
Automatic Generation of Balletic Motions

Abstract— As cyber-physical systems become more prevalent,
specifications for these systems must be formulated in a more
nuanced manner. This paper presents a particular instantiation
of such specification by proposing a framework that endows
robotic motions with a sense of aesthetic style. Drawing inspi-
ration from classical ballet, poses are cast as discrete states and
movements as the transitions between these states. Thus, a given
movement style is encoded in the availability of transitions at
each state, and the dynamics of a complex physical trajectory
are abstracted as a system which moves between these states.
Using Linear Temporal Logic (LTL), we are able to further
constrain the set of possible sequences through the transition
system and thus prevent it from evolving through a sequence of
states that is physically impossible or aesthetically undesirable.
Our overarching objective is to facilitate subtle degrees of
control over systems as such subtleties are required, more and
more, to interact in a social and aesthetically driven world.

I. INTRODUCTION

As robots’ capabilities and their interactions with humans
increase, we desire to endow robotic systems with more so-
phisticated (typically human-like) behaviors. Such behaviors
do not follow predictable, continuous trajectories as humans
constantly make discrete decisions and may abruptly change
behavioral modes. Thus, this problem requires discrete, non-
physical control methods which can interface with the contin-
uous trajectories of robotic systems and at the same time pro-
vide discrete decision-making power. Designing such cyber-
physical systems requires exploring the temporal structure of
human movement by producing specifications which restrict
movement patterns such that they match those found in
specific human behaviors. In this paper, we use temporal
logic statements to begin to enumerate fundamental rules
and secondary, aesthetic principles which govern human
behavior and can provide a starting point for reasoning about
more subtle control design objectives, such as “style,” when
designing controllers for cyber-physical systems.

Recently, there has been an increasing interest in develop-
ing computational frameworks allowing for rich specification
languages in robotics. In particular, temporal logics, such as
Linear Temporal Logic (LTL) and Computation Tree Logic
(CTL) have been suggested as motion specification languages
[20], [16], [6], [10], [3]. The use of such logics allows for
a large spectrum of specifications which include: choice of
a goal (“go to either A or B”); convergence to a region
(“reach A eventually and stay there for all future times”);
visiting targets sequentially (“reach A, and then B, and then

C”); surveillance (“reach A and then B infinitely often”); the
satisfaction of more complicated temporal and logic condi-
tions about the reachability of regions of interest (“Never go
to A. Don’t go to B unless C or D were visited”). Such
robot motion planning and control objectives are achieved
based on algorithms inspired from model checking [2] and
temporal logic games [15].

Here, we use LTL to express robotic tasks that include an
aesthetic component, e.g., “go to goal with grace” or, more
specifically, “move in the quick, staccato style of allégro
ballet.” These tasks have an objective component, such as
“take ten steps,” and also incorporate subjective qualities
like intention and aesthetics, such as “make ten movements
that give the impression of being happy.” Thus, in this
paper, through a particular approach to modeling and formal
synthesis, we begin to quantify subjective qualities, which are
a significant missing link in human-like robot interaction, by
scripting them in the established language of LTL.

This work is a continuation of [12], where classical ballet
was first introduced as a potential generator for behavior
that is strictly human. Their extracted movement rules have
little to do with concrete robotic tasks, to which LTL has
been applied previously as described above, and are instead
derived from principles of symmetry, aesthetics, and emotive
content: concepts which have previously had no equivalent
principles in robotic behavior. By scripting these concepts in
LTL, we provide a convention that is easily interpreted by
appropriate technical communities. In addition, we further
develop their set of tools for dancers and dance scholars
that quantify aspects of choreography, offering unbiased
comparison between movement genres and thus facilitating
new debate in the artistic community. In this sense, our
contribution here is in the same vein as proposed dance
notation systems and other initial attempts at quantification
of aesthetic human behavior - most notably those of Rudolf
Laban in the early 20th century [8], [13].

Subsequently, our modeling choices also stem from the
standard training routine employed by ballet dancers. This
routine, known as the barre, warms and trains muscle groups
key in executing the full gamut of ballet movements. Thus,
the patterns contained in these simple movements (which
typically focus on only one half of the body) encode what is
essentially a rule set for ballet movement. We model this
set of rules for one leg as a finite transition system and
use a standard synchronous product to produce a superset
of all possible two-leg motions. In our proposed framework,

Amy LaViers, Magnus Egerstedt
School of Electrical

and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332, USA
alaviers@gatech.edu, magnus@gatech.edu

Yushan Chen
Department of Electrical

and Computer Engineering
Boston University

Boston, MA 02215, USA
yushanc@bu.edu

Calin Belta
Department of Mechanical Engineering,

Division of Systems Engineering,
and the Bioinformatics Graduate Program

Boston University, MA 02215, USA
cbelta@bu.edu

2011 International Conference on Cyber-Physical Systems

978-0-7695-4361-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCPS.2011.10

13

2011 IEEE/ACM Second International Conference on Cyber-Physical Systems

978-0-7695-4361-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICCPS.2011.10

13

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

a specification is given as an LTL formula over a set of state
observations. These fall into two categories: “hard” speci-
fications, which incorporate all the physical constraints and
aesthetic requirements that the robotic system must satisfy
and “soft” specifications, which capture certain additional
aesthetic requirements that the robotic system is encouraged
to achieve. To enforce the overall specification, we use an
adaptation of the LTL receding horizon controller from [3].
The remainder of the paper is organized as follows. In Sec.
II, we give some definitions that are necessary throughout the
paper. We formulate the problem and outline the approach
in Sec. III and give the detailed solution in Sec. IV. In Sec.
V, we present a case study with concluding final remarks in
Sec. VI.

II. PRELIMINARIES

In this section, we briefly review some aspects of Linear
Temporal Logic (LTL). Informally, LTL formulas consist of
Boolean and temporal combinations of atomic propositions
α from a set Π. In our context, the propositions capture
properties such as “the leg of the robot is off the ground” or
“the robot is squatting.” Given a system model, LTL allows
us to express the time evolution of the state of the system
in terms of these atomic propositions. For example, we can
know for each time step whether “the robot is squatting.”

To model our system, we consider a finite model called
weighted transition system:

Definition 1. (Weighted Transition System) A weighted
finite transition system is a tuple T = (Q, q0,→, ω,Π, h),
where (i) Q is the finite set of states; (ii) q0 ∈ Q is the
initial state; (iii) →⊆ Q ×Q is the transition relation; (iv)
ω is a weight function that assigns positive values to all the
transitions (i.e., to all pairs (q1, q2) where (q1, q2) ∈→); (v)
Π is a finite set of atomic propositions; and (vi) h : Q 7→ 2Π

is an output map.

We assume that the transition system is non-blocking,
implying that there is a transition from each state. The
labeling function defines for each state q ∈ Q, the set
h(q) of all atomic propositions valid in q. For example, the
proposition “the left leg of the robot is off the ground” will
be valid for all states q ∈ Q for which the corresponding
system configuration is one where left leg is off the ground.

For our transition system we define a run rT to be an
infinite sequence of states q0q1q2 . . . such that q0 ∈ Q0,
qi ∈ Q, for all i ≥ 0, and (qi, qi+1) ∈→, for all i ≥ 0. A run
rT defines a word h(q0)h(q1)h(q2) . . . consisting of sets of
atomic propositions valid at each state. This model captures
how the behavior of our robot is changing over time in terms
of propositions of behavioral relevance (that we will define)
rather than in terms of absolute (and behaviorally irrelevant)
spatial parameters or even configuration variables.

Definition 2. (Formula of LTL) An LTL formula φ over the
atomic propositions Π is defined inductively as follows:

φ ::= > | α | φ ∧ φ | ¬φ | Xφ | φ Uφ

where > is a predicate true in each state of a system,
α ∈ Π is an atomic proposition, ¬ (negation) and ∧
(disjunction) are standard Boolean connectives, and X and
U are temporal operators.

LTL formulas are interpreted over infinite words, such as
those generated by the transition system T from Def. 1. A
run of T satisfies an LTL formula φ over Π if φ is true at
the first state of the run; Xφ states that at the next state, an
LTL formula φ is true (i.e., Xα means α ∈ h(q1)); α1 Uα2

states that there is a future moment when proposition α2

is true, and proposition α1 is true at least until α2 is true.
Using the Boolean connectives ∧ and ¬, the full power of
propositional logic is obtained. Other Boolean connectives
such as disjunction ∨ and implication → can be derived as
φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2) and φ1 → φ2 := ¬φ1 ∨ φ2.
From the above temporal operators we can construct two
other useful operators Eventually (i.e., future), F, defined
as Fφ := > Uφ, and Always (i.e., globally), G, defined as
Gφ := ¬F¬φ. The formula Fα states that α holds at some
future time instance, and Gα states that proposition α holds
at all states of the run.

An LTL formula can be represented in an automata-
theoretic setting as a Büchi Automaton, defined as follows:

Definition 3. (Büchi Automaton) A Büchi Automaton is a
tuple B = (S, S0,Σ, δ, F), where (i) S is a finite set of
states; (ii) S0 ⊆ S is a set of initial states; (iii) Σ is the
input alphabet; (iv) δ : S ×Σ→ 2S is a transition relation;
(v) F ⊆ S is a set of accepting (final) states.

The semantics of a Büchi Automaton are defined over
infinite input words. Let ω = ω0ω1ω2 . . . be an infinite input
word of automaton B, where ωi ∈ Σ for each i ≥ 0. If we
define the input alphabet to be the power set of all atomic
propositions (Σ = 2Π), then the semantics are defined over
the words that can be produced by a run of the transition
system. Thus, the input ω = h(q0)h(q1)h(q2) . . . could be a
word produced by a run q0q1q2 . . . of the transition system
T .

A run of the Büchi Automaton over an input word ω =
ω0ω1ω2 . . . is a sequence rB = s0s1s2 . . ., such that s0 ∈ S0,
and (si, ωi, si+1) ∈ δ, for all i ≥ 0.

Definition 4. (Büchi Automaton Acceptance) A word ω
is accepted by the Büchi Automaton B if and only if there
exists a run rB over ω so that inf(rB)∩F 6= ∅, where inf(rB)
denotes the set of states appearing infinitely often in run rB .

The Büchi Automaton allows us to determine whether or
not the word produced by a run of the transition system
T satisfies an LTL formula. More precisely, for any LTL
formula φ over a set of atomic propositions Π, there exists
a Bφ with input alphabet 2Π accepting all and only the
infinite words satisfying formula φ ([18]). We refer readers
to [5], [17] and references therein for efficient algorithms
and freely downloadable implementations to translate an
LTL formula over Π to a corresponding Büchi Automaton B.

1414

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

Definition 5. (Weighted Product Automaton) A weighted
product automaton A = T×B between a transition system T
and a Büchi automaton B is a tuple (SA, SA0, δA, ωA, FA),
where (i) SA = Q × S is the set of states; (ii) SA0 =
{q0} × S0 is the set of initial states; (iii) δA : SA 7→ 2SA

is the transition function defined as (qj , sl) ∈ δA((qi, sk)) if
and only if (qi, qj) ∈→ and sl ∈ δ(sk, h(qi)); (iv) ωA : SA×
SA 7→ R+ is a positive-valued weight function inherited
from T , defined as ωA((qi, sk), (qj , sl)) = ω(qi, qj), where
(qj , sl) ∈ δA((qi, sk)); and (v) FA = Q × F is the set of
accepting states.

Similar to the acceptance condition of the Büchi Automa-
ton, a run rA of A is accepted if and only if rA intersects
FA infinitely many times. We define the projection of a
run rA onto the transition system T as: γT (rA) = r =
q0q1..., if rA = (q0, s0)(q1, s1).... Note that if φ is an LTL
formula and B is its corresponding Büchi Automaton, then
the projection of an accepted run rA on T is a run of T that
generates a word satisfying φ ([4]).

Given a transition system T and an LTL formula φ over
Π, checking whether the words of T 1 satisfy φ is called
LTL model checking. An off-the-shelf model checker, such
as NuSMV [1] and SPIN [7], proceeds by negating the
formula, computing the corresponding Büchi automaton, and
checking the emptiness of the language accepted by the
product automaton. This procedure was the starting point
for previous work [3], [11], where control strategies for a
deterministic transition system with inputs from a specifi-
cation given as an LTL formula were developed. A game
theoretic approach was necessary to solve the same problem
for a nondeterministic transition system [9].

III. PROBLEM FORMULATION AND APPROACH

In this paper, we assume that the motion of our system, a
two-legged biped that moves in the style of classical ballet,
is modeled as a transition system (as defined in Def. 1).
Specific modeling choices for the motion of one leg have
been defined in previous work [12]. The choices derive from
fundamental principles of ballet and the canonical warm-up
routine (the barre) which focuses on training the legs of a
ballerina. The bulk of this model is described in Fig. 1 and
the following table:

Movement Transition Label
plié plie
relevé rele
battement tendu tend
degajé dega
coupé coup
frappé frap
grand battement gran
possé poss
battement batt
dévelopé deve

1In LTL model checking, the transition system (also called Kripke
structure) is assumed to be non-blocking and it is not weighted.

Fig. 1. A transition system which models the working leg (right
leg) of a dancer during a ballet barre exercise. The atomic propositions
{p1, . . . , p10} correspond to poses defined by three joint angles: hip, knee,
and ankle. Images of the poses and corresponding states satisfying the
bracketed propositions are shown. Note that, for clarity, we neglected to
draw the self-loops that are needed at each state. Here, we illustrate that in
our model state 10 is physically the same as state 4. We differentiate these
two related states based on whether the motion of the leg is to remain low
(below the hips) or high (at or above hip level) before returning to a neutral
state and beginning the next movement. In ballet this pose, formally called
sur le cou-de-pied, is distinguished with a “wrapped” or “fully-pointed” foot
[19], a difference which is indistinguishable in our framework.

The set of states is a selected set of two-dimensional poses
(illustrated in Fig. 1) whose shapes typify ballet movements.
The set of transition labels corresponds to specific ballet steps
from which the model was derived. A run in the transition
system starting at the initial state defines a corresponding
series of ballet poses; interpolation between these poses
represents ballet movement. The weight function from Def.
1 can model the maximum time needed to change between
two adjacent poses or the corresponding control effort.

Formally, the transition system in Fig. 1 that models the
motion of the right leg of a ballerina during a simple ballet
barre is defined as

TR = (QR, q0R
,→R, ωR,ΠR, hR), (1)

where
(i) QR = {qR1 , . . . , qR10} is the finite set of states;

1515

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

(ii) q0R
= qR2 is the initial state representing the initial pose;

(iii) →R ⊆ QR ×QR is the reflexive transition relation;
(iv) ωR is a trivial weight function that assigns 1 to all

transitions;
(v) ΠR = {p1, . . . , p10}∪{Roffground,Rcoronal} is a finite

set of atomic propositions;
(vi) hR : QR 7→ 2ΠR is an output map, where state qRi

satisfies pi, for all 1 ≤ i ≤ 10, states qRj satisfies
Roffground, for all 4 ≤ j ≤ 10 and state qRk satisfies
Rcoronal, for all 6 ≤ k ≤ 9.

The atomic propositions {p1, . . . , p10} represent different
poses corresponding to three joint angles: hip, knee, and
ankle. Roffground represents “the right leg of the robot is off
ground” and Rcoronal represents “coronal extensions away
from the body.” In order to allow for both synchronous
and asynchronous transitions after we take the Cartesian
composition of two such systems, the self-loops are needed
at all states; thus we use the reflexive transition relation in
Item (iii). In this paper, we do not model the time or effort
necessary to transit among poses; therefore, we assign weight
1 to each transition.

Correspondingly, we define the transition system that
models the motions of the left leg transition system to be:

TL = (QL, q0L
,→L, ωL,ΠL, hL), (2)

where each component is defined as in Eq. 1; that is Items
(i) - (vi) are identical for the left leg’s transition system with
“R” replaced with “L” as necessary.

The configurations that can be obtained when we consider
a robot with two legs are captured by a slightly modified
Cartesian composition (product) of the left and right transi-
tion systems. We define this product as follows:

Definition 6. (Product of Transition Systems) The product
of two transition systems TL and TR, denoted as TL ⊗ TR,
is defined as TP = (QP , q0P

,→P , ωP ,ΠP , hP), where
(i) QP ⊆ QL × QR; (ii) q0P

= (q0L
, q0R

); (iii) →P⊆
QP × QP is defined by (q, q′) ∈→P if and only if q 6= q′,
(qL, q

′
L) ∈→L and (qR, q

′
R) ∈→R, where q = (qL, qR)

and q′ = (q′L, q
′
R); (iv) ω is a weight function such that

ω(q, q′) = ω(qL, q
′
L)+ω(qR, q

′
R) if and only if (q, q′) ∈→P ,

where q = (qL, qR) and q′ = (q′L, q
′
R); (v) ΠP = ΠL ∪

ΠR ∪ {Spose}; and (vi) hP : QP 7→ 2ΠP is defined by (1)
Spose ∈ hP (qL, qR) if and only if qL = qR, (2) for all
π ∈ ΠL ∪ΠR, π ∈ hP (qL, qR) if and only if π ∈ hL(qL) or
π ∈ hR(qR).

In other words, Tp captures all possible transitions that
can appear in TL and TR. The self transitions (when the
system holds the pose) are excluded in the configurations.
The proposition “Spose” is satisfied by all states at which
both legs have the same configuration or pose.

Remark 1. Rather that defining formal inputs, we assume
that one can simply choose available transitions at a state.
This corresponds to a deterministic transition system with
inputs in which the choice of an available input at a state
uniquely determines the transition to the next state. The

particular control strategy that we develop in this paper is
based on this property.

Since the one leg transition system does not contain all the
information about the physical capabilities of the robot (TR
does not tell us anything about forces required for jumping
but instead accepts the correct sequence of leg positions
during the jump), it is entirely possible that the product TP
accepts runs that are not physically possible to execute and
that are not within the range of our goal aesthetic. Hence, we
formulate LTL specifications that enable our system to make
discrete decisions about viable trajectories (that is, accept or
reject various runs through the transition system) - where
viable is defined in terms of both physical and aesthetic
constraints.

Specifically, we want to prevent the system from executing
any physically infeasible runs. In addition, we are interested
in applying aesthetic conditions to the accepted runs of TP
in order to make them adhere to our chosen dance style.
For example, we may disallow a list of two-legged body
poses which are perhaps considered ugly as judged by the
metric of ballet; often, these are asymmetrical poses or poses
which cannot be seen from the audience’s distant perspective.
Finally, even given a system which only produces movements
in the style of ballet, we may further restrict our output so as
to only produce a specific type of movement phrase within
the genre that, for example, is typified by more frequent use
of certain movements.

Thus, to define our problem, we assume that our robot
is required to satisfy the physical constraints of a bipedal
geometry and the aesthetic requirements in ballet. We con-
sider two types of specifications to express the restrictions:
(1) hard specifications and (2) soft specifications. A hard
specification incorporates all the physical constraints and
aesthetic requirements that the robotic system must satisfy
while a soft specification captures certain additional aes-
thetic requirements that the robotic system is encouraged to
achieve.

We use LTL formulas to represent the hard specification.
The physical restrictions of the robot and the aesthetic
requirements of ballet can be easily translated to LTL
formulas as in the following two examples:

1) “visit the pose where both legs are in pose p2 infinitely
many times” can be converted to

G F (Spose ∧ p2)

where Spose implies both begs are in the same pose and
Spose ∧ p2 implies both legs are in pose p2.

2) “always squat and then stand up before having two
legs off ground” can be converted to

G (¬((p1 ∧ Spose) ∧ X (p2 ∧ Spose)) →
X X (¬(Loffground ∧ Roffground)))

where p1 is the squat pose, p2 is the standing up pose, G
implies “always.”

1616

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

The soft specification is introduced to specify aesthetic
requirements that the robot is encouraged (instead of forced)
to achieve. We define the soft specification, denoted by S,
as a collection of elements from the power set of atomic
propositions:

S = {propi}, where propi ∈ 2ΠP . (3)

The collection S models our desire for the robot to prefer
satisfying certain ballet-inspired propositions more than oth-
ers. With this preference, we will produce a specific type
of movement phrase known as allégro, which is typified by
movements that produce quick and upbeat dynamic quality.
In allégro, the ballerina robot is encouraged to perform en-
trechat (a little jumpy move where the dancer beats his or her
feet back and forth) more frequently than other movements.
In our system, entrechat would correspond to a word of TP(
p1

Spose

)(
p2

Spose

)(
p3

Spose

)(
p2

Spose

)(
p1

Spose

)
, which is generated by a run

of TP (q1, q1)(q2, q2)(q3, q3)(q2, q2)(q1, q1). Consequently,
we want to encourage the robot to perform pose

(
p3

Spose

)
(i.e., state (p3, p3)) more often for a higher appearance
frequency of entrechat. In this example, the soft specification
is S = {

(
p3

Spose

)
}.

Formally, we have:

Problem 1. Given a transition system TP (Def. 6), a hard
specification given as an LTL formula φ (Def. 2) and a soft
specification S (Eqn. 3), design a dance or movement phrase
for the robot (an infinite run of TP) such that the produced
dance (1) satisfies φ and (2) has a higher frequency of the
propositions in S.

We make the natural assumption that, at each time instant,
the ballerina robot can “foresee” only a few steps ahead
(imagine the system is performing a free solo without any
choreography). To solve Prob. 1, we introduce rewards
(positive real numbers) to the states included in S. A state
with a reward is called a target. A collection of all the
potential targets is defined as

T =
{qP | hP (qP) ∈ S} if S 6= ∅,
QP if S = ∅. (4)

In other words, when S 6= ∅, only states satisfying the
propositions in S can become potential targets. We assume
that the rewards are associated to these selected states in a
time varying fashion and the appearance and disappearance
of rewards and their values are randomized. We denote
the non-negative awards associated with the targets by
R(qP), qP ∈ QP . Upon visiting a target, the robot collects
the corresponding reward and subsequently the state is no
longer a target.

We aim to maximize the collected rewards; hence, the
robot is encouraged to visit the targets more frequently than
the other states without rewards. Specifically, we reduce
Prob. 1 to the following problem where we satisfy the LTL
formula and maximize the collected reward:

Problem 2. Given a transition system TP (Def. 6), an LTL
formula φ (Def. 2), and the potential target set T (Eqn. 4),

generate a run of TP such that the produced run 1) satisfies
φ and 2) maximizes the collected rewards from the potential
target set T.

Remark 2. It is important to note that, since we are
interested in infinite robot trajectories, it does not make sense
to look for a run that maximizes the total collected rewards,
since this can be infinite. Rather, we aim to design a (local,
real-time) receding-horizon type controller and find a run
that maximizes rewards collected based on local information
obtained at current state q.

To achieve this, we use an approach similar to that in [3],
where a receding-horizon type controller was designed. More
specifically, we use a measure of progress towards satisfying
the formula. If the controller is designed to always increase
this progress as defined by our measure, then we can show
that the LTL formula is satisfied. The proposed approach
relies on 1) the construction of the product automaton (Def.
5) between the transition system and the Büchi Automaton
corresponding to φ and 2) an assignment of a suitable cost
to each state of the resulting product automaton. This cost
assignment is computed off-line once and then is used on-line
with the real-time controller. The cost assignment is designed
so that when used in conjunction with our proposed control
strategy, an accepting state on the product automaton will be
reached in a finite number of transitions. If this is repeated
infinitely many times, the acceptance condition of the product
automaton is enforced.

IV. PROBLEM SOLUTION

In this section, we present a state feedback controller
providing a solution to Prob. 2. The design of the controller
can be divided into two main parts. The first part (Sec. IV-A)
is to define a measure of progress towards satisfying formula
φ. To achieve this, we first construct a product automaton
A (Def. 5) between the transition system TP (Def. 6) and
the Büchi automaton (Def. 3) corresponding to φ. Then we
assign a cost to each state of A.

The second part (Sec. IV-B) includes two receding horizon
controllers: (1) P initA (SA0), which takes as input the set of
initial states of A, and (2) PA(p) which takes as input a
state p = (q, s) of A. These two controllers use the cost
assignment computed as described in the first part, maximize
the rewards collected from the potential target sets T, and
produce finite runs on the product automaton A. Our state-
feedback receding horizon controllers generate the desired
run of TP by projecting finite runs produced by these two
controllers from A to TP (see the text following Def. 5 for
the definition of projection of runs of the product automaton
A on the transition system).

By combining the two parts, we present the control
algorithm solving Prob. 2 in Alg. 1. As shown in [3], by
concatenating the runs produced by two receding horizon
controllers, we obtain an accepted run on A, which can be
further used to generate a run of TP satisfying φ if at least
one such run exists.

1717

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

A. Cost Assignment

Given the transition system TP and a Büchi automaton B
created from an LTL formula φ, we construct the product
automaton A = (SA, SA0, δA, ωA, FA) as defined in Def. 5.
Our cost assignment scheme applies a cost as a measure of
progress to each state of A.

We denote by d(pi, pj) the shortest distance (based on the
weights of the transitions) from a state pi ∈ SA to pj ∈ SA.
Given pi, d(pi, pj) can be efficiently computed for all pj ∈
SA by many shortest path algorithms [14] such as Dijkstra’s
algorithm. We say that a set A ⊆ SA is self-reachable if
and only if all states in A can reach a state in A. We define
FA? to be the largest self-reachable subset of FA. The cost
function for all states pi ∈ SA is defined as:

J(pi) =

{
minpj∈FA? d(pi, pj), if pi /∈ FA?

0, if pi ∈ FA?
(5)

Clearly, J(pi) = 0 if and only if pi ∈ FA? . This cost encodes
the minimum distance from states in A to the set FA? .

We obtain the set FA? by starting with the whole set FA
and pruning out every state that can not reach another state
in the set until all states in the set satisfy the definition of a
self-reachable set. Then, we compute the cost measure J(pi)
for all states pi ∈ SA. These are assigned off-line; that is,
the costs J associated with each state in A are saved in a
look-up table to be used later in conjunction with the real
time controllers (see Sec. IV-B).

B. Receding Horizon Controllers

Now we introduce the two receding horizon controllers,
denoted as P initA (SA0) and PA(p), that produce finite runs
rfA on A, assuming that the cost J defined in (Eq. 5) is
accessible from a look-up table. Our desired run is obtained
by projecting rfA onto TP .

Receding horizon controllers P initA (SA0) and PA(p) max-
imize the rewards collected over finite runs with path length
no more than a pre-defined “planning horizon length” L (i.e.,
we make the assumption from Sec. III that the robot can only
“foresee” a few steps ahead).

First, we describe the construction of PA(p), which is
a combination of a “pre controller” P preA (p) and a “post
controller” P postA (p). Controller P preA (p) drives the system
from any state p /∈ FA? to a state p′ where J(p′) < J(p)
while maximizing the rewards collected locally (see Remark.
3). The repeated executions of P preA (p) will drive the system
from a state p /∈ FA? to a state in FA? in finite number
of transitions. Controller P postA (p) drives the system from a
state in FA? to a state pi /∈ FA? . PA(p) switches between
P preA (p) and P postA (p) depending on the current state (i.e.,
choose P preA (p) if p /∈ FA? and P postA (p) otherwise). This
process repeats infinitely many times so that the set FA?

is visited infinitely many times, and thus the acceptance
condition (Def. 4) of the product automaton is enforced.

Remark 3. Maximizing the rewards collected locally in-
volves exploring finite runs in a sub-graph of the graph
corresponding to A and searching for the run that maximize

the rewards. The size of the sub-graph is decided by the
“planning horizon length” L. The states of this sub-graph
are {pi ∈ SA | d(p, pi) ≤ L} since we do not consider finite
runs with the last state further than L away from the current
state p. This fact demonstrates the local decision making
process of our ballerina robot, as the control decision rfA
is always made on this sub-graph (depending on L and p).
As a result, to compute P preA (p), only a local portion of the
product automaton A around p needs to be constructed and
explored. This same remark can be made later for P postA (p)
and P initA (SA0).

To construct the controller P initA (SA0), we take the input
of the set SA0 because the Büchi automaton B can have a
set of initial states S0. The controller P initA (SA0) is similar
to P postA (p) but it considers a set of (initial) states instead of
a single state.

Algorithm 1 Control algorithm for TP , given an LTL
formula φ, a potential target set T
INPUT: φ, TP , T and terminating time tend (instead of
generating infinite run of TP , we set a terminating time to
end the algorithm)
OUTPUT: A run rdance of TP
Executed Off-line:

1: Construct a Büchi automaton B = (S, S0,Σ, δ, F)
corresponding to φ

2: Construct the product automaton A = TP × B =
(SA, SA0, δA, ωA, FA)

3: Compute d(pi, pj) for all pi ∈ SA and pj ∈ FA
4: Set FA? = FA
5: WHILE there exist q ∈ FA? such that

min
pj∈FA? ,pi∈δA(q)

d(pi, pj) =∞

do Remove q from FA? .
6: Obtain J(pi) using Def. 5 for all pi ∈ SA

Executed On-line:
1: if ∃ p0 ∈ SA0 such that J(p0) 6=∞ then
2: Set current time tcur = 0
3: Update rewards at states in T
4: Obtain P initA (SA0) = rfA = p1...pn; Obtain

γT (P initA (SA0)) = rf = q1...qn; Add rf to the end of
rdance; Set tcur = tcur+d(q, qn), q = qn and p = pn

5: repeat
6: Update rewards at states in T
7: Let PA(p) = P preA (p) if J(p) > 0 and PA(p) =

P postA (p) if J(p) = 0; Obtain PA(p) = rfA =
p1...pn; Set P (q) = γT (PA(p)) = rf = q1...qn;
Add rf to the end of rdance; Set tcur = tcur +
d(q, qn), q = qn and p = pn

8: until tcur > tend
9: return rdance

10: else
11: There is no run originating from q0 that satisfies φ.
12: end if

1818

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

The overall algorithm is summarized in Alg. 1. The
following theorem shows the correctness of the approach.

Theorem 1. (adapted from [3]) Assume that there exists
a satisfying run for TP and a LTL formula φ. Then, the
application of Alg. 1 results in a run rdance of TP satisfying
φ.

Remark 4. (Complexity): Based on [3], the computational
complexity of the off-line portion of Alg. 1 is linear in the size
of the automaton A, which can have at most |QP | × |ΠP | ×
2|ΠP | states, where | · | denotes the cardinality of a set. In
each loop of the on-line portion of Alg. 1, the computational
time is limited by the chosen planning horizon length L.
Specifically, it is equivalent to the time of solving a Traveling
Salesman Problem on a graph, whose size depends on L.

V. GENERATING A DANCE

In this section, we show that our solution generates
motions, or series of poses, within the genre of classical
ballet. Such motions satisfy the physical restrictions of the
robot and the aesthetic requirements of ballet. Furthermore,
we can modify our output motions to satisfy the additional
constraints of allégro style.

The hard specification is given according to a collection of
physical and aesthetic rules which translate to LTL formulas
as following:

1) Due to physical restrictions of the robot and the
aesthetic requirements, a set of poses are disallowed:
(i) “always avoid both legs off ground except poses
in which two legs are in the same position, and poses
satisfying p7 ∧ p10 or p5 ∧ p8”

G ¬(Roffground ∧ Loffground ∧
(¬Spose) ∧ ¬(p7 ∧ p10) ∧ ¬(p5 ∧ p8))

(ii) “always avoid both legs in poses p4, p6, and p10”

G ¬(Spose ∧ (p4 ∨ p6 ∨ p10))

(iii) “always avoid both legs in poses satisfying p1∧ p2,
p1 ∧ p3, or p2 ∧ p3”

G ¬((p1 ∧ p2) ∨ (p1 ∧ p3) ∨ (p2 ∧ p3))

2) Due to physical restrictions of the robot, a collection
of sequences of transitions are disallowed:
(i) “when one leg is in pose p1 and the other leg is
already off ground, always avoid lifting both legs off
ground”

G (¬((p1 ∧ (Roffground ∨ Loffground))
→ X (Roffground ∧ Loffground)))

(ii) “when the right leg is in pose p2 and the left leg is
currently off ground, always avoid performing coronal
extensions using the right leg without putting down the
left leg first”

G ((p2 ∧ Roffground)
→ X ¬(Roffground ∧ Lcoronal))

(iii) “when the left leg is in pose p2 and the right leg is
currently off ground, always avoid performing coronal
extensions using the left leg without putting down the
right leg first”

G ((p2 ∧ Loffground)
→ X ¬(Loffground ∧ Rcoronal))

3) Due to physical restrictions of the robot, the robot is
required to visit certain poses (e.g., the robot needs
to have both standing on the ground once in a while)
infinitely many times:
“visiting the pose where both legs are in pose p2

infinitely many times”

G F (Spose ∧p2)

The type of dance that we intend to reproduce is known
as allégro. Allégro is typified by quick and upbeat dynamic
quality; while this type of quality is not directly a part
of our discrete model, we can produce runs which contain
the movements (series of poses) that ballet dancers use to
produce such a movement style. Namely, there are three
motions we want to see in the output: entrechat, assemblé,
and jeté.

Entrechat is a little jumpy move where the dancer beats
his or her feet back and forth. Note that it is a symmetrical
move of the body. In our system, entrechat would correspond
to a word of TP (i.e., a sequence of propositions)(

p1
Spose

)(
p2

Spose

)(
p3

Spose

)(
p2

Spose

)(
p1

Spose

)
,

which is generated by a run of TP (i.e., a sequence of states)
(q1, q1)(q2, q2)(q3, q3)(q2, q2)(q1, q1). Assemblé is another
jump but is asymmetrical about the body. In our system,
this would also correspond to two words of TP :(

p2
Spose

)(
p1 , Roffground
p7 , Rcoronal

)(
p2

Spose

)(
p3

Spose

)(
p2

Spose

)(
p1

Spose

)(
p2

Spose

)
or (

p2
Spose

)(
p1 , Loffground
p7 , Lcoronal

)(
p2

Spose

)(
p3

Spose

)(
p2

Spose

)(
p1

Spose

)(
p2

Spose

)
.

Hence, the ballerina robot is encouraged to perform en-
trechat and assemblé more frequently than other move-
ments. Consequently, we encourage the system to enter
states satisfying

(
p3

Spose

)
(i.e., state (q3, q3)) more often for

the higher appearance frequency of entrechat, and to enter
states satisfying

(
p1 , Roffground
p7 , Rcoronal

)
or
(
p1 , Loffground
p7 , Lcoronal

)
(i.e., states

(q1, q7) and (q7, q1)) more often for a higher appearance
frequency of assemblé.

There are two variants of allégro, grant allégro and petit
allégro. We intend to reproduce grant allégro, which is
distinguished from petit allégro by its large sized movements.
We use jeté (a split-leg leap, represented by the proposition(
p8 , Roffground , Rcoronal

Spose, Loffground , Lcoronal

)
in our system) to characterize our

outputs for grant allégro; namely, we enforce recurrence of
a pose for grand jeté in grand allégro.

Hence, the soft specification can be summarized as

S =

{ (
p3

Spose

) (
p1 , Loffground
p7 , Lcoronal

)(
p1 , Roffground
p7 , Rcoronal

) (
p8 , Roffground , Rcoronal

Spose, Loffground , Lcoronal

)} . (6)

1919

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Three sample sequences demonstrate the results of our control
method. The left sequence is an example of a nonphysical (and thus also
unaesthetic in some sense) series of poses. The middle sequence is an
example of a series of poses endowed with only the hard specifications.
Hence, the physical restrictions and aesthetic requirements are satisfied;
however, the propositions included in Eqn. 6 do not appear frequently. The
right-hand sequence is an example of a series of poses endowed with both
the hard and soft specifications (thus is it an allégro phrase). We can see the
high occurrence of states (p1, p7), (p7, p1), and (p8, p8). Note that state
(p3, p3) also occurs frequently in the produced sequence (52 steps in total),
but not in the first 9 steps that are shown here. We plot the occurrence rates
of these states in Fig. 3.

Fig. 3. Occurrence rates of the states satisfying the soft specification for
different sample paths show how this specification can encourage certain
behaviors of the system. Each sample path contains 52 steps. The red and
blue bars show the case with and without the soft specification, respectively.
In the case without the encouragement, states (p3, p3) and (p8, p8) are not
visited at all and (p1, p7) and (p7, p1) are visited only once. In comparison,
these states are visited more frequently in case with encouragement from
target states. Hence, the soft specifications achieve a differentiated behavior
which we call the allégro case as these specifications derive from this style
of ballet.

The dance produced by Alg. 1 is animated using a MAT-
LAB script; snapshots of three illustrative sample cases are
provided in Fig. 2. These animations have been evaluated
by a trained eye and found to be a reasonable initial model
of ballet technique. Clearly, significant changes take place
between the distinct cases of systems that we animated. In
Fig. 3, we show the occurrence rates of the states satisfying
the soft specifications in each of the different cases.

VI. CONCLUSIONS

This paper has extended results in robot specification
to consider more subjective constraints and rewards. The
resulting system for robot planning may provide more so-
phisticated control strategies and, thus, where relevant, a
more successful experience of human-like robot behavior.
The inherent challenge when attempting to endow an en-
gineered system with such traits is somehow simulating
an environment where the human trait is encoded as the
system’s state. A system with such an augmented view of
the world is then, like humans, no longer making decisions
based purely on its physical needs but, like many other cyber-
physical systems, on a more subjective set of needs (i.e.,
entering a certain set of states more frequently in order to
exude a certain style of ballet).

Furthermore, the careful planning that goes into robotic
task specification has applications outside of physical robots.
The movement analysis required to produce a system ca-
pable of automatically generating movement phrases in the
style of classical ballet results in a quantitative phrasing
of the rules that govern this somewhat curious example of
human behavior. This model may also provide insight into
the creativity behind movement choreography as resulting
viable trajectories through the transition system for different
hard and soft specifications can be compared as part of a
quantitative movement study.

2020

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

Acknowledgment

The work by LaViers and Egerstedt was supported by
the US National Science Foundation through grant number
0757317. The work by Chen and Belta was supported by
supported by ONR MURI N00014-09-1051, ARO W911NF-
09-1-0088, AFOSR YIP FA9550-09-1-020 and NSF CNS-
0834260.

REFERENCES

[1] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource
tool for symbolic model checking. Lecture Notes in Computer Science,
pages 359–364, 2002.

[2] E. M. M. Clarke, D. Peled, and O. Grumberg. Model checking. MIT
Press, 1999.

[3] Xu Chu Ding, Calin Belta, and Christos G. Cassandras. Receding
horizon surveillance with temporal logic specifications. In the 49th
IEEE Conference on Decision and Control, 2010 (to appear).

[4] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas. Hybrid controllers
for path planning: A temporal logic approach. In IEEE Conference
on Decision and Control, volume 44, page 4885. Citeseer, 2005.

[5] P. Gastin and D. Oddoux. Fast LTL to Buchi automata translation.
Lecture Notes in Computer Science, pages 53–65, 2001.

[6] H. Kress Gazit, G. Fainekos, and G. J. Pappas. Where’s waldo?
sensor-based temporal logic motion planning. In IEEE Conference
on Robotics and Automation, Rome, Italy, 2007.

[7] G.J. Holzmann. The SPIN model checker: Primer and reference
manual. Addison Wesley Publishing Company, 2004.

[8] A. Hutchinson and D. Anderson. Labanotation. New Directions., New
York, 1954.

[9] M. Kloetzer and C. Belta. Dealing with nondeterminism in symbolic
control. In M. Egerstedt and B. Mishra, editors, Hybrid Systems:
Computation and Control: 11th International Workshop, Lecture Notes
in Computer Science, pages 287–300. Springer Berlin / Heidelberg,
2008.

[10] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[11] M. Kloetzer and C. Belta. A fully automated framework for control of
linear systems from temporal logic specifications. IEEE Transactions
on Automatic Control, 53(1):287–297, 2008.

[12] Amy LaViers and Magnus Egerstedt. The ballet automaton: A
formal model for human motion. (under review) American Control
Conference, Proceedings of the 2011, 2011.

[13] V. Maletic. Body, space, expression. Walter de Gruyter & Co., Berlin,
1987.

[14] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization:
algorithms and complexity. Dover Pubns, 1998.

[15] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive(1) designs.
In VMCAI, pages 364–380, Charleston, SC, 2006.

[16] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot motion
planning: A timed automata approach. In Proceedings of the 2004
IEEE International Conference on Robotics and Automation, New
Orleans, LA, April 2004.

[17] F. Somenzi and R. Bloem. Efficient büchi automata from ltl formulae.
Twelfth Conference on Computer Aided Verification (CAV’00), pages
248–263, 2000.

[18] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 1994.

[19] G.W. Warren and S. Cook. Classical ballet technique. University of
South Florida Press, 1989.

[20] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
control for temporal logic specifications. In Proc. International
Conference on Hybrid Systems: Computation and Control, 2010.

2121

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 02:00:36 UTC from IEEE Xplore. Restrictions apply.

