked according to the performance of their parents in the
DAG. When the formulae are iterated over in Lines 6-8, the
formulae with lowest rank (those whose parents performed
best) are considered first. This iterative process of parameter
estimation and formula structure search continues until either
a formula with low enough cost is found or the length L,
is reached.

V. CASE STUDIES
A. Linear System

1) Model: We first test our implementation of Algorithm
1 on a system 87 whose dynamics evolve according to

= 0.03x +w)
under normal operation or
= —-0.03z +w (10)

under attacked operation, where w is a white noise process
with variance 0.025. For simplicity, y(t) = z(t).

2) Formula inference: We generated 200 different tra-
jectories of 87, shown in Fig. 3(a). We ran our inference
algorithm on a training set of 100 of the trajectories, 4 of
which represented an attack (red), and reserved the other 100
(with 7 attacks) for testing the output of Algorithm 1.

From the training set, our implementation of Algorithm 1
inferred the formula

Fl0,3.0)(Glo.5,2.0)(y > 0.9634)). (11)

In plain English, this is “At every point within 0.5 and 2.0
s in the future, the output y exceeds 0.9634”. We used 3
simulated annealing cycles with 15 samples per cycle. The
computation time was 130 s on an 8 core PC with 2.1 GHz
processors and 8 GB RAM.

The threshold 0.9634 from formula (11) is indicated with a
blue line in Fig. 3(a). The formula (11) successfully separates
the normal and attacked outputs, i.e. the misclassification
rate for the training set was O and the training set had a
misclassification rate of 0.01. The single missed attack had
a robustness degree of 0.0018 with respect to the inferred
formula, meaning it was “barely” missed.

3) Monitoring: Fig. 3(b) shows the robustness degree of
each y; at time ¢ with respect to the parameterized formula

¢(t) = F[O,t)(G[O.5,min(t,2.0))(y > 09634)) (12)

for ¢ > 0.1. This serves as a rudimentary on-line monitor
by quantifying how close an output signal y; observed up to
time ¢ is to satisfying or violating the part of (11) that can
be checked up to time ¢. It can be seen that all of the outputs
initially have positive robustness, meaning they do not yet
violate the formula. However, while the normal trajectories
become more positively robust with respect to ¢(t) over time,
the robustness of the attack trajectories steadily declines.

852

Monitor

Linear systems

r(y, 6(t))

045

1 16 2

(b)

Fig. 3. (a) Outputs of system (9) (green) and (10) (red). The blue line
indicate the threshold 0.9634 used in the inferred formula (11). (b) A simple
monitor of the formula ¢(¢) given in (12).

25 3

B. Braked Train

1) Model: In this section, we apply our algorithm to the
train braking scenario [10] used in Example 1. We model
the train as a classical hybrid automaton [14]. A hybrid
automaton produces continuous trajectories x : R™ — X C
R™. A trajectory = evolve according to dynamics which
depend on the current discrete mode ¢ €) (denoted by a
vertex of a graph) of the automaton. The mode of the system
changes (denoted by edges of a graph) if a guard condition
over the state of the system is satisfied. During a transition,
the state of the system may change discontinuously according
to a reset relation. Here we denote guards in black text and
reset relations in red text.

The hybrid automaton Hr which describes the total model
of the train consists of 3 identical braking subsystems with
modes Qy, = {qy,; }—, that describe the state of each brake
and a velocity subsystem with modes Q, = {qu;}—; which
describes the dynamics of the train’s velocity. The subsystem
associated with brake 1 is shown in Fig. 4(a). The noise
processes nq . ..ny are all Gaussian processes with variance
1, 0.1, 0.3, 3, and 3, respectively. The brake remains in
mode gy, 1 during acceleration until v(¢) exceeds a threshold
Umaz- At this point, the system transitions to the delay mode
gp, 2 before moving to the braked mode ¢, 3. After the
velocity is decreased below v,,,;,, the system transitions to a
second delay state g, 4 before returning to mode gy, 1. An
adversary can disable the brakes (denoted by the exogenous
event attack;), which forces the system to transition from
gp, 2 to a failure mode g, 5. Brakes in the other two cars
can similarly be disabled.

The velocity subsystem is shown in Fig. 4(b). The velocity
of the train begins in mode ¢, ; (blue in Fig.s 1 and 2)
and accelerates to v,q,. The dynamics of the train shift
to the higher velocity mode g, o (green). Once at least one
brake engages, the system transitions to a decelerating mode
(black).

2) Formula inference: We used the model given in the
previous section to generate 50 outputs. 43 of the trajectories
were from normal operation and 7 were from an attacked
operation. We only considered attacks in which all of the
brakes were disabled (b = 3). Our algorithm inferred the
formula

Fio,100) (Fl10,60) (¥ < 24.9) A Fl13.9,44.2)(y > 17.66)). (13)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

0(t) > Vmas
co(t)=—1In

attack,

by 1
é(t)=0
() =0

by .5
é(t)=0
é(t) =0

co(t) =0
i(t)

c(t)=0
i(t) = it

i(t) = 1

oy 4
é(t)=0
ety =1

Tb,.3
é(t)=0
é(t) =0

(a)

V(t) > Vmaz

G =2
o(t) = fa(v(t),t,i,n4)

ﬁt) >0

(b)

Fig. 4. (a) ECP braking subsystem of the first car in the train. (b) Velocity
subsystem of the entire train.

Monitor

r(y, @(t)

20 40 60

t

80 100

Fig. 5. On-line monitoring of train output with respect to (14).

In plain English, (13) means “At some point, between 10s
and 69s in the future the output dips below 24.9 m/s and
the output exceeds 17.66 m/s. between 10 and 44.2 s in the
future.” This is consistent with the oscillatory nature of the
velocity output under normal behavior, as the velocity must
increase and decrease over a window.

The formula (13) perfectly separates the data, i.e. the
misclassification rate is 0. The formula was inferred using 15
simulated annealing cycles with 15 sample points per cycle.
The computation time was 154 s on the same PC as described
in Section V-A.

3) Monitoring: Fig. 5 shows the robustness degree of the
train’s output signal with respect to

o(t) = F[O,t)(F[lo,min(t,Gg))(y < 24.9)
AF[13.9,min(t,44.2)) (Y > 17.66)).

The robustness of the normal outputs are shown in green and
the robustness of the attacked outputs are shown in red. As
you can see from Fig. 5, many of the normal outputs initially
have negative robustness. However, as time goes on, the
robustness measure improves for all of the normal outputs.
In contrast, the performance of (most) of the attacked outputs
remains low and worsens over time. By time ¢ = 40, all but
two of the attacked outputs are clearly separated from the
normal outputs.

(14)

VI. CONCLUSION

In this paper, we consider a general framework for
anomaly detection for cyber-physical systems security. In

853

place of using classical anomaly detection tools, we apply
a formal methods approach to the problem. We designed
and implemented an algorithm which is able to infer a data
classifier in the form of a signal temporal logic formula
from unlabeled data. The inferred formula can be interpreted
in natural language and can be used in the future for on-
line monitoring. We demonstrated our approach using two
case studies, including a model of a train under attack. Our
approach was able to classify the attacked and normal outputs
for both case studies with low misclassification rates. Further,
we used the formula to test a simple on-line monitor. Results
indicate that the monitors provide early warning for systems
under attack.

ACKNOWLEDGMENT

This work was partially supported by ONR under grants
ONR MURI N00014-10-10952, ONR MURI N00014-09-
1051 and ONR N00014-14-1-0554 ONR, and supported by
NSF under grant NSF CNS-1035588.

REFERENCES
[1]

J. Slay and M. Miller, Lessons learned from the maroochy water
breach. Springer, 2007.

F. Pasqualetti, F. Dorfler, and F. Bullo, “Cyber-physical attacks in
power networks: Models, fundamental limitations and monitor design,”
in Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 2195-2201.
A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack
models and scenarios for networked control systems,” in Proceedings
of the Ist international conference on High Confidence Networked
Systems. ACM, 2012, pp. 55-64.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.
K. Kowalska and L. Peel, “Maritime anomaly detection using gaussian
process active learning,” in Information Fusion (FUSION), 2012 15th
International Conference on. 1EEE, 2012, pp. 1164-1171.

Z. Kong, A. Jones, A. Medina Ayala, E. Aydin Gol, and C. Belta,
“Temporal logic inference for classification and prediction from data,”
in The 17th International Conference on Hybrid Systems: Computation
and Control (HSCC), Berline, Germany, 2014.

X. Jin, A. Donze, J. Deshmukh, and S. Seshia, “Mining requirements
from closed-loop control models,” in Hybrid Systems: Computation
and Control (HSCC), 2013.

G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 42624291, 2009.

A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed
Systems. Springer, 2010, pp. 92-106.

A. P. Sistla, M. Zefran, and Y. Feng, “Monitorability of stochastic
dynamical systems,” in Computer Aided Verification. Springer, 2011,
pp. 720-736.

O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pp. 71-76, 2004.

E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric iden-
tification of temporal properties,” in Runtime Verification. Springer,
2012, pp. 147-160.

H. J. Shin, D.-H. Eom, and S.-S. Kim, “One-class support vector
machinesan application in machine fault detection and classification,”
Computers & Industrial Engineering, vol. 48, no. 2, pp. 395-408,
2005.

J. Lygeros, K. Johansson, S. Sastry, and M. Egerstedt, “On the
existence of executions of hybrid automata,” in Decision and Control,
1999. Proceedings of the 38th IEEE Conference on, vol. 3, 1999, pp.
2249-2254 vol.3.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:50:49 UTC from IEEE Xplore. Restrictions apply.

