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SUMMARY

Human pluripotent stem cells (hPSCs) have the
intrinsic ability to self-organize into complex multi-
cellular organoids that recapitulate many aspects of
tissue development. However, robustly directing
morphogenesis of hPSC-derived organoids requires
novel approaches to accurately control self-directed
pattern formation. Here, we combined genetic engi-
neering with computational modeling, machine
learning, and mathematical pattern optimization to
create a data-driven approach to control hPSC self-
organization by knock down of genes previously
shown to affect stem cell colony organization,
CDH1 and ROCK1. Computational replication of the
in vitro system in silico using an extended cellular
Potts model enabled machine learning-driven opti-
mization of parameters that yielded emergence of
desired patterns. Furthermore, in vitro the predicted
experimental parameters quantitatively recapitu-
lated the in silico patterns. These results demon-
strate that morphogenic dynamics can be accurately
predicted through model-driven exploration of hPSC
behaviors via machine learning, thereby enabling
spatial control of multicellular patterning to engineer
human organoids and tissues. A record of this pa-
per’s Transparent Peer Review process is included
in the Supplemental Information.

INTRODUCTION

During the early stages of embryonic development, patterned

self-assembly of cells is essential for the organization of primitive

germ layers, multicellular tissues, and complex organ systems

(Montero and Heisenberg, 2004). Similarly, human pluripotent

stem cells (hPSCs) maintain the ability to self-organize, differen-
Cell
tiate to all three germ layers, and generate 3D organoids that

replicate primitive tissue structure and function (Bredenoord

et al., 2017; Sasai, 2013; Warmflash et al., 2014); hence, hPSCs

provide a robust and tractable system to observe, quantify, pre-

dict, and ultimately control collective cellular behaviors (Pir and

Le Novère, 2016). The ability to direct heterotypic cell self-orga-

nization and concurrently specify cell fate can enable the possi-

bility of directing organogenesis via cell-intrinsic routes.

Although several in vitro and in silico frameworks for multicel-

lular patterning have been independently developed, the ability

to predict and direct de novo multicellular organization has yet

to be demonstrated. Previously, several groups (Molitoris et al.,

2016; Tewary et al., 2017; Warmflash et al., 2014) have induced

radial organization of differentiated germ layers by restricting

hPSC colonies to micropatterned islands or have used molecular

engineering of cell surface and/or substrate properties to extrinsi-

cally control cell location and subsequent multicellular patterning

in vitro (Chandra et al., 2005; Hsiao et al., 2009; MacKay et al.,

2014;Molitoris et al., 2016; Todaet al., 2018).However, the result-

ing patterns that arise spontaneously afford limited control of pre-

cise multicellular organization or circumvent the intrinsic mecha-

nisms that regulate cell-mediated morphogenic assembly.

Theoretical in silico frameworks have been developed to compu-

tationally model multicellular organization (Bartocci et al., 2016;

Briers et al., 2016; Sharpe, 2017) and automate the design of

non-spatial cellular logic (Nielsen et al., 2016). However, although

computational approaches can test general principles of biology

in silico, it is often difficult to directlymap thesemodels to specific

in vitro mechanisms and perturbations, making it challenging to

systematically synthesize experimentally tractable perturbations

in silico that can be accurately reproduced in vitro.

In this proof-of-principle study, we paired CRISPR interfer-

ence (CRISPRi)-driven genetic perturbations of human-induced

pluripotent stem cells (hiPSCs) with computational modeling,

machine learning, and mathematical optimization to facilitate a

‘‘closed-loop’’ cycle of in silico hypothesis generation that could

be experimentally validated in vitro. To predict multicellular

pattern formation, we combined a multi-scale cellular Potts

model (Graner and Glazier, 1992; Krieg et al., 2008; Magno

et al., 2015; Marée et al., 2007; Ouchi et al., 2003; Pir and Le
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Figure 1. Overview of Synthesis of Spatial Patterns

Pattern Synthesis is a computational procedure used to predict the in vitro conditions needed to produce target spatial patterns.

(A) The first input to Pattern Synthesis is a parameterized computational model of mechanically driven spatial patterning in iPSC colonies. Five parameters of the

computational model map directly to perturbations that can be made by experimentalists, and the output of the model was a series of images.

(B) The second input to Pattern Synthesis is a trained image classifier that produces a numerical score indicating the similarity of an image to the desired pattern

class. In this scenario our desired pattern was a ‘‘bullseye’’ pattern.

(C) Given the parameterizedmodel and pattern classifier, particle swarm optimization was used to explore parameter combinations, which map directly to in vitro

perturbations, in order to identify the optimal conditions to produce the desired pattern in silico.

(D) Given the ‘‘recipe’’ of perturbations suggested by parameter optimization, we validate the control strategy is able to produce the desired pattern in vitro.
Novère, 2016) of behavior-driven cell sorting with an automated

machine learning and optimization procedure, referred to as

‘‘Multicellular Pattern Synthesis’’ (Bartocci et al., 2016; Briers

et al., 2016), which consisted of four steps (Figure 1). First, we

created a computational model of observed hiPSC self-organi-

zation that quantified collective stem cell dynamics and captured

how targeted changes in the mechanical profiles of subpopula-

tions of cells affected stem cell colony patterning. Second, a su-
484 Cell Systems 9, 483–495, November 27, 2019
pervised machine learning classifier was trained to quantify

pattern similarity to the desired pattern using images from our

computational model. Third, we employed mathematical

optimization, specifically particle swarm optimization (PSO), to

simulate thousands of potential designs and identify specific

experimental conditions that yielded unique patterns in in silico

simulations. Finally, we tested the in silico predicted conditions

with hiPSCs in vitro andobtained thedesiredmulticellular patterns



with similar frequency and quantitative characteristics, thereby

validating the predictive in silico system. As an initial exploration

of the impact of patterning, we examined regional changes to

cell fate commitment in patterned colonies of hiPSCs upon differ-

entiating in response to morphogen treatment (BMP4).

RESULTS

Pattern Synthesis: In Silico Prediction and Automated
Discovery of Spatial Behaviors
To observe multicellular pattern formation, we used a previously

established hiPSC line with a doxycycline (DOX)-inducible

CRISPRi system, allowing for temporal gene knockdown (KD)

wherein mixed populations establish KD in only a portion of the

colony, creating a symmetry breaking event and subsequent

pattern formation (Libby et al., 2018; Mandegar et al., 2016).

However, the generation of new patterns in a predictable manner

requires the ability to test large numbers of experimental condi-

tions that would require a massive amount of time and manual

effort to comprehensively test the vast number of experimental

parameters possible. For example, to experimentally explore

the parameter space of a single gene KD where the following pa-

rameters are varied; KD timing (3 timing schemes tested), dura-

tion of experiment (5 durations tested), degree of gene KD (5 KD

levels tested), and proportion of population that is knocked down

(9 percentages tested), one would need to perform 675 total ex-

periments. Given the biological variability we observe within our

in vitro experiments (Figure 4), a power analysis suggests that a

minimum of approximately 13 biological replicates would be

necessary to detect significant differences between individual

experiments (12.85 observations required, with significance as-

sessed at p < 0.05, 80% probability of accepting the alternate

hypothesis, corrected for multiple comparisons), yielding

approximately 9,000 total conditions or roughly ninety four 96-

well plates, where one well represents a single condition. Alter-

natively, a machine learning and optimization algorithm, such

as ‘‘Pattern Synthesis’’ (Bartocci et al., 2016; Briers et al.,

2016), can automatically and efficiently discover experimental

conditions and robustly predict the de novo self-organization

of hiPSCs into desired target patterns.

Pattern Synthesis required two inputs: a model of hiPSC

behavior and images of the desired pattern (i.e., ‘‘goal’’) out-

comes. First, we developed a computational model of hiPSC col-

ony organization as a result of a single gene KD (Figure 1A). Next,

we generated images of desired and undesired spatial patterns

to train a machine learning algorithm that establishes a pattern

classifier with a quantitative metric of pattern similarity (Fig-

ure 1B) (Bartocci et al., 2016; Haghighi et al., 2015). Given these

inputs, we formalized pattern discovery as an optimization prob-

lem where the objective was to maximize the similarity score of

images from our computational model to our desired spatial

pattern (Figure 1C). The variation between different simulations

was based upon five categories of in vitro perturbations that

could be readily created in hiPSC colonies (Figure 1D).

Data-Driven Computational Model of Human iPSC Self-
Organization
Several different experimental and computational studies sup-

port the vital role of local cell-cell mechanical interactions in
the form of interfacial tension in spatial patterning (Heisenberg,

2017; Maı̂tre et al., 2012). Differences in cell-cell adhesion

(Foty and Steinberg, 2005; Jia et al., 2007; Maı̂tre and Heisen-

berg, 2013; Steinberg, 1975), cell-cell repulsion (Taylor et al.,

2017), and cortical tension (Brodland, 2002; Heisenberg and Bel-

laı̈che, 2013; Krieg et al., 2008) have been shown to collectively

orchestrate spatial organization in diverse organisms such as

Dictyostelium discoideum (slime mold) (Kay and Thompson,

2009; Palsson, 2008) and Danio rerio (zebrafish) (Merks et al.,

2008) and in mammalian cells (Bentley et al., 2014; Toda et al.,

2018). However, it is challenging to both predict and control

spatial patterning in human iPSCs since the design of multicel-

lular systems rapidly increases in complexity when considering

the dynamics of single-cell mechanics and cell-cell interactions.

These dynamics include, but are not limited to, temporal

changes in interfacial-tension-associated proteins, cell type

abundance, cell division, and cell migration velocities.

To capture the complex dynamic interactions involved in

multicellular patterning, we developed a data-driven cellular

Potts model (CPM) to predict spatial patterning in hiPSCs due

to the time-dependent modulation of cell-cell adhesion and

cortical tension (Supplemental Information). The CPM repre-

sents the spatial environment of stem cells grown in a monolayer

using a 2D square lattice grid (Figure 1A). Each square region in

the grid (i.e., a lattice site) is equal to 1 squaremicrometer, hence

each lattice site represents a partial region of a cell’s membrane

or the medium surrounding a cell. A cell ID is assigned to each

lattice site to identify the region of a cell that occupies a lattice

site. For example, 100 lattice sites each having a cell ID equal

to 1 represent a single stem cell with an area of 100 square mi-

crometers. Complex behaviors such as preferential cell-cell ad-

hesions, cortical tension, and cell migration are achieved by

copying lattice sites to adjacent regions (i.e., moving a region

of the cell to a new lattice site), which in the CPM is referred to

as a copy attempt. Each copy attempt is accepted with a prob-

ability related to a Hamiltonian function (SI Equations 3–5). The

Hamiltonian function is the sum of four competing forces influ-

encing intracellular behaviors and cell interactions with the envi-

ronment: (1) conservation of cell area, (2) locally polarized cell

migration, (3) cell-cell adhesion, and (4) and cortical tension

(SI Equations 5–10). Every competing force is represented by a

score and a weight, where the score represents a reward or pen-

alty depending on the divergence of a cell from its target

behavior, while the weight represents the relative importance

of the respective cell’s behavior.

Briefly, using the CPM, wemodeled an in vitro system consist-

ing of two populations of iPSCs co-cultured for up to 120 h. To

connect the in silico model to potential genetic targets for

in vitro experimental manipulation, we focused on usingCRISPRi

KD, which provides precise temporal control over protein

expression, of two molecules associated with regulating cellular

mechanics and cell-cell interactions: E-cadherin (CDH1) and

Rho-associated coiled-coil containing protein kinase (ROCK1).

CDH1 is a classical cadherin cell-cell adhesion molecule, whose

modulation allows for changes in the adhesive interactions be-

tween neighboring cells, and ROCK1 is a protein kinase that reg-

ulates non-muscle myosin activity and indirectly modulates the

actinomyosin cytoskeletal tension within and between cells.

These two molecules contribute to feedback loops that regulate
Cell Systems 9, 483–495, November 27, 2019 485
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Figure 2. Pairwise Experiments to Characterize Dynamic Changes in Spatiotemporal Behaviors

(A) We characterize cellular behavior in a pairwise manner to reduce the complexity of possible interactions. Space, time, and protein expression are the minimal

necessary properties to characterize and model spatiotemporal behavior. Space-time relationships are captured with velocity characterizations, time-protein

expression is captured characterizing the relative protein expression for several days after knockdown, and protein-space relationships are characterized by

confocal microscopy imaging of spatial behavior due to cell mechanical perturbations.

(B and C) We performed paired in vitro (B) and in silico (C) experiments to match the velocity distributions of iPSCs.

(D) The gray swarm plot represents the distribution of in vitro velocity magnitudes (n = 1,708), while the cyan swarm plot represents the distribution of in silico

velocity magnitudes (n = 2,781). Using the Mann-Whitney U test, there was no statically significant difference in cell velocity (p value = 0.29).

(E) Representative images of DOX-inducible modulation of protein expression.

(legend continued on next page)
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interfacial tension between cells within a tissue and facilitate the

physical organization of multiple cell types, making them ideal

candidates that when knocked down alter the cellular organiza-

tion within a PSC colony (Libby et al., 2018).

To fit the in silicomodel to an in vitro experimental training set,

pairwise in vitro characterization experiments were performed to

determine the relationship between space, time, and protein

expression (Figure 2A) in wild-type (WT), CDH1 KD, and

ROCK1 KD hiPSCs. These relations were established by in vitro

measurements of single-cell morphological changes (Figure S1),

migration velocity magnitudes (Figures 2B–2D), protein expres-

sion changes (Figures 2E–2G), and colony organization (Figures

2H and 2I) before and after mosaic KD of CDH1 and ROCK1 in

hiPSC colonies. The purpose of these characterization experi-

ments was 2-fold: (1) to reduce the complex interactions into

quantifiable relationships and (2) create a closed-loop mapping

between in vitroperturbations and in silico simulation parameters.

To characterize cell morphology, brightfield images of WT,

CDH1(�), and ROCK1(�) cells were collected 6 days (144 h) after

gene KD. Single-cell in vitro cell area andmembrane lengthmea-

surements (Figure S1) were acquired to set the target cell area

and target cortical tension in the simulations, respectively

(n = 110 per cell type). In the CPM, the weight associated with

cortical tension constraint regulates how readily a cell can

change its cell membrane length and relates to cell membrane

stiffness. Because of differences in cell crowding in the center

versus the edge of colonies, cell morphology measurements

were fixed given a cell’smechanical modulation and its radial po-

sition in the colony (n = 55 central and 55 edge) (Table S2; Fig-

ure S1). Cell division was assumed to be asynchronous among

the population, and cell division times specific to each type of

KD were incorporated into the model to provide an accurate

depiction of population growth kinetics.

The relationship between cells in space with respect to time

was characterized by measuring the in vitro distribution of indi-

vidual cell velocities, resulting in an empirical median velocity

magnitude of 0.29 mm/min and median absolute deviation

(MAD) of 0.10 mm/min (Figures 2B and 2D). The distribution of ve-

locity magnitude values was then used to model collective cell

migration as locally polarized motility where the direction of

cell migration is influenced by the relative cell adhesion strength

of neighboring cells (Czirók et al., 2013). A grid search was per-

formed for cell-cell adhesion and cortical tension parameters for

WT. We then selected the parameter combination that mostly

closely mimics the in vitro velocity measurements, producing a

comparable distribution with a median in silico velocity magni-

tude of 0.31mm/min and MAD of 0.15 mm/min (Figures 2C and

2D). Importantly, the in silico-generated velocity distributions

were not significantly different from the in vitro measured veloc-

ities (Mann-Whitney U test, p = 0.29, N = 2,781). To further test

how robust these results were to random variation in the initial
(F) We used Hill functions to mathematically model CDH1 knockdown over time

account for protein production depicted by light blue lines. Gray circles represent

represent 1 standard deviation from the mean. The dark blue line depicts Hill fun

(G) We use a Hill function to model ROCK1 knocked down over time as previous

(H) Paired in vitro and in silico images of spatial patterning 96 h after CDH1 knoc

(I) Paired in vitro and in silico images of spatial patterning 96 h after ROCK1 knockd

relative strength of cell-cell adhesion and cortical tension can be tuned in the in s
population size of the colony, we generated 24 additional simu-

lations of the optimal parameter combination that had a median

velocity of 0.34 mm/min and MAD of 0.15 mm/min (N = 78,747

cells). We then performed a Mann-Whitney U test (p = 0.51,

N = 78,747 in silico and N = 1,708 in vitro), showing our simula-

tions robustly represent the velocity magnitudes observed

experimentally. When selecting optimal parameters, we also

manually inspected images and only evaluated parameter com-

binations where individual cells remained part of a dense epithe-

lial colony without migrating from the exterior borders to match

the hiPSC phenotype observed in vitro. After fitting the model

to empirical data of cell morphology, velocity, and single-cell

morphology, collective cell migration of human iPSC colonies

was accurately recapitulated (Videos S1 and S2).

To characterize how protein expression changes in relation to

time, CDH1 and ROCK1 were knocked down using CRISPRi,

and the relative mRNA and protein expression was assessed

for 6 consecutive days via qPCR, fluorescencemicroscopy, (Fig-

ures 2E and S2), and western blot analyses (Libby et al., 2018).

Because of our previous observation of the phenotypic robust-

ness of CDH1 KD in promoting cell self-organization (Libby

et al., 2018), we designed several CRISPRi guide RNAs to target

CDH1 producing different levels of transcriptional KD at 10%,

25%, 30%, and 98%compared toWT expression. A single guide

RNA for ROCK1 KD was used to achieve an 80% KD of WT

expression levels (Figure S3). The data were normalized

(min-max [0,1]) and Hill functions were fit to the normalized me-

dian expression (per day) using least-squares optimization to

create a time-dependent response function for CDH1 knocked

down to 90%, 75%, 70%, and 2% of the original mRNA expres-

sion (Figure 2F). This range of KD efficiency allowed us to compu-

tationally model how differing levels of CDH1 expression could

impact spatial patterning. Using the same approach as the

CDH1 KD, we created a Hill response function for ROCK1

knockeddown to 20%of theoriginalmRNAexpression. Because

of a delay in protein KD compared to mRNA levels, the Hill func-

tions were shifted by 24 h to account for the delay in protein loss

(Figure 2G), allowing us to model the average change in ROCK1

protein expression for individual cells over time.

Given the previous characterization experiments, we were

able to model collective cell migration and temporal changes in

cell mechanics. To model the spatial patterning due to the tem-

poral modulation of cell-cell adhesion via CDH1 or cortical ten-

sion via ROCK1, either inducible ROCK1 KD or inducible CDH1

KD iPSCs were co-cultured with WT iPSCs, where KD of gene

expression was induced upon mixing the two cell types. Then,

images of the mixed populations were collected 96 h after

gene KD and co-culture. As previously reported (Libby et al.,

2018), mixed colonies with a subpopulation of cells that had

reduced CDH1 or ROCK1 expression produced distinct mosaic

patterns due to reduced cell-cell adhesion and increased
from quantification of mRNA by qPCR (n = 3) and then adding a 24 h delay to

the normalizedmedian expression 0–6 days after CDH1 knockdown. Error bars

ction models of partial KD of CDH1.

ly described for CDH1 knockdown (n = 3).

kdown in a subpopulation of cells (blue).

own in a subpopulation of cells (red). Given the previous characterizations, the

ilico simulations to recapitulate the spatiotemporal patterns observed in vitro.
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membrane stiffness properties, respectively (Figured 2H and 2I,

left). In silico, parameter sweeps were run over a range of adhe-

sion strength andmembrane length values to explore the pheno-

typic space resulting from decreases in cell-cell adhesion and in-

creases in membrane stiffness. Computationally varying the

adhesion strength produced a variety of spatiotemporal patterns

due to progressively weaker cell-cell adhesion or progressively

stiffer cell membrane parameter values. Double-blind analysis

of in silico- and in vitro-generated data sets was then conducted

to identify parameters that yielded closely matching multicellular

patterns (Figures 2H and 2I, right). Given the characterization

experiments of cell morphology, cell migration speed, time-

dependent modulation of cell mechanics, and the resulting

spatial organization, the computational model was able to reca-

pitulate the spatial patterning due to the CDH1 and ROCK1 KDs

(Videos S3, S4, S5, and S6).

Overall, after incorporating in vitro measurements into our

computational model, we accurately recapitulated hiPSC spatial

patterns with the initial experimentally derived parameters in

mixed colonies of WT and CDH1 KD cells or WT and ROCK1

KD cells (Videos S2, S3, S4, S5, and S6) (Libby et al., 2018).

Formulating Parameters for Design Automation
Given the success in matching the computational model to the

in vitro experimental training set, we then introduced five new

design parameters to simulate in vitro experimental perturba-

tions, allowing us to model exponentially more permutations of

experimental design than would be feasible in vitro. The five

design parameters were; (1) the gene KD target of cell population

1, (2) theKD time for cell population 1, (3) thegeneKD target of cell

population 2, (4) the KD time for cell population 2, and (5) the ratio

of the distinct cell populations (Figure 1D; Table S1). These addi-

tional design parameters allowed us to convert trial-and-error-

based design into a mathematical optimization problem that

couldbecomputationally solved in silicowithout time-consuming

and costly additional experiments. Although computational

design frameworks for multicellular spatiotemporal patterning

have been used in several previous studies (Krieg et al., 2008;

Marcon et al., 2016; Tewary et al., 2017), they often propose un-

derlying morphogenic mechanisms with limited perturbation po-

tential in vitro. Thus, an in silico optimization framework that

directly informs subsequent experimental design is critical to sur-

vey the high-dimensional landscape of morphogenesis.

Quantitative Pattern Classification
The second input to the Pattern Synthesis procedure was a su-

pervised image classifier known as tree spatial superposition
Figure 3. Quantitative Pattern Classifier with TSSL
A quadtree is used to represent an image at multiple levels of detail.

(A) A representative quad tree for an example checkerboard image (Ai and Aii). A

singular color. This is then depicted as a tree (Aii) where both the values and branc

of a target image, TSSL produces a numerical score corresponding to the similari

images by similarity to the desired image. (Aiv) An example image of a desired pa

able to distinguish different CPM images and score them against the desired pa

(B) Schematic representation of a particle swarm algorithm depicted in a 3D se

iteration of the algorithm, PSO reduces the breadth of exploration in the experi

optimization procedure has located in silico experiments that are generating pat

(C) Schematics of example target patterns given as classifiers in the machine learn

that predict the creation of the desired patterns: (Ci) bullseye, (Cii) island, and (C
logic (TSSL) (Bartocci et al., 2016). TSSL uses a quadtree data

structure to represent spatial relationships in an image at multi-

ple levels of detail, where the highest level captures global

aspects of an image, while the lower levels capture local spatial

relationships. For example, examining a checkerboard image

with some variation (Figure 3Ai), the TSSL would generate a

unique quadtree (Figure 3Aii) representing the levels of

complexity within the image (Bartocci et al., 2016; Finkel and

Bentley, 1974; Jackins and Tanimoto, 1983). A rule-based ma-

chine learning algorithm (RIPPER) (Cohen, 1995) was employed

to automatically learn a set of rules over the values of quadtree

vertices specific to an in silico training set of 3,000 positive and

13,000 negative manually rendered images of cells precisely

organized into target patterns, such that a quantitative score of

pattern similarity could be assigned to any image from the asso-

ciated quadtrees (STAR Methods) (Figure 3Aiii). The magnitude

of the similarity score, which can range from �1 to +1, indicates

how strongly a simulation image matches (positive scores) or vi-

olates (negative scores) the target spatial behavior. Use of a

TSSL robustness score replaces qualitative manual observation

of simulation images with a quantitative score of pattern

similarity.

Analogous to the checkerboard example, this algorithm can

be applied to more complex images such as a target organiza-

tional pattern within the CPM (Figures 3Aiv and 3Av) where the

generated quadtree from the TSSL of each desired pattern is

used to recognize and rank pattern similarity (Figure 3Av). As a

proof of principle, we first attempted a concentric ring (i.e.,

‘‘bullseye’’) pattern, defined as one population of 50 ormore con-

nected cells completely surrounded by a second population

(Figure 3Ci). The annular bullseye pattern was chosen because

similar asymmetric cell organization occurs multiple times in hu-

man development, such as during early embryo compaction

leading to the formation of the inner cell mass in the human blas-

tocyst (Deglincerti et al., 2016; Ducibella and Anderson, 1975;

Ziomek and Johnson, 1980). The second target was a multi-is-

land pattern, consisting of at least three distinct clusters of 25

or more cells completely surrounded by a separate larger popu-

lation (Figure 3Cii). The island pattern was chosen to demon-

strate the reproducibility of previously observed segregation of

cell populations in vitro (Libby et al., 2018) and to test whether

this can be predictably controlled. To first demonstrate that the

automated classifiers could reliably detect and distinguish be-

tween desired and undesired spatial patterns, the classifiers

were tested using an in silico set of 1,000 positive and 5,000

negative images. The TSSL classifiers achieved a 98.2%

classification accuracy for the bullseye pattern and 96.9%
n image (Ai) is subdivided into sequential quadrants until each quadrant is one

hes of the tree are specific to each image. (Aiii) Given a quadtree representation

ty of an image to the desired target image. This score can then be used to rank

ttern generated in the CPM. (Av) A pictorial example of how the TSSL would be

ttern.

arch space where each particle represents an in silico simulation. With each

mental space and travels toward increasing TSSL scores, indicating that the

terns of increasing similarity to the goal pattern.

ing Pattern Synthesis process and parameters produced by Pattern Synthesis

iii) Janus.
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classification accuracy for the multi-islands pattern, meaning

that the TSSL algorithm can properly recognize and score bulls-

eye or island patterns nearly 100% of the time.

By quantifying how well images from an in silico multicellular

arrangement matched images of our target organization, we

enabled the optimization algorithm (described in the next sec-

tion) to incrementally improve and learn a unique combination

of design parameters that could give rise to a desired goal

pattern.

Automated Discovery of Pattern-Producing Conditions
The CPM allows simulation of more than 40,000 distinct para-

metric conditions and facilitating the study of emerging behav-

iors of hiPSCs much faster than in vitro experiments. Distributing

the computation over 12 processors at 2.1 GHz on a server clus-

ter, it only took approximately 5 min to simulate the evolution of

one cell population over 120 h. To recapitulate this same exper-

iment in vitro, 13 96-well plates would need to be cultured in par-

allel for 120 h, demonstrating that in silico experimentation can

accelerate parameter exploration more than 1,000-fold. The

simulation speed permitted examination of a wide range of

different experimental conditions in a rapid and inexpensive

manner, taking both the labor and reagent costs into account.

However, it quickly became impractical to enumerate every

possible set of conditions to identify parameter combinations

that yielded the highest robustness score(s) because of the

tens of thousands of experimental conditions to consider and

the resulting months of computation for such a large number of

simulations. Thus, to automate the discovery of conditions that

yielded goal spatial patterns, we formulated the selection of

experimental conditions as an optimization problem.

Using the TSSL-provided metric of image similarity, a PSO

(Eberhart and Kennedy, 1995) was employed to identify regions

of the 5-dimensional (5D) design space, created by the available

design parameters, with the highest probability of producing a

target pattern (bullseye or multi-island) (Figure 3B). In brief, the

PSO first explores the extremes of the 5D experimental space,

where every extreme represents a set of experimental parame-

ters that are run as an in silico experiment using the previously

described CPM. Then, the resulting patterns from this first set

of in silico experiments are given scores. The algorithm then nar-

rows its focus to the experimental space that produced experi-

ments resulting in higher scores, doing this iteratively further

selecting for the experimental space that is most likely to pro-

duce the highest TSSL score and therefore the patterns that

most closely resemble the goal pattern. A full explanation of

the particle swarm algorithm can be found in the STARMethods.

For any in silico simulation, where the previously described

design parameters are varied to represent a different experi-

mental condition, the patterning synthesis algorithm determined

whether the generated pattern was successful (Figure S4A), and

whether the similarity score improved over the simulated period

of 120 h by at least one order of magnitude, eventually reaching a

steady state (Figure S4B). Analyzing the temporal dynamics of

robustness scores provided insight into the exact time a pattern

emerged in silico, and optimized design parameters for target

patterns that closely resembled, but still resembled the desired

spatial behavior. The final output of the particle swarm algorithm

is a list of experimental parameters that are predicted to
490 Cell Systems 9, 483–495, November 27, 2019
generate the desired pattern both in the in silico CPM and the

in vitro stem cell culture system after 120 h of mixed culture

(Figure 3C).

In addition to automating the design of de novo spatial pat-

terns, we could also determine the feasibility of any spatial

pattern given the tunable conditions of the system. Although it

is impossible to exclude experimentally that a particular pattern

can never be generated in vitro (it would require testing all

possible conditions), in silico certain de novo patterns resulted

in negative robustness scores (violating the pattern specifica-

tion), indicating that the cell population under the current pertur-

bations available (KDs, mixing ratios, etc.) was unable to

perfectly recapitulate the desired spatial behavior. For example,

the algorithm was able to determine that a perfectly symmetrical

‘‘Janus’’ pattern (left-right) (Figure 3Ciii) was not achievable with

the primary experimental variables (i.e., timing of CDH1/ROCK1

KDs and the ratio of cell types co-cultured in an approximately

2D monolayer), indicating that additional parameters such

silencing of other genes may be necessary to yield such a

pattern.

In SilicoModel Accurately Predicts In VitroExperimental
Validation
The Patterning Synthesis algorithm yielded different sets of in-

structions to produce either a bullseye pattern or a multi-island

pattern of hiPSCs. The Pattern Synthesis predicted that a

mixture of 1:4 ROCK1 KD iPSCs to CDH1 KD iPSCs that were

independently pretreated with DOX for 6 days prior to mixing

and cultured together for 4 days would yield a bullseye pattern

(Figure 3Ci) and that a mixture of WT cells with CDH1 KD at a ra-

tio of 1:4 with DOX pretreatment of iPSCs for 48 h prior to mixing

would create the multi-island pattern (Figure 3Cii).

Based on these predictions, in vitro experiments were per-

formed using the specified conditions, and the incidence of

pattern formation was independently analyzed for in silico and

in vitro results (Figure 4A–4D). The experiments were performed

with unrestricted colony growth (i.e., no patterned matrix restric-

tion) (Tewary et al., 2017; Warmflash et al., 2014) to ensure that

cellular organizationwithin the colony was not driven by imposed

boundary conditions. To account for colony size differences

affecting the resulting patterns, only colony sizes within two

standard deviations of the mean number of cells per colony

were examined for pattern formation. We characterized the

morphology of in silico- and in vitro-generated patterns by inter-

rogating subpopulation cluster circularity, number of clusters,

and cells per cluster within the colony (Figure S5). However,

the in vitro experimental results were more variable and yielded

a wider range of results, which may be due to biological vari-

ability in wet lab experimentation or subtle variations in cellular

behavior that the in silico model does not take into account.

Comparing the robustness scores generated for both the parallel

in silico and in vitro experiments indicated that the optimal in vitro

bullseye and multi-island patterns had larger robustness than

their respective control images (at least an order of magnitude

difference). The robustness scores are highly comparable only

when they are calculated in the same setting also known as a

domain; thus, a simulation versus a simulation control is quite

comparable whereas an in silico simulation versus an in vitro

experimental image will inherently differ to some extent. The in
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silico model and experimental optimization predicted that a

bullseye pattern would be achieved �12% of the time, which

closely matched the in vitro frequency (�16%; Figure 4B). Simi-

larly, a multi-island pattern was predicted to occur 100% of the

time by the model and was achieved in �87% of the in vitro ex-

periments (Figure 4D). Overall, these results demonstrate that in

silico modeling accurately classified and predicted desired

pattern formation achieved by hiPSC self-organization in vitro.

To determine how robust the predicted parameters were

within the in vitro system, the proposed mixing ratios of the pop-

ulations were incrementally varied by 10 percent (n = 16 per con-

dition) (Figures 4E and S6). Robustness scores for each of the

mixing ratios were calculated (Figures 4Ei and 4Eii) to compare

howwell each condition produced patterns similar to the respec-

tive target (bullseye or multi-island). In bullseye patterns, a 50

percent change in mixing ratio from the predicted parameters

(80%CDH1KD:20%ROCK1 KD) resulted in significant decrease

in pattern robustness scores (p < 0.05) (Figure 4Ei). Despite an

increase in the robustness scores for the multi-island patterns

in the in silico experiments, there were no significant differences

in the robustness scores calculated for the parallel in vitro exper-

iments with varying population ratios (Figure 4Eii). Robustness

scores produced by the TSSL algorithm in vitro were uniformly

lower and had higher variance than the comparable in silico con-

ditions (Figures 4Ei and 4Eii), reflecting the greater difficulty in

classifying natural images over the synthetic images generated

by the CPM. Because of the domain change from in silico to

in vitro images, the TSSL algorithm was less able to confidently

recognize patterns and explain variability both within and across

experiments, resulting in reduced discrimination betweenmixing

ratios. Additionally, differences could be due to the fact that the

CPM used is a 2D model that does not account for possible ver-

tical movement within a hiPSC colony. However, as the primary

goal of the TSSL was to enable in silico pattern optimization, the

decreased classification power for in vitro images did not

adversely impact the ability of pattern optimization to predict

conditions that resulted in the desired target patterns.

Colony Organization Impacts Initial Patterns of iPSC
Differentiation
During human development, cell-autonomous pattern formation

is intimately coupled with cell fate decisions that lead to complex

tissue structures. Therefore, we interrogated how the experimen-

tally generated multicellular patterns affected subsequent hiPSC

differentiation. We examined the initial cell fate commitment after

treatment with BMP4 for 48 h (Figures S7A and S7B) with a panel

of markers descriptive of different differentiation stages (Fig-
Figure 4. Computational Synthesis of De Novo Spatial Patterns and In

(A–D) Comparisons of three simulations of patterns predicted in silico and the resu

200 mm). Pluripotent colonies stained for DAPI (blue) and CDH1 (red (A) or orang

robustness scores show how well a simulation matches our specification com

comparable if they are calculated in the same environment (simulation versus sim

different environments is a well-known limitation in machine learning. (B) and (D) S

n = 286 colonies and multi-island n = 168 colonies).

(E) Proposed KD populations for the bullseye pattern and the multi-island pattern

from the image set used to train the image classifier to identify and score multi-isla

colonies as KD populations were varied by 10%where an increase in robustness

from the in silico optimization are highlighted in gray and the in vitro are in black.

condition and error bars indicate standard deviations.
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ure S7C). In brief, hiPSCs were marked by high OCT4 and

SOX2 expression in the pluripotent state, and then as differentia-

tion proceeded, the first lineage fate decision wasmarked by up-

regulation of markers associated with the gastrulating primitive

streak (Brachyury (BRA(T)) and SNAIL). Cells then transitioned

through a mesendodermal fate (EOMES) before displaying

mesoderm (GATA4) or endoderm (SOX17) specific markers.

The ectoderm lineage remained SOX2(+). Additionally, CDX2

was used to mark both extra embryonic lineages and presump-

tive neural plate cells within the neuroectoderm (Niwa et al.,

2005; Tewary et al., 2017; Wang et al., 2012; Warmflash et al.,

2014). WT colonies displayed a radial differentiation pattern

with central SOX2(+) OCT4(+) SNAIL(+) cells and a ring of

EOMES(+) cells around the periphery indicating the beginning

of mesendodermal specification (Figures S7C and S7D). The

lack of robust BRA(T) expression was likely due to the transient

nature of BRA(T) expression during mesendoderm induction so

the time point examined (48 h) in this experiment may have

captured the tail end of expression. WT colonies displayed a

slight increase in SOX17 at the center of the colonies, while

GATA4 andCDX2 remained low throughout the colonies (Figures

S7C and S7D). A similar radial pattern of cell differentiation was

maintained in island-patterned colonies, although SOX17

expression was reduced and GATA4 and CDX2 expression

increased (Figures S7C and S7D). The bullseye patterned col-

onies displayed a slight increase in BRA(T) expression at the cen-

ter of the colonies overlapping with the central island that defines

a bullseye pattern. Additionally, for the bullseye patterns, GATA4

expressionwas increased across the entire colony; the radial ring

of EOMES was expanded to the entire colony; and high levels of

SOX2, OCT4, and SNAIL were displayed in the center of the col-

ony. These results suggest that the central region of bullseye col-

onies underwent lineage transitions through themesendodermal

fate to the mesoderm lineage and displayed an expansion of the

CDX2-positive cells. The bullseye EOMES expression pattern

was distinctly different from the control and island-patterned col-

onies that formed a ring of EOMES expression, indicating a posi-

tional change in fate acquisition dictated by the establishment of

the bullseye pattern. Thus, the genetic manipulations used to

control multicellular organization of human PSCs also influenced

the initial differentiated phenotypes of the patterned colonies.

DISCUSSION

Cell-intrinsic patterning of multicellular stem and progenitor pop-

ulations is a critical feature of morphogenic events that occur

throughout early development (Deglincerti et al., 2016; Ducibella
Vitro Validation

lting patterns seen in vitro under the same experimental conditions (scale bars =

e (C)) to distinguish populations by the presence or absence of CDH1. TSSL

pared to the parallel control in silico or in vitro experiment. Scores are only

ulation but not simulation versus experimental image). Image classification in

uccessful pattern creation rates, comparing in silico to in vitro results (bullseye

were varied by 10% in silico and in vitro (n = 10). Example target patterns (left)

nd and bullseye patterns. (i and ii) Robustness scores for the respective in vitro

score indicates more similarity to the target pattern. The predicted parameters

Significance is indicated by 3 with p values < 0.05 where n = 16 colonies per



and Anderson, 1975; Montero and Heisenberg, 2004; Sasai,

2013). Thus, systems in which multicellular organization can be

robustly controlled and perturbed will help to elucidate key

mechanisms in development and symmetry breaking events.

Currently, the study of symmetry breaking events often involves

the manipulation of cell extrinsic factors, for example, varying

morphogen gradients (Demers et al., 2016; Chung et al., 2005),

changes in substrate patterning (Hsiao et al., 2009; Théry

et al., 2006), and/or the creation of restrictive boundary condi-

tions (Tewary et al., 2017; Théry, 2010; Warmflash et al., 2014).

In contrast, attempts to influence patterning events using syn-

thetic biology approaches often rely on implementation of an

artificial circuit that uses reaction-diffusion gradients to establish

multicellular patterns (Greber and Fussenegger, 2010; Sekine

et al., 2018; Sohka et al., 2009; Toda et al., 2018).

In this study, we demonstrate the induction of active multicel-

lular organization through controlled perturbation of intrinsic cell

mechanisms without imposing exogenous boundary conditions.

We developed a computational model capable of predicting

empirically testable experimental perturbations (combinations

of time-dependent gene KDs and mixing ratios) to generate

desired multicellular spatial patterns in hiPSC colonies. Using

agent-based model predictions of spatiotemporal pattern for-

mation, we were able to predict and achieve new patterns in sil-

ico and in vitro without using extrinsic patterning methods (i.e.,

hydrogels and micropatterning). Optimized design parameters

achieved desired organization of cells within a colony, providing

a new platform to interrogate questions of cell patterning and

lineage fate acquisition. Ultimately, these results demonstrate

that machine learning and mathematical optimization enable

predictive and controlled spatial self-organization of heteroge-

neous populations of pluripotent cells, which is a critical first

step for hiPSC self-assembly prior to lineage commitment and

subsequent organoid and tissue formation.

Previous attempts to pair computational models with experi-

mental morphogenic systems have been largely observational

and rarely demonstrate the ability to design phenotypes in silico

that can be recapitulated in vitro. In this study, both the in silico

and in vitro aspects can be adapted to additional parameters,

truly taking advantage of machine learning and optimization to

generate desired multicellular patterns. With respect to extend-

ing in vitro perturbations, CRISPR technology can be adapted

to repress or activate any accessible genes related to cell

patterning and organogenesis. As additional biological parame-

ters are considered, we can quantitatively characterize the effect

on cell patterning, and the in silico model can be refined to take

those factors into account (Briers et al., 2016; White et al., 2015),

enabling interrogation beyond cell mechanics and into other

realms of cell-cell communication such as paracrine signaling

gradients and gap junction connectivity to allow for more robust

pattern formation than that described by only manipulating

cellular mechanics (Glen et al., 2018; White et al., 2013). Ulti-

mately, the combination of agent-based modeling, machine

learning, and directed symmetry breaking provides a unique

route to engineer complex multicellular tissue structures that

go far beyond simple observation of pattern formation and facil-

itate targeted mechanistic studies that address fundamental

principles of development andmorphogenesis, leading to robust

practices for complex in vitro tissue formation.
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

E-cadherin Antibody Abcam Cat# ab1416 RRID:AB_300946

Oct-3/4 (C-20) antibody Santa Cruz Biotechnology

Cat# sc-8629

RRID:AB_2167705

SOX2 antibody [9-9-3] Abcam Cat# ab79351 RRID:AB_10710406

Hoechst 33258 antibody Thermo Fisher Scientific Cat# H3569 RRID:AB_2651133

Experimental Models: Cell Lines

CRISPRi-Gen1C Conklin Lab (Mandegar et al., 2016) NA

CRISPRi-Gen2 Conklin Lab (Mandegar et al., 2016) NA

Oligonucleotides

ROCK1 guide sequence : CGGGGCGCGG

ACGCTCGGAA

Integrated DNA Technologies NA

CDH1 guide sequence: GCAGTTCCGACG

CCACTGAG

Integrated DNA Technologies NA

CDH1 (90%) guide sequence: TCACCGCG

TCTATGCGAGGC

Integrated DNA Technologies NA

CDH1 (75%) guide sequence: CCCG

TACCGCTGATTGGCTG

Integrated DNA Technologies NA

CDH1 (70%) guide sequence: TCAGCCA

ATCAGCGGTACGG

Integrated DNA Technologies NA

Software and Algorithms

Python Programming Language

Modules: scipy, numpy, matplotlib, pandas,

seaborn, scikit-image, numpy, scipy, scikit-image

http://www.python.org RRID:SCR_008394

Morpheus, v1.9.1 https://imc.zih.tu-dresden.de/wiki/

morpheus

RRID:SCR_014975

MATLAB http://www.mathworks.com/products/

matlab/

RRID:SCR_001622

WEKA http://www.cs.waikato.ac.nz/ml/weka/; Witten et al., 2016 RRID:SCR_001214

TSSL and all custom data analysis code This work https://github.com/dmarcbriers/

Multicellular-Pattern-Synthesis
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources, reagents, or source code should be directed to the Lead Contact, Todd McDevitt

(todd.mcdevitt@gladstone.ucsf.edu).

Materials Availability
This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
All work with human iPSC lines was approved by the University of California, San Francisco Human Gamete, Embryo and Stem Cell

Research (GESCR) Committee. Cell lines were derived from the parent lineWTC (Coriell Cat. # GM25256) where the species of origin

was confirmed by a LINE assay. All cell lines tested negative for mycoplasma using a MycoAlert Mycoplasma Detection Kit (Lonza).

All human induced pluripotent stem cells (hiPSCs) were cultured at 37�C, seeded at a density of 12,000 cells per cm2 in feeder-free

media conditions on growth factor-reduced matrigel (BD Biosciences), and daily fed MTeSRTM medium (STEMCELL Technologies)
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(Ludwig et al., 2006). When hiPSC confluency reached 75%, cells were dissociated and singularized using Accutase (StemCell Tech-

nologies). Single cells were counted using a Invitrogen Countess Automated Cell Counter (ThermoFisher Scientific), re-plated at pre-

viously described density, and in the first 24hrs after passaging, fed with MTeSRTM medium supplemented with the small molecule

Rho-associated coiled-coil kinase (ROCK) inhibitor Y-276932 (10mM; Selleckchem) to promote survival (Park et al., 2015; Watanabe

et al., 2007).

METHOD DETAILS

Generation of CRISPRi Knockdown iPSC Lines
CRISPRi knockdown lines were previously generated as described in (Mandegar et al., 2016), where 20 base pair guides were de-

signed using the Broad Institute sgRNA design website (Doench et al., 2016). 20-base pair sequences were cloned into the gRNA-

CNKB vector using restriction enzyme BsmBI digestions, followed by ligation with T4 DNA ligase as described in (Mandegar et al.,

2016). 200,000 cells of the CRISPRi-Gen1C or CRISPRi-Gen2 hiPSC lines from the Conklin Lab were nucleofected with individual

gRNA vectors using the Human Stem Cell Nucleofector Kit 1 solution with the Amaxa Nucleofector 2b device (Lonza). Cells were

then plated at increasing dilutions into 3 wells of a 6-well plate coated with growth factor-reduced Matrigel (BD Biosciences) in

MTeSRTM supplemented with Y-276932 (10mM) for 2 days. Then the nucleofected hiPSCs were treated with blasticidin (10mg/ml)

for a selection period of 7 days. Surviving colonies for each gRNA were pooled and passaged in MTeSRTM with blasticidin

(10mg/ml) and Y-27632 (10mM) for a single day then transitioned to MTeSRTM media only. After stable polyclonal populations of

hiPSCs were established for each gRNA, cells were karyotyped by Cell Line Genetics (Libby et al., 2018) (Figure S8). Finally, knock-

down efficiency was tested by the addition of doxycycline (2mM) to the culture media for 6 days and subsequent qPCR of mRNA

levels of respective genes compared to time matched controls of the same line without CRISPRi induction.

Mixed Colony Generation
Mixed population hiPSC colonies were generated using forced aggregation via PDMS microwells in a 24-well tissue culture plate

(�975 4003400-mmwells per well) (Hookway et al., 2016; Libby et al., 2018). hiPSCs were dissociated and singularized using Accu-

tase (StemCell Technologies) and subsequently counted using a Invitrogen Countess Automated Cell Counter (ThermoFisher Scien-

tific). The proper ratios of cells to create 100 cell aggregates were then seeded into PDMS wells in MTeSRTM with Y-27632 (10mM),

centrifuged at 200g for 5 minutes, and allowed to compact overnight (�18hrs). Aggregates were then washed-out of the PDMSwells

with fresh MTeSRTM and re-plated into a growth factor reduced Matrigel (BD Biosciences) coated PerkinElmer CellCarrierTM-96

plates at �10/aggregates/cm2 and fed daily with MTeSRTM.

Immunofluorescence Staining and Imaging
Human iPSCs were fixed for 25 minutes with 4% paraformaldehyde (VWR) and subsequently washed 3 times with PBS. Fixed col-

onies were simultaneously blocked and permeablized with a 13 PBS solution with 0.3%Triton X-100 (Sigma Aldrich) and 5%Normal

Donkey Serum (Jackson ImmunoResearch) for 1 hours at room temperature. Samples were then incubated with primary antibodies

overnight at 4�C in a 13 PBS solution with 1% bovine serum albumin (Sigma Aldrich) and 0.3% Triton-X. Samples were washed 3

times and then incubated for 1 hours at room temperature with secondary antibodies. Primary antibodies usedwere: anti-OCT4 (San-

taCruz 1:400), anti-SOX2 (AbCAM 1:400), and anti-Ecadherin (AbCAM 1:200). All secondary antibodies were used at 1:1000 and pur-

chased from Life Technologies. Images were taken in one focal plane on the apical surface of hiPSC colonies.

Mixed colonies were imaged using a Ziess Observer.Z1 (Ziess) and an InCell Analyzer2000 (GE Healthcare) with a 103 objective,

and confocal images were obtained using a Zeiss LSM880 Confocal w/ Airyscan (Ziess) microscope with a 103 objective. Images

were analyzed in ImageJ and in python using the skimage package (van der Walt et al., 2014).

Protein Quantification
Protein quantification for CDH1 KD was first quantified by immunofluorescence imaging of mixed colonies of WT-GFP hiPSCs and

CDH1 KD colonies (Libby et al., 2018). Total fluorescence of CDH1 was measured by a python script that compared fluorescence of

the CDH1 channel normalized to the amount of WT cells vs KD cells (determined by GFP fluorescence) (Figure S2). This data was

supplemented by Western blot data from the previously published KD of CDH1 and ROCK1 in (Libby et al., 2018).

mRNA Quantification
The relative gene expression following CRISPRi knockdown was previously reported in (Libby et al., 2018) and used as a reference to

establish knockdown timing curves used in our in silico simulations. As previously reported (Libby et al., 2018), total mRNA isolation

from dissociated hiPSCs was performed using an RNeasy Mini Kit (Qiagen) according to manufacturer’s instructions and quantified

with a Nanodrop 2000c Spectrometer (ThermoFisher). Obtained mRNA was then used to synthesize cDNA using an iScript cDNA

Synthesis kit (BioRad). A StepOnePlus Real-Time PCR system (Applied Biosciences) was used to quantify and detect gene expres-

sion by Fast SYBR Green Master Mix (Thermo Fisher Scientific). Relative gene expression was determined by normalizing compar-

ative threshold(Ct) values to the house keeping gene 18S rRNA. Gene expression was then displayed as a fold change comparison to

the day 0 control before the start of gene knockdown. The NCBI Primer-BLAST website was used to design the primers. Statistical

analysis was conducted using a two-tailed unpaired t-test between any two groups (p<0.05, n=3).
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Time Lapse Imaging
Mixed hiPSC colonies were imaged at the basal surface on optically clear PerkinElmer CellCarrierTM-96 plates on an inverted

AxioObserver Z1 (Ziess) with an ORCA-Flash4.0 digital CMOS camera (Hamamatsu) with a 103 objective, where that single plane

was used for parameter estimations. Using ZenPro software, colony locations were mapped and a single colony was imaged every

30 minutes over the course of 12 hours. Time lapse imaging occurred from hours 24–36 and from hours 96–108 after mixed colony

plate down. The 12 hours series of images were then used to compare in silico to in vitro pattern formation and organization of cells.

Additionally, mixed colonies of wildtype and CRISPRi-Gen1C without knockdown guides were imaged for 6 hours every 5 minutes

with a 203 objective from hours 60–66 after plate down. These 6 hours image series were used to generate velocity values as pre-

viously described in Section 2.2 (Velocity Characterization).

Comparison of In Vitro and In Silico Spatial Patterns
We used in vitro and in silico images to calculate the total number of cells in an image, the number of clusters, and the circularity of

each cluster (Figure S1). Our work-flow for comparing patterns (Figure S9) involved splitting the images into single color RGB chan-

nels using the python module scikit-image (van der Walt et al., 2014).

For in silico images each channel represented a different cell type. After splitting the image into color channels we detected the

number of islands in a colony. For in silico images, cells were separated by a black border so we sequentially masked out the border,

dilated the image, removed small objects, then removed small holes in themaskwith scikit-image. Contiguous regions (8-connected)

were considered clusters. We then overlaid a mask of individual cells onto each cluster using a logical AND comparison of the image

masks to determine if the cell cluster met our criteria to be considered an island. Using only the cell clusters we considered islands,

we then calculated the number of cells per island and the circularity of the islands using the formulaCircularity = 4p *Area/Perimeter2.

In contrast to the work-flow for simulation images, for in vitro images one channel represented all cell nuclei and the other channel

represented cells stained for the protein CDH1, which delineated the CDH1 knockdown cells from the WT or ROCK1 knockdown

cells. For the in vitro images, the CDH1 channel was thresholded and then dilated to create a CDH1+ cell mask followed by removal

of small objects and holes to create a smooth segmentation. To generate the island masks, isolated CDH1 negative clusters were

identified using the ‘‘label’’ function on the inverse of the CDH1+ mask. Individual cells were localized by detecting local maximum

intensity in the DAPI channel images then the number of DAPI peaks per islandwere calculated using the logical AND of the island and

CDH1 negative masks. Finally, we used the function "regionprops" to calculate the cluster area and perimeter for each island, which

were then employed to calculate the island circularity with the above formula.

BMP4 Differentiations
Successfully patterned hiPSC colonies were differentiated for 48hrs in MTeSRTM cell culture medium (StemCell Technologies) sup-

plemented with BMP4 (R&D Systems, Minneapolis, United States of America) at a 50 mM/ml concentration. The colonies were then

fixed with 4% PFA for 25 min and subsequently analyzed.

Cellular Potts Model Environment
Wemodeled the mechanical properties of interacting human induced pluripotent stem cells (hiPSCs) with an extended cellular Potts

model (CPM). In the model of mechanically driven self-organization in hiPSCs, cell—cell interaction mechanics were explained by

four physical properties of cells. 1) cell-cell adhesion, 2) cortical tension, 3) conservation of volume, 4) and directionally persistent

cell migration . Below, we describe how the extended CPMwas used to recapitulate spatiotemporal patterns and predictively design

de novo spatiotemporal behaviors.

We defined the environment of a CPM simulation S on a 2D square lattice domain S˛Z2
+ . Each lattice site, x = ðm;nÞ˛ S, repre-

sented a coordinate location where m˛Z+ and n˛Z+ were the horizontal and vertical coordinates of each lattice site respectively.

The spatial resolution of each lattice site was 1mm2 so that each square region of the grid is equal to 1 square micrometer.

To represent the location of hiPSCs, each lattice site xwas assigned a value sx, conventionally called the spin or cell index (cell ID)

of a site, from the set of cell indices k˛K given K = f1;.;NðtÞg where N(t) was the number of cells in the simulation at time t. Lattice

sites that represent empty space where there is no hiPSC covering the lattice site were assigned a cell index of 0. In the CPM, a cellCk

was composed of multiple lattice sites where each lattice cite represents a partial region of a cell or the surrounding media. A cell Ck

was defined as the set of lattice sites with the same cell ID Ck = fx˛S : sx = kg. Since a single cell was composed of multiple lattice

sites, the CPMwas able to capture fluctuations in a cell’s shape with a granularity that is not possible with Type A cellular automaton

or center-based models (Van Liedekerke et al., 2015). Each cell was also assigned a cell type t to notate the type of genetic pertur-

bation (i.e. KD) of that cell which determined its intracellular and extracellular behaviors.

Next, we summarize two common metrics to describe cell morphology in a CPM simulation; cell area and cell membrane length.

These metrics are important since their values in the model were directly measured from microscopy images. For a discussion of

these metrics see Magno et al. (2015) and Voss-Böhme (2012).

Given that each lattice site had an area of 1mm, the area of a cell at time t in the simulation was defined as the number of lattice sites

encompassed by a cell:

ak;t = jx˛S : sx = kj; (Eq 1)

where j,j denoted the cardinality of a set.
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The time varying membrane length of a cell pk;t, synonymously called the perimeter or surface length in other studies , was defined

as the number of lattice interfaces bordering other cells or empty space:

lk;t = 0:53
X

interfacesfx;x0g
dðk; sxÞ; (Eq 2)

where x’ represented any of the lattice sites adjacent to x, ðm ±1;nÞnðm;n ±1Þ in 2D.

The Kronecker symbol d was defined by dðu; vÞ= 1 if u = v and dðu; vÞ= 0 if usv. An interface (x, x’) was a shared border between

lattice sites. To avoid counting adjacent lattice sites inside a cell, the CPM only summed interfaces between lattice sites with different

cell ID’s; when dðsx;sx0 Þ= 0. Put simply, we were measuring the perimeter of each stem cell.

Cellular Potts Model Dynamics
The CPM uses a function called the Hamiltonian H to describe the energy (favorable behaviors) for any configuration of cells. Cell

motility evolved by choosing a random lattice site x, a region of a cell-cell interface or a cell-media interface and attempted to copy it

to a random neighboring lattice site x’. The Hamiltonian was defined as the sum of four constraints that represent four physical

properties of simulated stem cells: 1) conservation of cell area, 2) locally polarized cell migration, 3) cell-cell adhesion, 4) and cell

membrane length which commonly represents cortical tension. In the CPM, the goal was to minimize the Hamiltonian or minimize

violations of the desired cellular behaviors. Therefore, each constraint calculated a decrease (reward) or increase (penalty) in the

configuration energy due the collective properties of cells in the simulation.

When a change in a lattice site was proposed, this affects H. If the proposed change was accepted, the change in H was defined

as DH. A proposed change for a cell’s lattice site was accepted with the following probability:

if DH<� Y ;Pðs/s0Þ= 1 (Eq 3)
otherwise; Pðs/s0Þ= e�ðDH+YÞ=T ; (Eq 4)

where the yield Y = 0.1 and the temperature T = 10.

Simply, if the proposed change in local cell position resulted in less energy, then the change was accepted. If the proposed update

would have resulted in greater energy (DH), then the change was only accepted with a very low probability. In this way, complex be-

haviors such as preferential cell-cell adhesions, cortical tension, and cell migration, are represented by a score and a weight, where

the score represents a reward or penalty depending on the divergence of a cell from its target behavior, while the weight represents

the relative importance of the respective cell behavior.

CPM Configuration Energy
The free energy for a configuration of cells was defined as the sum of four constraints: local cell-cell/cell-ECM adhesion, cell area

conservation, cell membrane length, and locally polarized cell migration:

H=Hadhesion +Harea +HmembraneLength +Hmigration (Eq 5)

For a configuration of cells, the free energy due to cell adhesion was

Hadhesion =
X
k˛K

JtðsxÞ;tðsx0 Þð1� dðsx;sx0 Þ Þ; (Eq 6)

where JtðsxÞ;tðsx0 Þ represented the cell adhesion strength between lattice sites sx and sx0 that was defined by their cell type tðsx0 Þ.
ð1�dsx ;sx0 Þ restricted these calculations to interfaces between cells instead of all lattice sites, and improved the efficiency of the

simulation. Although not explicit in our notation, the cell adhesion strength was a time-dependent function controlled by protein

expression to mimic changes in cell behavior with inducible gene knockdown. The energy due to cells resisting changes from their

resting area was defined as

Harea =
X
k˛K

laðak;t � Ak;tÞ2; (Eq 7)

where Ak;t represented the target area of a cell, ak;t represented the current area of a cell, and la was the relative strength of area

conservation term.

The cortical tension constraint was defined as:

HmembraneLength =
X
k˛K

llðlk;t � Lk;tÞ2; (Eq 8)

where lk,t represented the current membrane length of a cell at time t, Lk,t was the target membrane length, and llwas the strength of

the cortical tension constraint.
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As a proxy for increasing or decreasing the cell membrane length, the Equivalent Circular Perimeter (ECP) was used to set the

membrane length for a cell given its current area. The ECP of a non-circular 2D object was defined as the perimeter of a circle

with equivalent surface area as the non-circular object:

ECPðkÞ= 2
ffiffiffiffiffiffiffiffiffiffi
ak;tp

p
:

The target membrane length was calculated using a membrane length proportionality constant:

Lk;t = rkECPðkÞ; (Eq 9)

where rk was the membrane proportionality constant.

To find rk themembrane length and area of cells weremeasured and divided by the ECP of the cell. This ratio ofmembrane length to

ECP was equal to the membrane proportionality constant rk. The ECP allowed us to calculate the membrane length of a cell of any

area that would have a comparable shape to empirical measurements.

To capture directionally persistent cell migration, wemodeled "polarized cell migration" as the tendency of cells to bias their move-

ment in the same direction as their previous direction of movement as described in Czirók et al. (2013) and Szabó et al. (2010). Cells

had a target direction t/ based on previous movement where CPM updates in this direction were preferred (they decreased the

energy in H). For each copy attempt x/x0, the cell center was displaced in direction s0
!
. The change in energy due to migration in

this direction was defined as:

Hmigration = � makð t!,s0
!Þ; (Eq 10)

where mwas the strength of cell migration, ak;t was the cell area at time t, t
!

was a unit vector giving the target direction, and s!was a

unit vector giving the current direction of a stem cell if the CPM update (x/x0) was to be accepted.

The function was multiplied by -1 since updates in the direction of t
!

have a dot product that approached +1 as the angle

between t
!

and s! approached zero. Multiplying by -1 resulted in decreased configuration energy for cells moving in the same di-

rection as the target direction vector.

For every MCS, the target direction at any time ( tt
!
) was updated continuously given the displacement of a cell’s centroid

wDO=Ot �Ot�1 then transformed into a unit vector s!=DO=jDOj. This target direction included how ’decay-time’ D of the

previous direction and the current cell displacements contributed to the current polarity of the cell (Szabó et al., 2010):

tt
!

= ð1� DÞtt�1
�!

+D s
!
: (Eq 11)

Physical Units and Other Cellular Phenomena of CPM
Cell division was symmetrical (the parent cell divided into 2 equally sized daughter cells), and the timing of cell division was asynchro-

nous. This was achieved by assigning a uniformly distributed "division counter" dc for each cell at t= 0 between 0 and the division time

dt. This counter was incremented at each time step of the simulation, and a cell would divide when dc = dt. dc was then reset to 0 for

both daughter cells. Cell division was assumed to be asynchronous amongst the population, and cell division times specific to each

type of knockdown were incorporated into the model to provide an accurate depiction of population growth kinetics. Cell division

times were calculated from in vitro doubling rates and modeled to be 18 hours for CDH1(-) cells, and 20 hours for all other cells.

Model Fitting to Empirical data
In the main text we provide a brief explanation of the characterization experiments to fit our computational model. Here we describe

the mathematical transformations, mapping functions, and model parameters associated with these characterization experiments.

The parameters fit during this process are summarized in Table S2.

Morphology Characterization

Three types of colonies were characterized; purely wildtype, wildtype and CDH1 knockdown in a 1:1 ratio, and wildtype:ROCK1

knockdown in a 1:1 ratio. We measured the cell area, perimeter, and ECP at the center and periphery of colonies (Figure S1). The

median cell area was used to set the target cell area (Ak,t) in our simulations (Figure S1; Table S2). The median membrane propor-

tionality constant (rk = perimeter / ECP) was used to set the target membrane length Lk,t in our simulations (Figure S1; Table S2).

Velocity Characterization (Space versus Time)

Wecharacterized space vs. time bymeasuring the velocity (change in distance over time) of wildtype cells in dense colonies.Mixed ag-

gregates of 90%WTand10%CRISPRi cellswithout a targeting guideweregenerated.With the addition of doxycycline (DOX) to the cell

culture media, the CRISPRi no guide population expressed a cytoplasmic mCherry marker which allowed individual cells to be distin-

guished from the untaggedWT background (Figure 2B). 24 colonies were imaged for 6 hours at 5 minutes/image at 203magnification

creating a time series of 73 frames. Each frame was individually normalized and thresholded using non-local means (Otsu, 1979). Cell

migration tracks were generated by following matching contours between frames where matching contours share at least ten pixels

overlap. We used watershed segmentation to separate adjacent cells. Instantaneous frame to frame velocity was calculated as

vinst =
�ðxcm;2 � xcm;1Þ

�
Dt;

�
ycm;2 � ycm;1

��
Dt

�
; (Eq 12)
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where xcm;2 was the center of mass of each segmented cell body at the currently observed frame and xcm;1 was the center of mass of

each segmented cell body at the previous frame, and Dt was 5 minutes.

Taking the average magnitude of the per-cell instantaneous velocity over 24 colonies gave a median velocity of 0.29 mm/minute.

We then ran parameter sweeps to fit model parameters that affect cell migration (Table S1):

d MCS - copy attempts per simulation hour

d JWT,WT - adhesion energy or reward per micrometer of cell border between wildtype cells

d m - strength of self-propulsion

d ll - strength of cortical tension

We chose the parameter combination where the simulation velocity distribution matched the empirical velocity distribution and

remained a dense colony (0.34 mm/minute). It is important to note that we chose optimal model parameters using the distribution

of cell velocities and not the median cell velocity. We ran 24 simulations to mimic the the experimental setup of the in vitro charac-

terization. Using theMann-Whitney U test, there was no significant difference in the distribution of cell velocities; p-value threshold of

0.05 and p-value for 24 in silico colonies was 0.051. After fitting themodel to empirical data of cell morphology and velocity, we could

recapitulate the cell morphology and collective cell migration of wildtype stem cell colonies without genetic modulation (Videos S1

and S2).

Temporal Knockdown Characterization (Protein Expression versus Time) - CDH1

We characterized the time-dependent knockdown of CDH1 expression which was responsible for changes in cell-cell adhesion (J) .

CDH1 was knocked down using CRISPRi, and the relative expression was measured for 6 consecutive days. The relative mRNA

expression of CDH1 was quantified by quantitative PCR (n=3) and protein expression of CDH1 was measured by immuno-fluores-

cence microscopy (n=10), which displayed a 24 hours delay from the mRNA knockdown. The data was min-max normalized to a

domain of [0,1] using the median expression for each day:

yðtkÞ0 = ðyðtkÞ � ymin Þ
�ðymax � yminÞ; (Eq 13)

where tk was the time since the knockdown, y(tk) was the expression at k hours after knockdown, ymax was the max expression from

all days, and ymin was the minimum expression over all days. It is important to note that tk is the time since knockdown and t is time

since the initiation of co-culture experiments. Using least squares optimization ( Python scipy.optimize.curve_fit function), the Km

(repression coefficient) and n (Hill coefficient) of the Hill Function for repression were fit to the normalizedmedian expression to create

a response function using least squares optimization:

FðtÞ= 1
��

1+ ðKm=tkÞn
�
; (Eq 14)

where Km was the time half expression occurs, and n was the hill coefficient. Functions were fit to the normalized median expression

(per day) to create a time-dependent response function for CDH1 knocked down to 90%, 75%,70%, and 2% of the original mRNA

expression (Figures 2F and S3). This range of knockdown efficiencies allowed us to computationally model how differing levels of

CDH1 expression could impact spatial patterning. Given value for the parameters km and n (Table S2) we now had a continuous

response function for the expression of CDH1 given a knockdown time that we couldmodulate. It is important to note that normalizing

the relative expression to a domain of [0, 1] allows us to stretch the response function to different parameter ranges in the spatial

pattern characterization experiments.

Temporal Knockdown Characterization (Protein Expression versus Time) - ROCK1

Using the same approach as the CDH1 knockdown, we created a Hill response function for ROCK1 knocked down to 20% mRNA

expression. ROCK expression is represented by the strength of cortical tension (ll) parameter in our computational model. We

assumed mRNA expression changed 24 hours ahead of protein expression, so we shifted the time axis forward by one day to

account for the delay. The median expression for each day was min-max normalized to a domain of [0,1] (Equation S13). The

Km(repression coefficient) and n (Hill coefficient) of the hill function for repression were fit to the normalized median expression to

create a response function using least squares optimization (Equation S14; Figure 2; Table S2). Due to the delay in protein knockdown

compared to mRNA levels, the Hill functions were shifted by 24 hours to account for the delay in protein loss (Figure 2G), allowing us

to model the average change in ROCK1 protein expression for individual cells over time.

Spatial Pattern Characterization (Protein Expression versus Space)

Given the previous characterization experiments, we were able to model cell proliferation, cell morphology, wildtype cell migration,

and temporal changes in the expression of CDH1 andROCK1. However, the time-dependentmodulation of protein express had to be

mapped to changes in multicellular self-organization. To model the the time-dependent modulation of cell-cell adhesion via CDH1

and cortical tension via ROCK1, fluorescent microscopy images were collected 96 hours after mixing either ROCK1 KD or CDH1

KD cells with wildtype hiPSCs. Then in silico parameter sweeps were run overlaying a range of parameters controlling the strength

of adhesion or membrane stiffness. These two parameters rescaled their respective Hill Functions and produced a range of spatial

patterns due to progressively weaker cell-cell adhesion or progressively stiffer cell membrane parameter values. We then conducted
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double-blind experiments to fix adhesion strength and membrane stiffness parameters which most closely matched in vitro spatial

patterning for CDH1 and ROCK1 knockdowns respectively (Figure 2H and 2I).

F 0ðtÞ= yknockdown +
�
ywildtype � yknockdown

� � �1+ ðKm=tÞn
�
; (Eq 15)

where yknockdown was the adhesion strength (J) or target membrane length (Lk, t) of knockdown cell lines in the model, and ywildtype was

the adhesion strength (J) or target membrane length of wildtype cells in the model.

In Equation 15, we scaled the normalized response function from [0,1] to the range of model parameters ½yknockdown;ywildtype�. Given

the characterization experiments of cell morphology, cell migration velocity, time-dependent modulation of cell mechanics, and the

resulting spatial organization, the computational model was able to recapitulate the spatial patterning due to the CDH1 and ROCK1

knockdowns (Videos S3, S4, S5, and S6).

TSSL Scoring and Pattern Optimization
In order to automatically compare patterns produced by the model from different parameterizations and determine optimal param-

eter values, we needed a measure capable of quantifying how close any given pattern was to the desired one. A very effective algo-

rithm was proposed in Bartocci et al. (2016) for this purpose.

Quad-Tree Representation of an Image

Consider an RGB representation of an m 3 n image as the matrix A where the element aij = CaðrÞij ; a
ðgÞ
ij ; a

ðbÞ
ij D is the normalized RGB

values for the pixel located on the ith row and jth column of the image. Thus,

0%a
ðcÞ
ij %1 for c˛fr; g;bg:

Given amatrixA,A½is; ie; js; je�was used to denote the submatrix created by selecting rowswith indices from is to ie and columns from

js to je. Following, we represented the matrix A as a quad-tree. A quad-tree Q= ðV;RÞ is a quaternary tree representation of matrix A

where each vertex v˛V represents a submatrix of A and the relation R3V3V defines four children for each vertex that is not a leaf.

Figures 3Ai and 2Aii demonstrates how a quad-tree is built from amatrix. In this figure, we label each edge in the quad-tree with the

direction of the sub-matrix represented by the child: north west (NW), north east (NE), south west (SW), and south east (SE). In

Figure 3Ai:

d v0 represents the complete matrix A at quadrant level 1

d v1 represents the first quadrant of level 2 or A½1;Pm =2R; 1;Pn =2R�, wherem is the total number of rows and n is the total number of

columns in A

d v2 represents A½Pm =2R + 1;m;1; Pn =2R�
d v3 represents A½Pm =2R + 1;m; Pn =2R + 1;n�
d v4 represents A½1; Pm =2R; Pn =2R + 1;n�
d v5 represents represents the first quadrant of Level 3 or A½1; Pm =4R; 1; Pn =4R�,
d etc

We used the procedure described in Briers et al. (2016) to construct quad-trees, which is slightly different from Bartocci et al.

(2016). In Bartocci et al. (2016), the assumption was made that A has a size of 2k 3 2k so that each submatrix could be divided

into four equal-sized partitions. Here, we relaxed this requirement by allowing non-equal submatrices to be children of a node.

Furthermore, Bartocci et al. (2016) defined a leaf as a vertex of the quad-tree for which all the elements of a submatrix had the

same values. While this approach works perfectly for the 323 32 network that is studied in that paper, it can be problematic for larger

images since the number of vertices in a quad-tree grows exponentially as more levels are added to it. In this paper, we constructed

quad-trees with a fixed depth of 5, regardless of the size and other characteristics of A.

The representation function mðcÞðvÞ : V/½0;b�3½0;b� was defined for sub-matrix A½is; ie; js; je� represented by vertex v˛ V of the

quad-tree Q= ðV;RÞ as follows :

mðcÞðvÞ=
	
m
ðcÞ
1 ;m

ðcÞ
2




m
ðcÞ
1 =

1

ðie � is + 1Þðje � js + 1Þ
X

i;j˛fis ;/;ieg3 fjs ;/;jeg
a
ðcÞ
ij ;

m
ðcÞ
2 =

1

ðie � is + 1Þðje � js + 1Þ
X

i;j˛fis ;/;ieg3 fjs ;/;jeg

	
a
ðcÞ
ij � m

ðcÞ
1


2

;

(Eq 16)

where c˛fr;g;bgwas an RGB color. The function mðcÞ provided the mean value and variance for the concentration of RGB colors in a

particular region of the space represented by the vertex v.

Quad-trees can be interpreted as multi resolution representation of images, as the nodes that appear in deeper levels provide sta-

tistical information for higher resolutions and nodes that appear on higher levels correspond to more global characteristics of

an image.
e7 Cell Systems 9, 483–495.e1–e10, November 27, 2019



Tree Spatial Superposition Logic

In, a formal logic, called tree spatial superposition logic (TSSL), was introduced. TSSL is capable of formally specifying global pat-

terns in a network of locally interacting agents. The authors showed that this logic is sophisticated enough to describe complicated

patterns such as Turing patterns in biochemical reaction-diffusion systems. In this paper, we used this logic to express various pat-

terns that are studied here (Figure 4). First, we present a brief introduction to TSSL. The reader can refer to Bartocci et al. (2016) for a

thorough explanation of this logic, definitions of syntax and semantics, and its properties.

A TSSL formula is recursively constructed using the following:

d Linear predicates over valuations for the representation function (Equation S16). For example: m
ðrÞ
1 > 0:8 or m

ðbÞ
1 < 0:5.

d Boolean operators, such as :4, 41 ^ 42, and 41n42.

d Spatial operators: dBB4, cBB4, where B is a nonempty subset of the set of directions {NW, NE, SW, SE}.

The spatial operatorsdBB andcBB are read as there exists in directions B next and for all directions B next, respectively.dBB4 is

interpreted as follows: for at least one of the nodes located in the next level of the quad-tree labeled with one of the directions in B, 4

must be satisfied. cBB4 specifies that for all such nodes 4 must be satisfied. We demonstrate how TSSL can be used to express

spatial patterns through an example.

Consider a 43 4 pattern as illustrated in Figure 3A. This pattern can be expressed as the following TSSL formula f. A portion of the

quad-tree satisfying this formula is shown in Figure 3B.

f=
cfNE;SW;SEgB

�
cfNW;SEgBfwhite^cfNE;SWgBfcolored

�^
cNWB

�
cNWBfwhite^cfNE;SWgBfblue^

cSEB

�
cfNW;SEgBfwhite^cfNE;SWgBfblue

��
;

(Eq 17)

where

fwhite =m
ðrÞ
1 = 1^mðgÞ

1 = 1 ^ m
ðbÞ
1 = 1;

fcolored =m
ðrÞ
1 < 1nm

ðgÞ
1 < 1nm

ðbÞ
1 < 1;

fblue =m
ðrÞ
1 = 0 ^ m

ðgÞ
1 = 0 ^ m

ðbÞ
1 R0:5:

TSSL formulas can be viewed as formal pattern descriptors or pattern classifiers. For instance, the formula of Equation S178 ac-

cepts a quad-tree derived from a checkerboard pattern and rejects any other quad-tree. Although TSSL is capable of describing

complicated spatial behaviors in an image, it is difficult in general to write a formula that describes a complex pattern. In Bartocci

et al. (2016), the authors proposed to use machine learning techniques in order to find such a formula from a given set of positive

and negative examples.

Assume a set of positive images (Y + ), illustrating a desirable pattern, and a set of negative images (Y�), in which the desirable

pattern was not present, were available. We created a set L from these images as:

L=
��

Qy; +
�jy˛Y +

�
W
��

Qy;�
�

y˛Y�

�
;

where Qy was the quad-tree generated from image y.

The set L was separated into a learning set LL (used to train a classifier) and a testing set LT (used to test the classifier obtained

from LL) such that L=LLWLT . A rules-based learner called RIPPER (Cohen, 1995) was used to learn a set of classification rules from

LL. Each of these rules was in the form:

Ri : Ci0Labeli;

where Ci was a Boolean formula over linear predicates over the representation values of the nodes of a quad-tree and Labeli ˛ f+;
�g.

We used theWekaworkbench for implementing RIPPER. EachCiwas then translated into an equivalent TSSL formulaFi. Since the

classification rules were interpreted as nested if-else statements, the TSSL formula equivalent to the entire set of classification rules

corresponding to the positive class was written as:

F+ = n
j˛R+

ðFj^ ^
i =1;/;j�1

:FiÞ; (Eq 18)

where R+ was the set of indices of rules labeled positive.

Quantitative Robustness

A TSSL formula can be created for any desired spatial pattern by following the procedure described in the previous section. If this

formula is evaluated as true for a given image, it means that the image contains the required pattern. On the other hand, a false eval-

uation of the formula means that the pattern does not exist. However, this qualitative evaluation of TSSL descriptors does not provide

any information about how strongly an image demonstrates the required pattern.
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In order to provide information about how strongly an image satisfies or violates the given property, TSSLwas also equipped with a

recursive quantitative semantics definition which assigned a real value to a TSSL formula 4 with respect to vertex v˛V of quad-tree

Q= ðV;RÞ; denoted by rð4;vÞ. The TSSL quantitative valuation was derived recursively as follows:

d r
	
m
ðcÞ
i Rd; v



=m

ðcÞ
i ðvÞ� d

d rðmðcÞ
i %d;vÞ=d� m

ðcÞ
i ðvÞ

d rð:4;vÞ= � rð4;vÞ
d rð41^42;vÞ=minðrð41;vÞ;rð42;vÞÞ
d rð41n42;vÞ=maxðrð41;vÞ;rð42;vÞÞ
d rðdBB4; vÞ= 0:25max

b˛B
ðrð4; vbÞÞ where vb was the child vertex of v with label b

d rðcBB4; vÞ= 0:25min
b˛B

ðrð4; vbÞÞ where vb was the child vertex of v with label b

It was proven in that TSSL quantitative semantics are sound. In other words, a quad-treeQ satisfied a formula 4 (Q~4) if rð4; v0Þ> 0

where v0 was the root ofQ, andQ violated 4 ($Q\not\models\phi$) if rð4;v0Þ<0. Therefore, the problem of checking whether an image

contains a pattern expressed as a TSSL formula was reduced to computing its quantitative valuation rð4;v0Þ. Moreover, the absolute

value of rð4; v0Þ was viewed as a measure of how strongly 4 was satisfied (or violated) by Q. Hence, the quantitative valuation of a

formula with respect to a quad-tree was called its robustness. This property is demonstrated in Figure 3.

Particle Swarm Optimization

Consider an agent-based model with a set of parameters p˛U3RNp , where Uwas the possible set of parameter ranges and Np was

the total number of parameters. For instance, in themodel described in Section S1, we hadNp= 5 parameters with ranges specified in

Table S1.

The output of themodel was a sequence of T images whereA[t] was the image corresponding to time step t˛f0;1;.;Tg and Twas

the total duration of simulation. Our goal was to determine parameter values that result in emergence of a required pattern in the

sequence of images derived from the model. Recall that we could specify the pattern using a TSSL formula FPattern. Moreover,

each image A[t] could be translated into a corresponding quad-tree Q½t� with root v0½t�. Therefore, for a fixed parameterization p,

we could quantify the resulting sequence of images with S(p) using the following equation:

SðpÞ= max
0%t%T

rðFPattern; v0½t� Þ; (Eq 19)

where r was the TSSL robustness as described in the previous section.

Note that since the model was stochastic in nature, S(p) was a random variable and would have a different value every time a sam-

ple simulation was produced using the model with the parameters p. If S(p) > 0, there exists at least one image in that particular

sequence for which the TSSL robustness was positive and the pattern was present. On the other hand, the pattern had not emerged

in the sample simulation if S(p)<0. We called S(P) the robustness degree for parametrization p. Now, the problem became finding the

parameterization p* that maximized the score S(p). Since S(p) was a random variable, we choose to maximize its expected value:

p� = argmax
p˛U

EðSðpÞ Þ; (Eq 20)

which means that we were looking for the parameterization p* that on average produced patterns with highest possible robust-

ness score.

If we simulated the model n times from parameters p, the expected value could be approximated with the sample mean:

EðSðpÞ Þz ~SðpÞ= 1

n

Xn

i = 1

SiðpÞ; (Eq 21)

where SiðpÞ was the robustness score for parameters p in the ith simulation.

In general, a large sample is needed to achieve an accurate approximation. however, it was shown in that in practice, a relatively

small n suffices for the purpose of optimization in Equation S20. In this paper, we computed the average robustness for three sample

simulations in every case (n = 3).

Many optimizationmethods can be used to solve this optimization problem. Inspired by Bartocci et al. (2016), we employed particle

swarm optimization (PSO) (Kennedy, 2011) to solve this problem. PSO is a heuristic solution to unconstrained optimization problems

that is capable of solving problems with irregular search spaces, is easily distributable, and does not require the objective function to

be differentiable.

The PSO algorithm worked as follows: the procedure began by randomly initializing a set of M particles with positions zi˛ U and

velocities z
0
i . The position of a particle was a candidate solution to Equation S20, and the velocity was a search direction from the

current solution. Next, n simulations were produced and n sequences of quad-trees Q½t�ðziÞ were created for each particle and

the average robustness degree ~SðziÞ was evaluated for each set of simulations represented by particle zi. The position of the ith
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particle that had performed best so far was stored in the variable z�i , and the optimal value of z�i was denoted by z�. After all particles
had been evaluated, the positions and velocities were updated according to the following relations:

z0i)Wzi + hðrpÞ
�
z�i � zi

�
+ h

�
rg
�ðz� � ziÞ

zi)zi + z0i ;
(Eq 22)

where hðriÞwas a random number uniformly distributed over [0, ri] and the parametersW˛R; rp; rg are tuned by the user. This iterative

process continued until a termination criterion was met.

If ~Sðp�Þ was positive or negative but sufficiently close to zero, we had found the optimal parameterization of the model for the

required pattern. This occurred for the bullseye and Multi-Islands patterns. The optimal parameterization is shown in Figure 4. On

the other hand, Sðp�Þ � 0 indicated that even for the best possible parameterization of the model, the required pattern did not

emerge, meaning that the model was not capable of producing that pattern at all. This occurred for the Janus (left-right) pattern

(Figure 4C iii).

Figure S4A demonstrates two sample simulations, one for the bullseye pattern and one for the Multi-Islands pattern. Figure S4B

shows how the corresponding TSSL scores evolve over time for each simulation. It is seen in this figure that the scores gradually

improve until at some points the desired patterns are formed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mann-WhitneyU-tests were used to compare in vitro and in silico experimental populations in Figure 2. Unpaired T-tests withWelch’s

correction were used to compare in vitro and in silico experimental populations in Figure 4. Error bars depicted in graphical repre-

sentations signify 1 standard deviation unless otherwise specified in the figure legend. For each statistical test the number of

replicates is described in the figure legend. Throughout the manuscript the symbol * signifies statistical significance at the 0.05 level

unless otherwise specified.

DATA AND CODE AVAILABILITY

Software
Model fitting of single-cell morphology, cell velocities, temporal knockdown characterizations, and spatial pattern characterizations

were performed with custom Python code generated for these studies (modules: scipy, numpy, matplotlib, pandas, seaborn, scikit-

image) (Jones et al., 2001). Image preprocessing, segmentation, and quantification of cell and colony morphology was performed

with custom Python code (modules: numpy, scipy, scikit-image). Quantification of pattern similarity and pattern optimization were

performed with custom code for TSSL. All custom code can be accessed From: https://github.com/dmarcbriers/Multicellular-

Pattern-Synthesis.

Data Availability
All data is available in the main text or supplementary materials. A GitHub repository of analysis code can be found at: https://github.

com/dmarcbriers/Multicellular-Pattern-Synthesis.
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