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a b s t r a c t

We address the problem of optimizing the performance of a dynamic system while satisfying
hard safety constraints at all times. Implementing an optimal control solution is limited by the
computational cost required to derive it in real time, especially when constraints become active, as
well as the need to rely on simple linear dynamics, simple objective functions, and ignoring noise. The
recently proposed Control Barrier Function (CBF) method may be used for safety-critical control at the
expense of sub-optimal performance. In this paper, we develop a real-time control framework that
combines optimal trajectories generated through optimal control with the computationally efficient
CBF method providing safety guarantees. We use Hamiltonian analysis to obtain a tractable optimal
solution for a linear or linearized system, then employ High Order CBFs (HOCBFs) and Control Lyapunov
Functions (CLFs) to account for constraints with arbitrary relative degrees and to track the optimal
state, respectively. We further show how to deal with noise in arbitrary relative degree systems.
The proposed framework is then applied to the optimal traffic merging problem for Connected and
Automated Vehicles (CAVs) where the objective is to jointly minimize the travel time and energy
consumption of each CAV subject to speed, acceleration, and speed-dependent safety constraints.
In addition, when considering more complex objective functions, nonlinear dynamics and passenger
comfort requirements for which analytical optimal control solutions are unavailable, we adapt the
HOCBF method to such problems. Simulation examples are included to compare the performance of the
proposed framework to optimal solutions (when available) and to a baseline provided by human-driven
vehicles with results showing significant improvements in all metrics.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Optimizing a cost function associated with the operation of a
ynamical system while also satisfying hard safety constraints at
ll times is a fundamental and challenging problem. The challenge
s even greater when stabilizing some system state variables to
esired values is an additional requirement. With the growing
ole of autonomy, the importance of these problems has also
rown and one now frequently encounters them in the oper-
tion of autonomous vehicles in robotics and traffic networks.
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These applications provide the main motivation for the control
framework presented in this paper.

Optimal control problems with safety-critical constraints can
be solved through standard methods (Ansari & Murphey, 2016;
Bryson & Ho, 1969), with applications found in robotics and
autonomous vehicles in traffic networks (Chitour et al., 2012;
Malikopoulos et al., 2018; Mita et al., 2001; Xiao & Cassandras,
2019). However, analytical solutions are only possible for simple
system dynamics and constraints. Moreover, the computational
complexity for deriving such solutions significantly increases as
one or more constraints become active and it grows as a power
function of the number of constraints. This fact limits the use of
optimal control methods for autonomous systems when solutions
need to be derived and executed on line. Additional factors which
further limit the real-time use of these methods include the pres-
ence of noise in the dynamics, model inaccuracies, environmental
perturbations, and communication delays in the information ex-
change among system components. Thus, there is a gap between
optimal control solutions (which represent a lower bound for the
optimal achievable cost) and the execution of controllers aiming
to achieve such solutions under realistic operational conditions.
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In order to bridge this gap and obtain real-time controls for
safety-critical problems, Model Predictive Control (MPC) (Bem-
porad et al., 2002; Garcia & Prett, 1989; Mayne, 2014) has been
widely used to approximate optimal control solutions. An explicit
approximate MPC controller can also be obtained for systems
with quantized input, which is achieved by a piecewise constant
approximation of the optimal solution (Grancharova & Johansen,
2008). Whether linear or nonlinear MPC methods are used, a
time-discretized predictive model is needed and a receding hori-
zon control problem is formulated and solved at all discretized
receding time instants taking into account all safety constraints
involved. Nonetheless, the computational cost significantly in-
creases with the model nonlinearity and the time horizon over
which a problem is solved.

An alternative approach which has the potential to avoid the
drawbacks above is based on the use of Control Barrier Function
(CBFs). Barrier functions are Lyapunov-like functions (Wieland &
Allgower, 2007) whose use can be traced back to optimization
theory (Boyd & Vandenberghe, 2004). More recently, they have
been employed in verification and control, e.g., to prove set
invariance (Aubin, 2009; Prajna et al., 2007; Wisniewski & Sloth,
2013), and for multi-objective control (Panagou et al., 2013). CBFs
are extensions of barrier functions for control systems (Ames
et al., 2014) and have been recently generalized to consider arbi-
trary relative degree constraints in Nguyen and Sreenath (2016)
and Xiao and Belta (2019). It has also been shown that CBFs
can be combined with Control Lyapunov Functions (CLFs) (Ames
et al., 2012; Freeman & Kokotovic, 1996; Sontag, 1983) to form
constrained quadratic programs (QPs) (Galloway et al., 2015) for
nonlinear control systems that are affine in controls. The main
advantages of CBF-based control compared to MPC lie in the
fact that (i) feasible state sets under CBF-based control possess
a forward invariance guarantee property, (ii) The QPs involved at
every time step can be solved in real time, as long as each QP
is feasible, and (iii) the method is easier to adapt when handling
nonlinear systems with complex constraints.

The contribution of this paper is to synthesize controllers that
combine the optimal control and the CBF methods aiming for
both optimality and guaranteed safety in real-time control. The
key idea is to first generate trajectories by solving a tractable
optimal control problem and then seek to track these trajec-
tories using a controller which simultaneously ensures that all
state and control constraints are satisfied at all times. This is
accomplished in two steps. The first step is to solve a constrained
optimal control problem. Given a set of initial conditions, it is
usually possible to derive simple conditions under which it can be
shown that no constraint becomes active. In this case, executing
the unconstrained optimal control solution becomes a relatively
simple tracking problem. Otherwise, we can still often derive an
optimal control solution consisting of both unconstrained and
constrained arcs. However, such derivations may not always be
feasible in real time. Either way, using the best possible analytical
solution within reasonable real-time computational constraints
(possibly just the unconstrained solution), this step leads to a
reference control uref (t), t ∈ [0, T ]. The second step is then to
use High Order CBFs (HOCBFs) (Xiao & Belta, 2019) to account
for constraints with arbitrary relative degrees, and define a se-
quence of QPs whose goal is to optimally track uref (t) at each
discrete time step over [0, T ]. In this step, we can allow noise
in the system dynamics and include nonlinearities which were
ignored in the original optimal control solution. The resulting
controller is termed Optimal control with Control Barrier Func-
tions (OCBF). We will show that using an OCBF controller we
can achieve near-optimal performance relative to the one under
optimal control while guaranteeing constraint satisfaction under
more general dynamics and the presence of disturbances that the
original optimal control solution cannot capture.
2

The OCBF idea was used in our recent work (Xiao, Cassan-
dras et al., 2019) to address the merging problem for Connected
Automated Vehicles (CAVs) in traffic networks. This is one of
the most challenging problems within a transportation system
in terms of safety, congestion, and energy consumption, in ad-
dition to being a source of stress for many drivers (Schrank
et al., 2015; Tideman et al., 2007; Waard et al., 2009). More
broadly, advances in transportation system technologies and the
emergence of CAVs have the potential to drastically improve a
transportation network’s performance by better assisting drivers
in making decisions, ultimately reducing energy consumption,
air pollution, congestion and accidents. Early efforts exploiting
the benefit of CAVs were proposed in Levine and Athans (1966)
and Varaiya (1993). In terms of optimal trajectory planning, a
number of centralized and decentralized merging control mech-
anisms have been proposed (Milanes et al., 2012; Raravi et al.,
2007; Scarinci & Heydecker, 2014; Tideman et al., 2007). In the
case of decentralized control, all computation is performed on
board each vehicle and shared only with a small number of
other vehicles which are affected by it. The objectives specified
for optimal control problems may target the minimization of
acceleration as in Rios-Torres and Malikopoulos (2017) or the
maximization of passenger comfort (measured as the acceleration
derivative or jerk) as in Ntousakis et al. (2016) and Rathgeber
et al. (2015). MPC techniques are employed as an alternative,
primarily to account for additional constraints and to compensate
for disturbances by re-evaluating optimal actions (Cao et al.,
2015; Mukai et al., 2017; Ntousakis et al., 2016). As an alternative
to MPC, CBF methods were used in Xiao, Belta et al. (2019) where
a decentralized optimal control problem with explicit analytical
solutions for each CAV was derived.

In this paper, we generalize the OCBF controller introduced in
Xiao, Cassandras et al. (2019) that only works for relative degree
one constraints to allow constraints with relative degree greater
than one and also allow for noise in the system dynamics. We
consider optimal control problems with constraints of arbitrary
relative degrees which are handled by using HOCBFs. We will
show that by using HOCBFs we can incorporate complex objective
functions, nonlinear dynamics, and comfort requirements which
otherwise prohibit even unconstrained optimal control solutions
from being derived. This also allows us to study the trade-off
between travel time, energy consumption, and comfort. Extensive
simulations have been conducted to demonstrate the effective-
ness of the proposed framework for the traffic merging problem
relative to other approaches.

The paper is structured as follows. In Section 2, we provide
definitions and results on the HOCBF method. We formulate
a general constrained optimal control problem and develop its
OCBF solution in Sections 3 and 4 , respectively. As an application
of the OCBF framework, in Section 5 we present the traffic merg-
ing process model and formulate the optimal merging control
problem including all safety, state and control constraints that
must be satisfied at all times. In Section 6, the optimal solution for
the merging problem is reviewed for the unconstrained as well as
the constrained cases and the OCBF method is applied to it. We
provide simulation examples and performance comparisons with
human-driven vehicles in Section 7 and conclude with Section 8.

2. Preliminaries

Consider an affine control system of the form

ẋ = f (x) + g(x)u (1)

where x ∈ X ⊂ Rn, f : Rn
→ Rn and g : Rn

→ Rn×q

are globally Lipschitz, and u ∈ U ⊂ Rq (U denotes the control
constraint set). Solutions x(t) of (1), starting at x(0), t ≥ 0, are
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orward complete. The control constraint set U is defined as (the
nequality is interpreted componentwise, umin, umax ∈ Rq):

U := {u ∈ Rq
: umin ≤ u ≤ umax}. (2)

Definition 1 (Class K Function Khalil, 2002). A continuous function
α : [0, a) → [0,∞), a > 0 is said to belong to class K if it is
strictly increasing and α(0) = 0.

Definition 2. A set C ⊂ Rn is forward invariant for system (1) if
its solutions starting at any x(0) ∈ C satisfy x(t) ∈ C,∀t ≥ 0.

Definition 3 (Relative Degree). The relative degree of a (suffi-
ciently many times) differentiable function b : Rn

→ R with
respect to system (1) is the number of times it is differentiated
along the dynamics (1) until the control u explicitly shows in the
corresponding derivative.

In this paper, the function b is used to define a constraint
b(x) ≥ 0. Therefore, we will also refer to the relative degree of b
as the relative degree of the constraint. For a constraint b(x) ≥ 0
with relative degree m, b : Rn

→ R, and ψ0(x) := b(x), we define
a sequence of functions ψi : Rn

→ R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi(·), i ∈ {1, . . . ,m} denotes a (m− i)th order differentiable
class K function. We further define a sequence of sets Ci, i ∈

{1, . . . ,m} associated with (3) in the form:

Ci := {x ∈ Rn
: ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 4 (High Order Control Barrier Function (HOCBF) Xiao &
Belta, 2019). Let C1, . . . , Cm be defined by (4) andψ1(x), . . . , ψm(x)
be defined by (3). A function b : Rn

→ R is a high order
ontrol barrier function (HOCBF) of relative degree m for system
1) if there exist (m − i)th order differentiable class K functions
i, i ∈ {1, . . . ,m − 1} and a class K function αm such that

sup
u∈U

[Lmf b(x) + LgLm−1
f b(x)u + S(b(x)) + αm(ψm−1(x))] ≥ 0 (5)

for all x ∈ C1∩, . . . ,∩Cm. In (5), Lmf (Lg ) denotes Lie derivatives
along f (g) m (one) times, and S(·) denotes the remaining Lie
derivatives along f with degree less than or equal to m − 1.

The HOCBF constraints in (5) may sometimes conflict with the
control constraints in (2), which can limit the existence of feasible
solutions for the optimal control problem that we will formulate
later. In order to minimize this effect, the penalty method (Xiao &
Belta, 2019) replaces αi(ψi−1(x)) by pi·αi(ψi−1(x)),∀i ∈ {1, . . . ,m},
here pi > 0 is a multiplicative penalty factor which can be tuned
ppropriately.

heorem 1 (Xiao & Belta, 2019). Given a HOCBF b(x) from
efinition 4 with the associated sets C1, . . . , Cm defined by (4),
f x(0) ∈ C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
(t) ∈ U that satisfies (5), ∀t ≥ 0 renders C1∩, . . . ,∩Cm forward
nvariant for system (1).

The HOCBF is a general form of the relative degree one CBF
Ames et al., 2014; Glotfelter et al., 2017) (i.e., setting m = 1
educes the HOCBF to the common CBF form in Ames et al., 2014;
lotfelter et al., 2017). The exponential CBF (Nguyen & Sreenath,
016) is a special case of the HOCBF.

efinition 5 (Control Lyapunov Function (CLF) Ames et al., 2012). A
ontinuously differentiable function V : Rn

→ R is an exponen-
ially stabilizing control Lyapunov function (CLF) for system (1) if
here exist constants c1 > 0, c2 > 0, c3 > 0 such that

2 2

1∥x∥ ≤ V (x) ≤ c2∥x∥ (6)

3

inf
u∈U

[Lf V (x) + LgV (x)u + c3V (x)] ≤ 0. (7)

or ∀x ∈ X .

heorem 2 (Ames et al., 2012). Given an exponentially stabilizing
LF V as in Definition 5, any Lipschitz continuous controller u(t) ∈ U
hat satisfies (7), ∀t ≥ 0 exponentially stabilizes system (1) to the
rigin.

Note that (7) can be relaxed by replacing 0 by a relaxation
ariable δ ≥ 0 at its right-hand side which can be subsequently
inimized (Ames et al., 2012).
Many existing works (Ames et al., 2014; Nguyen & Sreenath,

016; Yang et al., 2019) combine CBFs for systems with relative
egree one with quadratic costs to form optimization problems.
e can discretize the time, and an optimization problem with

onstraints given by the CBFs (inequalities of the form (5)) is
olved at each time step. The inter-sampling effect is considered
n Yang et al. (2019). If convergence to a state is desired, then
CLF constraint of the form (7) is added, as in Ames et al.

2014) and Yang et al. (2019). Note that these constraints are
inear in control since the state value is fixed at the beginning of
he interval, therefore, each optimization problem is a quadratic
rogram (QP). The optimal control obtained by solving each QP
s applied at the current time step and held constant for the
hole interval. The state is updated using dynamics (1), and the
rocedure is repeated. Replacing CBFs by HOCBFs allows us to
andle constraints with arbitrary relative degree (Xiao & Belta,
019).

. Problem formulation and approach

Objective: (Cost minimization) Consider an optimal control
roblem for system (1) with the cost defined as:

=

∫ tf

t0

[β + C(x, u, t)] dt, (8)

where t0, tf denote the initial and final times, respectively, and
C : Rn

× Rq
× [t0, tf ] → R+ is a cost function. The parameter

β ≥ 0 is used to capture a trade-off between the minimization of
the time interval (tf − t0) and the operational cost C(x, u, t). The
terminal time tf is constrained as follows:

Terminal state constraint: The state of system (1) is con-
trained to reach a point X̄ ∈ X , i.e.,

x(tf ) = X̄, (9)

Note that tf is generally free (unspecified).
Constraint 1 (Safety constraints): Let So denote an index set

for a set of safety constraints. System (1) should always satisfy

bj(x(t)) ≥ 0, ∀t ∈ [t0, tf ]. (10)

here each bj : Rn
→ R, j ∈ So is continuously differentiable.

Constraint 2 (Control constraints): These are provided by the
ontrol constraint set in (2).
Constraint 3 (State constraints): System (1) should always

atisfy the state constraints (componentwise):

min ≤ x(t) ≤ xmax,∀t ∈ [t0, tf ] (11)

here xmin ∈ Rn and xmax ∈ Rn. Note that we distinguish
he state constraints from the safety constraints in (10) since
he latter are viewed as hard, while the former usually capture
ystem capability limitations that can be relaxed to improve the
roblem feasibility; for example, in traffic networks vehicles are
onstrained by upper and lower speed limits.
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roblem 1. Find a control policy for system (1) such that the
cost (8) is minimized, constraints (10), (2) and (11) are strictly
satisfied, and deviations ∥x(tf ) − X̄∥

2 from the terminal state
constraint (9) are minimized.

The cost in (8) can be properly normalized by defining β :=
α supx∈X,u∈U,τ∈[t0,tf ] C(x,u,τ )

(1−α) where α ∈ [0, 1) and then multiplying (8)
y α
β
. Thus, we construct a convex combination as follows:

J =

∫ tf

t0

(
α +

(1 − α)C(x, u, t)
supx∈X,u∈U,τ∈[t0,tf ] C(x, u, τ )

)
dt. (12)

If α = 1, then we solve (8) as a minimum time problem. The
normalized cost (12) facilitates a trade-off analysis between the
two metrics. However, we will use the simpler cost expression
(8) throughout this paper. Thus, we can take β ≥ 0 as a weight
factor that can be adjusted to penalize time relative to the cost
C(x, u, t) in (8).

Approach: Step 1: We use Hamiltonian analysis to obtain an
optimal control u∗(t) and optimal state x∗(t), t ∈ [t0, tf ] for the
cost (8) and system (1), under the terminal state constraint (9),
the safety constraints (10), and the control and state constraints
(2), (11). In order to get an analytical optimal solution, we may
linearize or simplify the dynamics (1).

Step 2: There are usually unmodeled dynamics and measure-
ment noise in (1). Thus, we consider a modified version of system
(1) to denote the real dynamics:

ẋ = f (x) + g(x)u + w, (13)

here w ∈ Rn denotes all unmodeled uncertainties in the
dynamics. We consider x as a measured state which includes
the effects of such unmodeled dynamics and measurement noise
and which can be used in what follows. Allowing for the noisy
dynamics (13), we set uref (t) = u∗(t) (more generally, uref (t) =

h(u∗(t), x∗(t), x(t)), h : Rq
× Rn

× Rn
→ Rq) and use the HOCBF

method to track the optimal control as a reference, i.e.,

min
u(t)

∫ tf

t0

∥u(t) − uref (t)∥2dt (14)

subject to (i) the HOCBF constraints (5) corresponding to the
safety constraints (10), (ii) the state constraints (11), and (iii) the
control constraints (2). In order to better track the optimal state
x∗(t) and minimize the deviation ∥x(tf ) − X̄∥

2 from the terminal
state constraint, we define a CLF V (x − x∗). Thus, the cost (14) is
lso subject to the corresponding CLF constraint (7). The resulting
roblem can then be solved by the approach described at the end
f Section 2.

. From planning to execution

In this section, we describe how to solve Problem 1 combining
ptimality with safety guarantees.

.1. Optimal trajectory planning

Let us consider a properly linearized version of (13) without
he noise w:

˙ = Ax + Bu, (15)

here x = (x1, . . . , xn), u = (u1, . . . , uq), A ∈ Rn×n, B ∈ Rn×q.
Let λ(t) be the costate vector corresponding to the state x

in (15) and b(x) denote the vector obtained by concatenating
all b (x), j ∈ S . The Hamiltonian with the state constraints,
j o

4

control constraints and safety constraints adjoined (omitting time
arguments for simplicity) is

H(x,λ, u) = C(x, u, t) + λT (Ax + Bu) + µT
a (u − umax)

+µT
b (umin − u) + µT

c (x − xmax) + µT
d (xmin − x)

−µT
e b(x) + β

(16)

he components of the Lagrange multiplier vectors
a,µb,µc,µd,µe are positive when the constraints are active
nd become 0 when the constraints are strict.
First, we assume all the constraints (2), (10), (11) are not active

n the time interval [t0, tf ]. The Hamiltonian (16) then reduces
o

H(x,λ, u) = C(x, u, t) + λT (Ax + Bu) + β (17)

bserving that the terminal constraints (9) ψ := x − X̄ = 0 are
ot explicit functions of time, the transversality condition (Bryson
Ho, 1969) is

H(x(t),λ(t), u(t))|t=tf = 0 (18)

ith λ(tf ) = [(νT ∂ψ
∂x )

T
]t=tf as the costate boundary condition,

here ν denotes a vector of Lagrange multipliers. The Euler–
agrange equations become:

˙ = −
∂H
∂x

= −
∂C(x, u, t)

∂x
− ATλ, (19)

nd the necessary condition for optimality is
∂H
∂u

=
∂C(x, u, t)

∂u
+ BTλ = 0. (20)

With (17)–(20), the initial state of system (13), and the termi-
al constraint x(tf ) = X̄ , we can derive an unconstrained optimal
tate trajectory x∗(t) and optimal control u∗(t), t ∈ [t0, tf ], for
roblem 1.
When one or more constraints in (2), (10), (11) become active

n the time interval [t0, tf ], we use the interior point analy-
is (Bryson & Ho, 1969) to determine the conditions that must
old on a constrained arc entry point and exit point (if one
xists prior to tf ). We can then determine the optimal entry
nd exit points, as well as the constrained optimal control u∗(t)

and optimal state trajectory x∗(t), t ∈ [t0, tf ]. Depending on
he computational complexity involved in deriving the complete
onstrained optimal solution, we can specify a planned reference
ontrol uref (t) and state trajectory xref (t), t ∈ [t0, tf ]. For ex-
mple, we may just plan for a safety-constrained solution and
mit the state and control constraints (2), (11), or even plan for
nly the unconstrained optimal solution to simplify the trajectory
lanning process.

.2. Safety-critical optimal control with HOCBFs

We now introduce a method that tracks the planned optimal
ontrol and state trajectory while guaranteeing the satisfaction of
ll constraints (2), (10), (11) in Problem 1.
As detailed in Section 4.1, we use u∗(t) and x∗(t), t ∈ [t0, tf ], to

enote the optimal control and state trajectory derived under no
ctive constraints or with some (or all) of the constraints active,
epending on the associated computational complexity consid-
red acceptable in a particular setting. We can then reformulate
8) as the following optimization problem:

in
u(t)

∫ tf

t0

∥u(t) − uref (t)∥2dt (21)

ubject to (2), (10), (11), where

(t) = F (u∗(t), x∗(t), x(t)) (22)
ref U
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s a specific function of the optimal control and state trajectory, as
ell as the actual state under noise w from (13). A typical choice

or FU (u∗(t), x∗(t), x(t)) is

ref (t) = e
∑n

j=1
x∗j (t)−xj(t)

σj u∗(t), (23)

where xj(t), j ∈ {1, . . . , n} denote the observed state variables
under noise w from (13), x∗

j (t), j ∈ {1, . . . , n}, u∗

i (t), i ∈ {1, . . . , q}
denote the optimal state and control from the last subsection, and
σj > 0, j ∈ {1, . . . , n} are weight parameters. In (23), the sign
of the term x∗

j (t) − xj(t) depends on whether xj(t) is increasing
with ui(t). In particular, when xj(t) > x∗

j (t), for all j ∈ {1, . . . , n},
we have ui(t) < u∗

i (t) and the state errors can be automatically
eliminated. If xj(t) < x∗

j (t), for all j ∈ {1, . . . , n}, the state
errors can similarly be automatically eliminated. However, when
xj(t) > x∗

j (t) and xj+1(t) < x∗

j+1(t), we may wish to enforce ui(t) <
u∗

i (t), i ∈ {1, . . . , q}. Thus, it is desirable that σj < σj+1 (similarly,
when xj(t) < x∗

j (t) and xj+1(t) > x∗

j+1(t)). In summary, we select
σj > 0, j ∈ {1, . . . , n} such that σj < σj+1, j ∈ {1, . . . , n − 1}.

Alternative forms of (22) include

uref (t) =

∑
j∈{1,...,n}

x∗

j (t)

xj(t)
u∗(t) (24)

and the state feedback tracking control approach from Khalil
(2002):

uref (t) = u∗(t) +

n∑
j=1

kj(x∗

j (t) − xj(t)), (25)

where kj > 0,∈ {1, . . . , n}. Clearly, there are several possible
choices for the form of uref (t) which may depend on the specific
application of interest.

We emphasize that the cost (21) is subject to all the con-
straints (2), (10), (11). We use HOCBFs to implement these con-
straints, as well as CLFs to better track the optimal state x∗(t), as
shown in the following subsections.

4.2.1. Optimal state tracking
First, we aim to track the optimal state x∗(t) obtained in

Section 4.1 using CLFs. We can always find a state variable xk,
k ∈ {1, . . . , n} in x that has relative degree one (assume xk is
the output) with respect to system (13). This is because we only
take the Lie derivative of the Lyapunov function once in the CLF
constraint (7). Then, we define a controller aiming to drive xk(t)
to xref (t) where xref (t) is of the form

xref (t) = FX (x∗(t), x(t)) (26)

A typical choice analogous to (23) is

xref (t) = e
∑

j∈{1,...,n}\k
x∗j (t)−xj(t)

σj x∗

k(t) (27)

where σj > 0, j ∈ {1, . . . , n} \k and {1, . . . , n} \k denotes exclud-
ng k from the set {1, . . . , n} . An alternative form analogous to
24) is

ref (t) =

∑
j∈{1,...,n}\k

x∗

j (t)

xj(t)
x∗

k(t) (28)

where x∗

j (t), j ∈ {1, . . . , n} \ k are the (unconstrained or con-
strained) optimal state trajectories from Section 4.1, and xj(t) ̸=

0; otherwise, we can use (27). In (28), if xj(t) > x∗

j (t), then
xref (t) < x∗

k(t), thus automatically reducing (or eliminating) the
tracking error. Note that while xref (t) in (28) depends heavily on
the exact value of xj(t), an advantage of (27) is that it allows
x (t) to depend only on the error. Clearly, we can define different
ref

5

tracking forms instead of (28) and (27) depending on the specific
characteristics of an application.

Using a specific selected form of xref (t), we can now proceed
as in Definition 5 and define an output yk(t) := xk(t) − xref (t) for
the state variable xk which has relative degree one. Accordingly,
we define a CLF V (yk(t)) = y2k(t) with c1 = c2 = 1, c3 = ϵ > 0 as
in Definition 5. Then, any control input u(t) should satisfy, for all
t ∈ [t0, tf ],

Lf V (yk(t)) + LgV (yk(t))u(t) + ϵV (yk(t)) ≤ δk(t) (29)

where δk(t) is a relaxation variable (to be minimized as explained
in the sequel) enabling the treatment of the requirement xk(t) =

xref (t) as a soft constraint. Note that we may also identify other
state variables with relative degree one and define multiple CLFs
to better track the optimal state. Note that (29) does not include
any (unknown) noise term. Also note that selecting a larger ϵ can
improve the state convergence rate (Ames et al., 2012).

4.2.2. Safety constraints and state limitations
Next, we use HOCBFs to map the safety constraints (10) and

state limitations (11) from the state x(t) to the control input u(t).
Let bj(x), j ∈ So, be the HOCBF corresponding to the jth safety
constraint. In addition, let bi,max(x) = xi,max − xi and bi,min(x) =

xi − xi,min, i ∈ {1, . . . , n}, be the HOCBFs for all state limitations,
where xmax = (x1,max, . . . , xn,max), xmin = (x1,min, . . . , xn,min).
The relative degrees of bi,max(x), bi,min(x), i ∈ {1, . . . , n} are mi,
and the relative degrees of bj(x), j ∈ So are mj. Therefore, in
Definition 4, we choose HOCBFs with m = mi or mj, including the
penalty factors pi,min > 0, pi,max > 0, pi,safe > 0 (see discussion
after Definition 4) for all the class K functions. Following (5), any
control input ui(t) should satisfy

L
mj
f bj(x)+LgL

mj−1
f bj(x)u+S(bj(x))+pi,safeαmj (ψmj−1(x)) ≥ 0, j ∈ So,

(30)

Lmi
f bi,max(x) + LgL

mi−1
f bi,max(x)u + S(bi,max(x))

+ pi,maxαmi (ψmi−1(x)) ≥ 0, (31a)

Lmi
f bi,min(x) + LgL

mi−1
f bi,min(x)u + S(bi,min(x))

+ pi,minαmi (ψmi−1(x)) ≥ 0, (31b)

for all t ∈ [t0, tf ], i ∈ {1, . . . , n}. Note that u ∈ U in (2) are already
constraints on the control inputs, hence, we do not need to use
HOCBFs for them.

4.2.3. Joint optimal and HOCBF (OCBF) controller
Using the HOCBFs and CLFs introduced in the last two subsec-

tions, we can reformulate objective (21) in the form:∫ tf

t0

(
βδ2k (t) + ∥u(t) − uref (t)∥2) dt, (32)

subject to (13), (29), (30) , (31), and (2), the initial conditions x(t0),
and given t0. Thus, we have combined the HOCBF method and the
optimal control solution by using (22) to link the optimal state
and control to uref (t), and using (26) in the CLF (x(t)− xref (t))2 to
combine with (14). We refer to the resulting control u(t) in (32)
as the OCBF control.

Finally, we partition the continuous time interval [t0, tf ] into
equal time intervals {[t0 +ω∆t, t0 + (ω+1)∆t)}, ω = 0, 1, 2, . . . .
In each interval [t0 +ω∆t, t0 + (ω+1)∆t), we assume the control
is constant and find a solution to the optimization problem in
(32) using the CLF yk = (xk(t)−xref (t))2 and associated relaxation
variable δk(t). Specifically, at t = t0 + ω∆t (ω = 0, 1, 2, . . . ), we
solve

QP : (u⋆(t), δ⋆k (t)) = argmin
[
βδ2k (t) + ∥u(t) − uref (t)∥2] (33)
t=t0+ω∆t u(t),δk(t)
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clf[u(t), δk(t)]T ≤ bclf (34)

cbf_lim[u(t), δk(t)]T ≤ bcbf_lim (35)

cbf_safe[u(t), δk(t)]T ≤ bcbf_safe (36)

he constraint parameters Aclf, bclf pertain to the reference state
tracking CLF constraint (29):

Aclf = [LgV (yk(t)), −1],
bclf = −Lf V (yk(t)) − ϵV (yk(t)).

(37)

On the other hand, the constraint parameters Acbf_lim, bcbf_lim
capture the state HOCBF constraints (31) and the control bounds
(2):

Acbf_lim =

⎡⎢⎢⎣
−LgL

mi−1
f bi,max(x(t)), 0

−LgL
mi−1
f bi,min(x(t)), 0

1, 0
−1, 0

⎤⎥⎥⎦ ,

bcbf_lim =

⎡⎢⎢⎣
Lmi
f bi,max(x) + S(bi,max(x)) + pi,maxαmi (ψmi−1(x))
Lmi
f bi,min(x) + S(bi,min(x)) + pi,minαmi (ψmi−1(x))

umax
−umin

⎤⎥⎥⎦ .
(38)

for all i ∈ {1, . . . , n}. Finally, the constraint parameters Acbf_safe,
bcbf_safe capture the safety HOCBF constraints (30), for all j ∈ So:

Acbf_safe =

[
−LgL

mj−1
f bj(x), 0

]
,

bcbf_safe = L
mj
f bj(x) + S(bj(x)) + pj,safeαmj (ψmj−1(x)).

(39)

From a computational complexity point of view, it normally takes
a fraction of a second (see explicit results in Section 7) to solve
(33) in MATLAB, rendering the OCBF controller very efficient for
real-time implementation. After solving each (33) we obtain an
optimal OCBF control u⋆(t), not to be confused with a solution
of the original optimal control problem (8). We then update (13)
and apply it to all t ∈ [t0 + ω∆t, t0 + (ω + 1)∆t).

Remark 1. If we can find conditions such that the constraints
are not active, then we can simply track the unconstrained op-
timal control and state. This simplifies the implementation of
the optimal trajectory planning without considering constraints,
i.e., we can directly apply uref in (22) as the control input of
system (13) instead of solving (33). The feasibility of QP (33) can
be improved through smaller pi,min, pi,max, pj,safe at the expense of
possibly shrinking the initial feasible set (Xiao & Belta, 2019).

4.3. Constraint violation due to noise

The presence of noise in the dynamics (13) will generally
result in the violation of the constraints (11) or (10), which pre-
vents the HOCBF method from satisfying the forward invariance
property (Xiao & Belta, 2019). Therefore, we seek to minimize the
time during which such a constraint is violated.

4.3.1. Relative degree one constraints
Suppose that a constraint b(x(t)) ≥ 0 (one of the constraints

in (11), (10)) has relative degree one for system (13). Let us first
assume that w in (13) is bounded by ∥w∥ ≤ W , where W > 0 is
a scalar. Then, the following modified CBF constraint (Lindemann
& Dimarogonas, 2019) can guarantee that b(x(t)) ≥ 0 is always
satisfied under ∥w∥ ≤ W :

Lf b(x(t)) + Lgb(x(t))u(t) + α(b(x(t))) −

db(x(t))W ≥ 0. (40)

dx

6

We may also consider

Lf b(x(t)) + Lgb(x(t))u(t) + α(b(x(t))) −

⏐⏐⏐⏐db(x(t))dx

⏐⏐⏐⏐W ≥ 0. (41)

f the noise is bounded in the form ∥w∥ ≤ W , W ≥ 0 (compo-
nentwise). The HOCBF constraint (5) with m = 1 is equivalent
to Lf b(x(t)) + Lgb(x(t))u(t) + α(b(x(t))) +

db(x(t))
dx w ≥ 0 if we

take the derivative of b(x(t)) along the noisy dynamics (13). Thus,
the satisfaction of (41) implies the satisfaction of this constraint.
Note that the modified CBF constraint (41) is conservative since
it always considers the (deterministic) noise bound W .

Next, suppose a bound W is unknown, in which case we can
proceed as follows. Assume the constraint is violated at time t1 ∈

[t0, tf ] due to noise, i.e., we have b(x(t1)) < 0. We need to ensure
that b(x(t)) is strictly increasing after time t1, i.e., ḃ(x(t)) ≥ c(t),
where c(t) is positive and is desired to take the largest possible
value maintaining the feasibility of the QP (33), i.e., we wish to
maximize c(t) at each time step (alternatively, we can set c(t) =

c > 0 as a positive constant). Using Lie derivatives, we evaluate
the change in b(x(t)) along the flow defined by the state vector.
Then, any control u(t) must satisfy

Lf b(x(t)) + Lgb(x(t))u(t) ≥ c(t) (42)

ince we wish to maximize c(t) so that b(x(t)) is strictly increas-
ng even if the system is subject to the worst possible noise case.
or this reason, in what follows we assume that the random
rocess w(t) in (13) is characterized by a probability density
unction with finite support and we incorporate the maximization
f c(t) into the cost (32) as follows:

min
(t),δk(t),c(t)

∫ tf

t0

(
βδ2k (t) + ∥u − uref ∥

2
− Kc(t)

)
dt, (43)

here K > 0 is a large scalar weight parameter.
Note that several constraints may be violated at the same

ime. Starting from t1, we apply the constraint (42) to the HOCBF
ptimizer instead of the HOCBF constraint (5), and b(x(t)) will be
ositive again in finite time since it is strictly increasing. When
(x(t)) becomes positive again at t2 ∈ [t1, tf ], we can once again
pply the HOCBF constraint (5).

.3.2. High relative degree constraints
If a constraint b(x(t)) ≥ 0 is such that b : Rn

→ R has relative
egree m > 1 for (13), we can no longer find a modified CBF
onstraint as in (41) that guarantees b(x(t)) ≥ 0 under noise w.
his is because we need to know the bounds of the derivatives
f w as b(x(t)) will be differentiated m times. In other words, we
eed to recursively drive b(i)(x(t)) =

dib(x(t))
dt i

to be positive from
i = m to i = 1 after it is violated at some time t ∈ [t0, tf ].
Therefore, we need knowledge of the positive degree of b(x(t))
at t which is defined as follows.

Definition 6 (Positive Degree). The positive degree ρ(t) of a rel-
ative degree m function b : Rn

→ R at time t is defined as:

ρ(t) :=

{
min

i∈{0,...,m−1}:b(i)(x(t))>0
i, if ∃i ∈ {0, . . . ,m − 1}

m otherwise
(44)

If b(i)(x(t)) ≤ 0, for all i ∈ {0, . . . ,m − 1}, u(t) shows up in
b(m)(x(t)) since the function b has relative degree m for system
(13). Therefore, we may choose a proper control input u(t) such
that b(m)(x(t)) > 0, and, in this case, ρ(t) = m. The positive degree
of b(x(t)) at time t is 0 if b(x(t)) > 0.
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Letting ψ0(x, t) := b(x(t)), we can construct a sequence of
functions ψi : Rn

→ R,∀i ∈ {1, . . . ,m} similar to (3):

ψi(x) :=

⎧⎨⎩ψ̇i−1, if i < ρ(t),
ψ̇i−1(x) − ε, if i = ρ(t),
ψ̇i−1(x) + αi(ψi−1(x)), otherwise.

(45)

where αi(·), i ∈ {1, . . . ,m}, denote class K functions of their
argument and ε > 0 is a constant. We may choose ε ≥⏐⏐⏐ dψi−1(x)

dx

⏐⏐⏐W if w is bounded as in (41).
We can then define a sequence of sets Ci similar to (4) as-

ociated with the ψi−1(x), i ∈ {1, . . . ,m} functions in (45). We
eplace the definitions of ψi−1(x), Ci, i ∈ {1, . . . ,m} in Definition 4
o define b(x) to be a HOCBF.

If ρ(t) = m, then ψm(x(t)) = ψ̇m−1(x(t)) − ε ≥ 0, which is
equivalent to the HOCBF constraint (5). The control u that satisfies
ψ̇m−1(x(t)) ≥ ε > 0 will drive ψm−1(x(t)) > 0 in finite time.
Otherwise, since ψρ(t)(x(t)) > 0 according to Definition 6, we can
always choose proper class K functions αi(·), i ∈ {ρ(t)+1, . . . ,m}

such that ψi(x) ≥ 0, i.e., we can construct a non-empty set
Cρ(t)+1 ∩ . . . ∩ Cm (Xiao & Belta, 2019). By Theorem 1, the set
Cρ(t)+1 ∩ . . . ∩ Cm is forward invariant if the HOCBF constraint
(5) is satisfied. In other words, ψρ(t)(x(t)) ≥ 0 is guaranteed.
Since ψρ(t)(x(t)) = ψ̇ρ(t)−1(x(t)) − ε, then ψ̇ρ(t)−1(x(t)) ≥ ε > 0.
The function ψρ(t)−1(x(t)) will become positive in finite time, and
the positive degree of b(x(t)) will decrease by one. Proceeding
recursively at most m times, eventually the positive degree of
b(x(t)) will be 0, i.e., the original constraint b(x(t)) > 0 is satisfied
in finite time. The time needed for the constraint b(x(t)) > 0 to
be satisfied depends on the magnitude of ε.

5. Traffic merging problem

In the rest of the paper, we apply the OCBF framework de-
veloped thus far to the traffic merging problem where the goal
is to optimally control CAVs approaching a merging point while
guaranteeing safety constraints at all times.

The merging problem arises when traffic must be joined from
two different roads, usually associated with a main lane and a
merging lane as shown in Fig. 1. We consider the case where all
traffic consists of CAVs randomly arriving at the two lanes joined
at the Merging Point (MP) M where a collision may occur. The
segment from the origin O or O′ to the MP M has a length L
for both lanes, and is called the Control Zone (CZ). We assume
that CAVs do not overtake each other in the CZ. A coordinator
is associated with the MP whose function is to maintain a First-
In-First-Out (FIFO) queue of CAVs based on their arrival time at
the CZ and enable real-time communication with the CAVs that
are in the CZ as well as the last one leaving the CZ. The FIFO
assumption imposed so that CAVs cross the MP in their order of
arrival is made for simplicity and often to ensure fairness, but
can be relaxed through dynamic resequencing schemes, e.g., as
described in Xiao and Cassandras (2020). Let S(t) be the set of
FIFO-ordered indices of all CAVs located in the CZ at time t along
with the CAV (whose index is 0 as shown in Fig. 1) that has just
left the CZ. Let N(t) be the cardinality of S(t). Thus, if a CAV arrives
at time t it is assigned the index N(t). All CAV indices in S(t)
decrease by one when a CAV passes over the MP and the CAV
with index −1 is dropped.

We review next the optimal merging control problem as pre-
sented in Xiao and Cassandras (2021) so as to apply the OCBF
framework to it. The vehicle dynamics for each CAV i ∈ S(t) along
the lane to which it belongs take the form[
ẋi(t)

]
=

[
vi(t)

]
(46)
v̇i(t) ui(t)

7

Fig. 1. The merging problem.

where xi(t) denotes the distance to the origin O (O′) along the
main (merging) lane if the vehicle i is located in the main (merg-
ing) lane, vi(t) denotes the velocity, and ui(t) denotes the control
input (acceleration). We consider two objectives for each CAV
subject to three constraints, as detailed next.

Objective 1 (Minimizing travel time): Let t0i and tMi denote the
ime that CAV i ∈ S(t) arrives at the origin O or O′ and the MP
M , respectively. We wish to minimize the travel time tMi − t0i for
CAV i.

Objective 2 (Minimizing energy consumption): We also wish
to minimize energy consumption for each CAV i ∈ S(t) expressed
as

Ji(ui(t)) =

∫ tMi

t0i

C(ui(t))dt, (47)

where C(·) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints): Let ip denote the index of

the CAV which physically immediately precedes i in the CZ (if one
is present). We require that the distance zi,ip (t) := xip (t)−xi(t) be
constrained by the speed vi(t) of CAV i ∈ S(t) so that

zi,ip (t) ≥ ϕvi(t) + δ0, ∀t ∈ [t0i , t
M
i ], (48)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8 is used,
e.g., Vogel, 2003). If we define zi,ip to be the distance from the
center of CAV i to the center of CAV ip, then δ0 is a constant
determined by the length of these two CAVs (generally dependent
on i and ip but taken to be a constant over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough safe
space at the MP M for a merging CAV to cut in, i.e.,

z1,0(tM1 ) ≥ ϕv1(tM1 ) + δ0. (49)

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i ∈ S(t), i.e.,

vmin ≤ vi(t) ≤ vmax,∀t ∈ [t0i , t
M
i ],

umin ≤ ui(t) ≤ umax,∀t ∈ [t0i , t
M
i ],

(50)

here vmax > 0 and vmin ≥ 0 denote the maximum and
inimum speed allowed in the CZ, while umin < 0 and umax > 0
enote the minimum and maximum control input, respectively.
The common way to minimize energy consumption is by

inimizing the control input effort u2
i (t). By normalizing travel

ime and u2
i (t), and using α ∈ [0, 1], we construct a convex

ombination as in (12):

Ji(ui(t)) =

∫ tMi

0

(
α +

(1 − α) 12u
2
i (t)

1 2 2

)
dt. (51)
ti 2 max{umax, umin}
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f α = 1, then we solve (51) as a minimum time problem.
therwise, by defining β :=

αmax{u2max,u
2
min}

2(1−α) and multiplying the
last equation by β

α
, we have:

Ji(ui(t)) := β(tMi − t0i ) +

∫ tMi

t0i

1
2
u2
i (t)dt, (52)

here β ≥ 0 is a weight factor that can be adjusted to pe-
nalize travel time relative to the energy cost. Note that all the
constraints in the merging problem are with relative degree one.

Similar to (13), we will also include the possibility of system
model uncertainties, errors due to signal transmission, as well as
computation errors by adding two noise terms in (46) to get[
ẋi(t)
v̇i(t)

]
=

[
vi(t) + wi,1(t)
ui(t) + wi,2(t)

]
(53)

here wi,1(t), wi,2(t) denote two random processes defined in an
appropriate probability space.

6. Merging problem analysis

In this section, we first review the decentralized optimal con-
trol (OC) solution derived in Xiao and Cassandras (2021) for those
CAVs whose constraints in (48)–(50) will not become active in
the CZ. This is to ensure that these solutions are indeed compu-
tationally efficient. When one or more constraints become active,
we use the CBF method to account for these constraints and
take the unconstrained optimal solution as reference. When more
complex objective functions, nonlinear dynamics, and comfort are
involved, we adapt the CBF method to such problems. In addition,
we show how we can deal with the constraint violation problem
due to perturbations, such as the noise in (53) and other unknown
random events.

We need to distinguish between the following two cases: (i)
ip = i − 1, i.e., ip is the CAV immediately preceding i in the
FIFO queue (such as CAV 3 or 5 in Fig. 1), and (ii) ip < i − 1
such as CAV 2 or 4 in Fig. 1), which implies CAV i − 1 is in
different lane from i. We can solve the merging problem for
ll i ∈ S(t) in a decentralized way, in the sense that CAV i can

solve it using only its own local information (position, velocity
and acceleration) along with that of its “neighbor” CAVs i−1 and
p. Observe that if ip = i − 1, then (49) is a redundant constraint.
therwise, we need to consider (48) and (49) independently.
Let xi(t) := (xi(t), vi(t)) be the state vector and λi(t) :=

λxi (t), λ
v
i (t)) be the costate vector (for simplicity, in the sequel

e omit explicit time dependence when no ambiguity arises). The
amiltonian for the merging problem with the state, control, and
afety constraints adjoined is

Hi(xi,λi, ui) =β +
1
2
u2
i + λxi vi + λvi ui + µa

i (ui − umax)

+ µb
i (umin − ui) + µc

i (vi − vmax)

+ µd
i (vmin − vi) + µe

i (xi + ϕvi + δ0 − xip )

(54)

he Lagrange multipliers µa
i , µ

b
i , µ

c
i , µ

d
i , µ

e
i are positive when the

constraints are active and become 0 when the constraints are
strict. Note that when the safety constraint (48) becomes active,
the expression above involves xip (t) in the last term. When i = 1,
the optimal trajectory is obtained without this term, since (48)
is inactive over all [t01 , t

M
1 ]. Thus, once the solution for i = 1 is

obtained, x∗

1 is a given function of time and available to i = 2.
Based on this information, the optimal trajectory of i = 2 is
obtained. Similarly, all subsequent optimal trajectories for i > 2
can be recursively obtained based on x∗ (t).
ip

8

6.1. CAVs with unconstrained optimal control

Assuming that (48) and (50) remain inactive over [t0i , t
M
i ], and

the safe merging constraint (49) is not violated at tMi , we can
obtain the unconstrained optimal solution as shown in Xiao and
Cassandras (2021):

u∗

i (t) = ait + bi (55)

v∗

i (t) =
1
2
ait2 + bit + ci (56)

x∗

i (t) =
1
6
ait3 +

1
2
bit2 + cit + di (57)

here ai, bi, ci and di are integration constants obtained by solving
he following five nonlinear algebraic equations:
1
2
ai · (t0i )

2
+ bit0i + ci = v0i ,

1
6
ai · (t0i )

3
+

1
2
bi · (t0i )

2
+ cit0i + di = 0,

1
6
ai · (tMi )3 +

1
2
bi · (tMi )2 + citMi + di = L,

aitMi + bi = 0,

β +
1
2
a2i · (tMi )2 + aibitMi + aici = 0.

(58)

Since we aim for the solution to the optimal merging prob-
em to be obtained on-board each CAV, it is essential that the
omputational cost of solving these five algebraic equations for
he integration constants in (55)–(57) be minimal. If MATLAB
s used, it takes less than 1 s to solve these equations (Intel(R)
ore(TM) i7-8700 CPU @3.2 GHz 3.2 GHz). On the other hand,
hen the constraints (48), (49), (50) become active, a complete
C solution can still be obtained (Malikopoulos et al., 2018; Xiao
Cassandras, 2021), but the computation time varies between 3

nd 30 s depending on whether ip is also safety-constrained or
ot. This motivates the derivation of conditions such that these
onstraints do not become active in the CZ.
The following assumption requires that if two CAVs arrive

oo close to each other, then the first one maintains its optimal
erminal speed past the MP until the second one crosses it as
ell. This is to ensure that the first vehicle does not suddenly
ecelerate and cause the safety constraint to be violated during
he last segment of its optimal trajectory.

ssumption 1. For a given constant ζ =
v∗i (t

M
i )

v∗i−1(t
M
i−1)
ϕ +

δ0
v∗i−1(t

M
i−1)

,

ny CAV i−1 ∈ S(t) such that tMi − tMi−1 < ζ maintains a constant
peed vi−1(t) = v∗

i−1(t
M
i−1) for all t ∈ [tMi−1, t

M
i ].

Based on this mild assumption, the following theorems from
iao and Cassandras (2019) ensure that the constraints (48), (49),
50) are satisfied. The first identifies simple to check conditions
uch that the safety constraint (48) will not become active within
he CZ and the second identifies conditions such that the safe
erging constraint (49) will not be violated at tMi .

heorem 3 (Xiao & Cassandras, 2019). Under Assumption 1, if ∃ε ∈

0, 1] such that εv0i ≤ v0ip and t0i − t0ip ≥
ϕ

ε
+

δ0
εv0i

+
3L(1−ε)

v0ip
+2v∗ip (t

M
ip

)
, then,

nder optimal control (55) for both i and ip, zi,ip (t
M
i ) ≥ ϕvi(tMi )+δ0.

oreover, if ∃tp ∈ [t0i , t
M
ip ) solved by vi(tp) + ϕui(tp) − v∗

ip (tp) = 0
uch that the safety constraint (48) is satisfied at tp, then zi,ip (t) >
vi(t) + δ0,∀t ∈ [t0i , t

M
i ].

heorem 4 (Xiao & Cassandras, 2019). Let i − 1 > ip. Under
ssumption 1, if ∃ε ∈ (0, 1] such that εv0 ≤ v0 and t0 0
i i−1 i − ti−1 ≥
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x

ϕ

ε
+

δ0
εv0i

+
3L(1−ε)

v0i−1+2v∗i−1(t
M
i−1)

, then, under optimal control (55) for both

i and i − 1, the safe merging constraint (49) is satisfied.

Finally, the next result provides conditions such that the speed
constraint in (50) will be satisfied within the CZ:

Theorem 5 (Xiao & Cassandras, 2019). If v0i ≤ v0,∀i ∈ S(t)
for v0 ∈ [vmin, vmax), β > 0 and under optimal control (55),
then for any L ≤ Lmax, the speed limitations in (50) are satisfied
∀t ∈ [t0i , t

M
i ],∀i ∈ S(t), where

Lmax =

√
8v4max − 6v2maxv

2
0 − 2vmaxv

3
0

9β

Note that all conditions in Theorems 3–5 are based on the
nitial conditions v0i , t

0
i of CAV i ∈ S(t) and information from

ther CAVs ahead of i. Although the conditions in Theorem 5
ertain to all CAVs, it can also be easily applied to each individual
AV i ∈ S(t). The case of control constraints being active is
ddressed in the following remark.

emark 2. If the conditions in Theorems 3–5 are satisfied for
AV i ∈ S(t), but the control constraint in (50) is initially violated
t umax (since we have that ai < 0 (β ̸= 0) and ui(tMi ) = 0 when i
s under unconstrained OC (55) Xiao & Cassandras, 2021), then the
afety constraint (48), the safe merging constraint (49) and the
peed constraint in (50) are all satisfied when we first apply umax
tarting at t0i followed by an unconstrained OC. This is obvious
ince the umax-constrained OC has lower speed compared with the
nconstrained OC (55). The derivation of the unconstrained OC
fter the umax-constrained arc is easy and time efficient (similar
o (55)).

Once we confirm that a CAV i ∈ S(t) meets all conditions in
heorems 3–5 (the control constraint violation case is discussed
n Remark 2 and also viewed as an unconstrained OC), we can
irectly apply the unconstrained control (55) to CAV i. Consid-
ring the noisy dynamics (53), we wish to find a controller that
racks both the optimal speed (56) and position (57) since the
afety constraint (48) and the safe merging constraint (49) both
epend on the speed and position. We use the position and speed
xponential feedback control forms in (23)–(25).
Extensive simulation results (see Xiao & Cassandras, 2019)

ave shown that the ratio of CAVs that satisfy the conditions in
heorems 3–5 is large under normal (not exceedingly high) traffic
onditions. Still, when these conditions are not satisfied for some
AV i ∈ S(t), we can use the OCBF method to account for these
onstraints as shown in the sequel.

.2. OCBF for the merging problem

Suppose that an unconstrained OC solution is available for
he objective (52), obtained through (55)–(57). Our goal here is
o determine a controller for those CAVs that do not satisfy the
onditions in Theorems 3–5. This is achieved by combining the
nconstrained OC solution with a CBF-based controller leading to
n OCBF controller whose goal is to track the former as closely as
ossible.
First, we aim to track the optimal speed v∗

i (t) obtained through
55)–(57). In particular, we define a controller aiming to drive
i(t) to vref (t) using the form (28) or (27). Using either form
f vref (t), we can now proceed as in (29) and define an output
i(t) := vi(t) − vref (t) and a CLF V (yi(t)) = y2i (t). The control
hould satisfy the CLF constraint (29).
Second, we deal with the safety and vehicle limitation con-

traints (Constraints 1,3) using HOCBFs to map them from the
9

state xi(t) to the control input ui(t). In particular, define CBFs
bi,q(xi(t)), q ∈ {1, 2, 3} where bi,1(xi(t)) = vmax−vi(t), bi,2(xi(t)) =

vi(t)−vmin, bi,3(xi(t)) = zi,ip (t)−ϕvi(t)−δ0. The relative degree of
each bi,q, q ∈ {1, 2, 3} is 1. Therefore, in Definition 4, we choose
a HOCBF with m = 1. Any control should satisfy the HOCBF
constraints (30) and (31). Note that ui(t) ∈ [umin, umax] is already
a constraint on the control input, hence, we do not need to use a
HOCBF for it.

Finally, the safe merging constraint (49) ensures that there
are no collisions when CAVs from different lanes arrive at the
merging point M . It is only imposed at tM1 and does not apply
to all t ∈ [t0i , t

M
i ). For example, vehicles 4 and 3 in Fig. 1 are not

constrained before they arrive at the merging point M , but have
to satisfy (49) at M . In order to use a HOCBF approach, we need a
version of (49) that is continuous in time when i−1 > ip. Vehicles
i and i − 1 both arrive randomly at O or O′, and the minimum
distance along the lane zi,i−1(t0i ) between vehicle i and i − 1 is
0, i.e., these two CAVs are allowed to arrive at the origin O or
O′ at the same time. The coordinator FIFO queue preserves the
arrival order of i and i − 1 at O or O′ at the merging point M .
When vehicles i and i − 1 arrive at M , they will merge into the
same lane. Therefore, the distance between i and i − 1 must be
greater than or equal to ϕvi(tMi )+δ0, which is in the form of (49).
However, we have considerable freedom in choosing the reaction
time ϕ from (49) for vehicle i (i − 1 > ip) for all t ∈ (t0i , t

M
i ). In

the following, we provide a definition for the allowed variation
of ϕ:

Definition 7. The reaction time ϕ for vehicle i (i − 1 > ip) is a
strictly increasing function Φ : R → R that satisfies the initial
condition Φ(xi(t0i )) = −

δ0
v0i

and final condition Φ(xi(tMi )) = ϕ.

As an example, in Fig. 1 where xi(t0i ) = 0 and xi(tMi ) = L,
we have Φ(xi(t)) =

ϕxi(t)
L if δ0 = 0. The lower bound of the

istance from (49) becomes greater as vehicle i approaches the
erging point M such that there is adequate space for the vehicle

n the merging lane to join the main lane. Therefore, a continuous
ersion of the constraint from (49) on i for i−1 > ip in the control

zone is:

zi,i−1(t) ≥ Φ(xi(t))vi(t) + δ0, ∀t ∈ [t0i , t
M
i ]. (59)

The relative degree of (59) is 1. To enforce safe merging, we
employ a HOCBF that is similar to the ones used for safety (30).

6.2.1. OCBF controller
Along the lines of Section 4.2, we now seek a control input ui(t)

in the HOCBF method which tracks the unconstrained optimal
control u∗

i (t) through a HOCBF controller aiming to drive ui(t) to
ref (t) defined by (24) or (23).
Following the OCBF approach in Section 4.2, we apply (32) and

onsider the objective function:

i(ui(t), δi(t)) =

∫ tMi

t0i

(
βδ2i (t) +

1
2
(ui(t) − uref (t))2

)
dt, (60)

ubject to (53), the corresponding HOCBF constraints as (30), (31),
nd the CLF constraint (29), the initial and terminal conditions
i(t0i ) = 0, xi(tMi ) = L, and given t0i , vi(t

0
i ). Thus, we have

combined the HOCBF method and the OC solution by using (24)
or (23) to link the optimal position and acceleration to uref (t), and
use (28) or (27) in the CLF (vi(t)− vref (t))2 to combine with (60).
The resulting optimal ui(t) in (60) is the OCBF control.

As in (33), we partition the continuous time interval [t0i , t
M
i ]

into equal time intervals {[t0i + k∆t, t0i + (k + 1)∆t)}, k =

0, 1, 2, . . . In each interval [t0i + k∆t, t0i + (k+ 1)∆t), we assume
the control is constant and find a solution to the optimization
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Fig. 2. Tracking performance comparison with vehicle noise between the state feedback control (25) and the exponential feedback control (23) with vehicle limitations
(50).
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problem (60). Specifically, at t = t0i + k∆t (k = 0, 1, 2, . . . ), we
solve

QP :

t=t0i +k∆t
u⋆i (t) = argmin

ui(t)

1
2
ui(t)THui(t) + F Tui(t) (61)

ui(t) =

[
ui(t)
δi(t)

]
, H =

[
1 0
0 β

]
, F =

[
−uref (t)

0

]
subject to the constraints as (34)–(36) as they pertain to the
merging problem. After solving (61) and get an optimal control
u⋆i (t), we update (53) for all t ∈ (t0i + k∆t, t0i + (k + 1)∆t). As
shown in Section 7, the use of only (28) or (27), yields an OCBF
control which is Lipschitz continuous, whereas using both state
and control trackings improves performance.

7. Simulation results

All controllers in this section have been implemented us-
ing MATLAB and we have used the Vissim microscopic multi-
model traffic flow simulation tool as a baseline for the purpose of
making comparisons between our controllers and human-driven
vehicles adopting standard car-following models used in Vissim.
We used quadprog for solving QPs of the form (60) or (A.6) and
ode45 to integrate the vehicle dynamics.

Referring to Fig. 1, CAVs arrive according to Poisson processes
with arrival rates that we allow to vary in our simulation ex-
amples. The initial speed vi(t0i ) is also randomly generated with
uniform distribution in [15 m/s, 20 m/s] at the origins O and
O′, respectively. The parameters for (60) or (A.6) and (53) are:
L = 400m, ϕ = 1.8s, δ0 = 0m, umax = 3.924 m/s2, umin =

−3.924 m/s2, vmax = 30 m/s, vmin = 0 m/s, β = 1, ϵ =

0, ∆t = 0.1s, c = 1, and we consider uniformly distributed
noise processes (in [−2, 2] for wi,1(t) and in [−0.2, 0.2] for

i,2(t)) for all simulations. The value of ∆t is chosen as small
s possible, depending on computational resources available, in
rder to address the inter-sampling effect on the HOCBFs and
aintain a guaranteed satisfaction of all constraints.
1. Position and speed feedback tracking implementation

xample. First, we provide a simple example of the tracking
ontrol implementation for a single vehicle which considers (60)
s the objective function and employs the unconstrained optimal
ontrol (55). Although we do not consider the vehicle noise, there
s still discretization (∆t = 0.1s) error in the implementation. The
nitial parameters are t0i = 0s, v0i = 20 m/s, α = 0.26. We first
onsider the comparison between exponential feedback control
23) and directly applied unconstrained control (55), as shown
n terms of average tracking errors in Table 1. We can see that
he feedback control (23) can significantly improve both average
racking errors. The tracking errors decrease as σ , σ decrease,
1 2 s

10
able 1
verage tracking error comparison without vehicle noise.
Items u∗(t) (55) Feedback control (23)

σ1, σ2 4, 12 6, 16 12, 4
1
2 u

2
i (t) 4.4000 4.4396 4.4366 4.4318

Pos. err. −0.1678 −0.0280 −0.0452 −0.0577
Spd. err. −0.0333 −0.0037 −0.0059 −0.0095

consistent with the argument after (23) that we wish to make
σ1 < σ2, as shown from the 3rd and 5th columns in Table 1.

Then, under the same randomly generated noise wi,1(t) ∈

[2 m/s,−2 m/s] and wi,2(t) ∈ [−0.1 m/s2, 0.1 m/s2], we com-
pare the tracking performance between the state feedback control
(25) (k1 = 0.25, k2 = 0.1) and the exponential feedback control
(23) (σ1 = 4, σ2 = 10, the same coefficients as in (25)),
as shown in Figs. 2(a)–2(c). We can see that the exponential
feedback control (23) can perform almost the same when the
control u∗

i (t) is large and outperforms the state feedback control
(25) as the optimal control become smaller. The control input in
the exponential feedback control input (23) varies less than the
state feedback control (25), as shown in Fig. 2(c).

2. OCBF implementation example. Next, we provide a sim-
ple example of the OCBF controller implementation for a single
vehicle which considers (60) as the objective function. The initial
parameters are the same as the last example. If we only apply
(28) or (27), set uref (t) = 0 and assume no noise, then we obtain
the control profiles shown in Fig. 3(a). The speed reference form
(27) tends to achieve a closer track of the OC control (black curve)
compared to the form (28) at the expense of larger over-shot; as
a result, performance is worse as shown in Table 2 (values in red
are the best).

If we apply both (28) and (24) without noise, we obtain the
control profiles shown in where the OCBF controller’s perfor-
mance is virtually indistinguishable from that of the OC control,
as shown in Table 2.

With noise added (based on a uniform distribution in [−2, 2]
for wi,1(t) and in [−0.2, 0.2] for wi,2(t)), we show the control
profiles under different noise levels in Fig. 3(b) with (28) and
(24); and in Fig. 3(c) with (27) and (23). Constraints 1–3 may
be temporarily violated but will be forced to be satisfied again
in finite time through constraint (42). The speed and control
tracking forms (28) and (24) perform better than (27) and (23)
as noise increases.

3. Comparison of OC control from Xiao and Cassandras
2021), CBF control from Xiao, Belta et al. (2019), and OCBF
ontrol in this paper. Consider the merging problem with the
imple objective function (52) for which we can easily get uncon-

trained optimal solutions. Then, we employ the CBF method and
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able 2
bjective function comparison without noise.
Items OC OCBF

Track (28) (27) (27) (28), (24)
σ 4 40

Time (s) 15.01 15.07 15.01 15.01 15.01
1
2 u

2
i (t) 4.44 4.41 4.6962 4.66 4.44

Objective 33.33 33.43 33.52 33.50 33.34

Table 3
Comparison (data in average) of OC, CBF and OCBF (with noise).
Method α Noi. Time (s) 1

2 u
2
i (t) Obj.

CBF N/A No 14.6978 26.9178 N/A

OC
0.01

No 25.4291 0.1725 2.1288

OCBF No 25.6879 1.0582 3.0256
Yes 25.7494 2.2373 4.1976

OC
0.25

No 17.0472 4.9069 36.4909

OCBF No 17.1176 5.5569 37.1139
Yes 17.1396 6.8959 38.1605

OC
0.40

No 15.1713 10.6508 53.1120

OCBF No 15.2286 11.3629 53.7157
Yes 15.2527 12.7671 54.6325

OC
0.60

No 13.1035 24.4079 70.2922

OCBF No 13.1560 25.2468 70.8720
Yes 13.1692 26.6534 71.4938

the OCBF technique (with (28) and (24)) introduced in Section 6.2.
Simulation results under four different trade-off parameters are
shown in Table 3. We can see that the OCBF method achieves
comparable results to OC, even in the presence of noise.

The computation time in MATLAB with the OCBF method for
ach i at each step is less than 0.01s (Intel(R) Core(TM) i7-8700
PU @ 3.2GHz×2), while the OC method takes between 1s and
0s for each CAV, depending on whether the constraints are
ctive or not.
We also show in Fig. 4 how the travel time and energy con-

umption vary as the weight factor α in (51) changes. The sig-
ificance of Fig. 4 is to show how well the OCBF can match the
ptimal performance obtained through OC. Examples of the bar-
ier function profiles for the safety constraint (48) under known
nd unknown noise bound W are shown in Fig. 5. If W is known,
he safety constraint (48) is guaranteed with some conservative-
ess; Otherwise, the safety constraint (48) is satisfied most of the
ime without conservativeness.
 h

11
Fig. 4. Travel time and energy consumption as the factor α changes.

Fig. 5. Barrier function b(x) under noise wi,1(t) ∈ [−4, 4] m/s, wi,2(t) ∈

−0.4, 0.4] m/s2 . b(x) ≥ 0 denotes the satisfaction of the safety constraint (48).

4. Comparison of CBF control from Xiao, Belta et al. (2019),
BF control with objective (A.1) in this paper, and human-
riven vehicles through Vissim. This simulation refers to
he Appendix for the case that the objective function is too com-
lex to get explicit optimal solutions. We consider the objective
unction (A.1) which is too complex to allow the derivation of an
C solution. Thus, we solve (A.1) through the sequence of QPs
A.6) and select a value β = 0.2 in (A.6) through trial and error
o best match the performance in Vissim. We vary the relative
raffic arrival rates of the main and merging lane and show our
esults in Tables 4, 5, 6.

In Tables 4 and 5, note that both CBF methods outperform
uman-driven vehicles modeled though Vissim. We also observe
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able 4
ain lane arrival rate : Merging lane arrival rate = 1:1.
Items CBF-(52) CBF-(A.1) Vissim

Ave. time (s) 14.6978 18.1549 25.0813
Main time (s) 14.7000 18.1717 17.9935
Merg. time (s) 14.6956 18.1378 32.3267
Ave. fuel (mL) 57.9532 30.9813 36.9954
Main fuel (mL) 57.7028 30.8856 42.6925
Merg. fuel (mL) 58.2092 31.0791 31.1717

Table 5
Main lane arrival rate : Merging lane arrival rate = 3:1.
Items CBF-(52) CBF-(A.1) Vissim

Ave. time (s) 14.6578 18.1189 23.9300
Main time (s) 14.6794 18.1413 18.3476
Merg. time (s) 14.6074 18.0667 36.9556
Ave. fuel (mL) 60.2624 31.9754 39.8587
Main fuel (mL) 61.0934 32.7556 42.8554
Merg. fuel (mL) 58.3235 30.1549 32.8666

Table 6
Main lane arrival rate : Merging lane arrival rate = 1:3.
Items CBF-(52) CBF-(A.1) Vissim

Ave. time (s) 14.6000 18.0093 29.2035
Main time (s) 14.7133 18.1133 17.8667
Merg. time (s) 14.5761 17.9873 31.5986
Ave. fuel (mL) 61.1607 33.4848 30.5212
Main fuel (mL) 57.3805 30.9263 46.5004
Merg. fuel (mL) 61.9593 34.0253 27.1454

Table 7
Rate = 1:3, adding a lane of length L after the merging point.
Items CBF-(52) CBF-(A.1) Vissim

Ave. time (s) 28.7975 36.3076 50.9987
Main time (s) 28.9857 36.3786 38.8643
Merg. time (s) 28.7569 36.2923 53.6123
Ave. fuel (mL) 88.2784 51.6414 81.6633
Main fuel (mL) 86.6246 48.7578 77.8110
Merg. fuel (mL) 88.6347 52.2625 82.4930

that the CBF method developed in this paper using (A.1) is vastly
superior to that of Xiao, Belta et al. (2019) in the energy com-
ponent with little loss in travel time performance. We also note
that without any control (as in Vissim), the main lane vehicles
have priority over the merging lane and the merging lane vehicles
may even stop before the merging point. Thus, there is heavy
congestion in the merging lane when the ratio between the main
lane and merging lane arrival rates is 1:3.

We observe in Table 6 that the energy consumption of vehicles
n Vissim is significantly lower compared to the CBF methods.
his is due to the fact that the merging lane vehicles frequently
top before the merging point M , thus having low speeds when
assing overM . In order to achieve a fair comparison, we consider
longer time horizon over which we measure fuel consumption
nd travel time. This is accomplished by extending the trip of each
ehicle for an additional length L beyond the merging point M , as

shown in Table 7. As expected, the overall energy performance
under CBF control is now significantly better (by about 37%) than
that of human-driven vehicles.

8. Conclusions

We have developed a real-time framework that combines
optimal trajectories generated through optimal control with the
computationally efficient HOCBF method providing safety guar-
antees. This allows us to deal with cases where the optimal
12
control solution becomes computationally costly, as well as to
handle the presence of noise in the system dynamics by exploit-
ing the ability of HOCBFs to add some robustness to an optimal
controller. We applied the proposed framework to the traffic
merging problem for connected and automated vehicles with re-
sults showing significant improvement in performance compared
with human driven vehicles. An ongoing research challenge is
imparting adaptivity to HOCBF-based controllers with respect to
a changing environment. Regarding autonomous vehicles (CAVs)
in a traffic network, ongoing work is aimed at integrating them
with non-CAVs.

Appendix. Complex objectives, dynamics and comfort

As shown in Xiao, Belta et al. (2019), the HOCBF method allows
us to deal with nonlinear systems and to consider more complex
objective functions than (52). In particular, we consider:

min
ui(t)

β(tMi − t0i ) +

∫ tMi

t0i

fv(t)dt, (A.1)

where fv(t) represents a more detailed realistic energy model re-
lacing the simple expression u2

i (t) commonly used as a surrogate
nergy function. As an example, we have adopted in Xiao, Belta
t al. (2019) the following energy model from Kamal et al. (2013),
hich describes fuel consumed per second as

fv(t) = fcruise(t) + faccel(t),

fcruise(t) = ω0 + ω1vi(t) + ω2v
2
i (t) + ω3v

3
i (t),

faccel(t) = (r0 + r1vi(t) + r2v2i (t))ui(t).
(A.2)

here ω0, ω1, ω2, ω3, r0, r1 and r2 are positive coefficients (typical
alues are reported in Kamal et al. (2013)). It is assumed that
uring braking, i.e., ui(t) < 0, no fuel is consumed. Note that
A.1) is hard to solve through an OC analysis as in the previous
ection. However, in the HOCBF approach this can be handled
umerically.
As for the dynamics of CAVs, the HOCBF method can easily

andle nonlinear dynamics instead of just the linear form in (46).
hus, we use the vehicle dynamics (Khalil, 2002):

ẋi(t)
v̇i(t)

]
 
ẋi(t)

=

[
vi(t)

−
1
mi
Fr (vi(t))

]
  

f (xi(t))

+

[
0
1
mi

]

g(xi(t))

ui(t), (A.3)

here mi denotes the mass of CAV i, and vi(t) is its velocity.
r (vi(t)) denotes the resistance force, which is normally expressed
Khalil, 2002) as:

r (vi(t)) = k0sgn(vi(t)) + k1vi(t) + k2v2i (t), (A.4)

here k0 > 0, k1 > 0 and k2 > 0 are scalars determined
mpirically, and sgn is the signum function. The first term in
r (vi(t)) denotes the Coulomb friction force, the second term
enotes the viscous friction force and the last term denotes the
erodynamic drag.
In the HOCBF method, we do not explicitly optimize the travel

ime shown in (A.1). Instead, we use a CLF to drive vi(t) to a
esired speed such that the travel time is optimized. In Xiao, Belta
t al. (2019), we define an output yi(t) := vi(t)− vmax and choose
CLF V (yi(t)) = y2i (t). Any control input ui(t) should satisfy, for
ll t ∈ [t0i , t

M
i ],

Lf V (yi(t)) + LgV (yi(t))ui(t) + ϵV (yi(t)) ≤ δi(t) (A.5)

here ϵ > 0 and δi(t) is a relaxation variable that makes the
equirement v (t) = v to be treated as a soft constraint. Thus,
i max
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e seek to achieve Objective 1 indirectly and consider Objective
directly, replacing (A.1) by

min
i(t),δi(t)

∫ tMi

t0i

(
fv(t) + βδ2i (t)

)
dt (A.6)

ubject to the same constraints as in (60) and dynamics (A.3). We
se the QP-based method as introduced in the last subsection
o solve (A.6). Thus, all CAVs can safely pass over the merging
oint M while minimizing Ji(ui(t), δi(t)) within each time interval,

hence jointly minimizing the energy consumption captured by
fv(t) and travel time (indirectly) through the minimization of δ2i .
By adjusting the weight β in (A.6), we can trade off between these
two objectives.

When comfort is also concerned in the objective, i.e., we also
want to minimize the jerk of each CAV i, we can directly incorpo-
rate the jerk into (A.6). Noting that fv(t) in (A.6) is linear in ui(t),
e wish to formulate a Linear Program (LP) instead of a QP since
he LP tends to be around 30% more computationally efficient
han the QP, as shown in Xiao, Belta et al. (2019). Including the
omfort requirement, we have

min
i(t),δi(t)

∫ tMi

t0i

fv(t) + β1δi(t) + β2

⏐⏐⏐⏐ui(t) − u∗

i (t − k∆t)
∆t

⏐⏐⏐⏐ dt (A.7)

here u∗

i (t −k∆t) denotes the optimal control from the last time
nterval (initially set to 0 at t0i ), and is known. The parameters
1 > 0, β2 > 0 trade off fuel consumption, travel time, and
omfort. The LP (A.7) is subject to the same constraints as the
P (A.6).
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