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Abstract— In this paper, the question of bi-similarity be-
tween hybrid systems and their discrete quotients is studied
from a new point of view. We consider two classes of hybrid
systems: piecewise affine hybrid systems on simplices and
piecewise multi-affine systems on multi-dimensional rectan-
gles. Given a fixed partition of the state space, we derive
sufficient conditions on the values of the vector fields at
the vertices of the polytopes, in order that the constructed
hybrid system is bi-similar with its corresponding discrete
quotient transition system. The results are based on the fact
that affine vector fields on simplices and multi-affine vector
fields on rectangles are uniquely determined by their values
at the vertices. In this way, an interesting class of decidable
hybrid systems is determined. The result is applied to a motion
planning problem for planar robots.

I. INTRODUCTION

Systems that consist of a combination of continuous

dynamics and discrete events are called hybrid systems [1],

[2], [3], [4]. Continuous processes controlled by digital

controllers are examples of such systems. In addition to

discontinuities introduced by the computer, most physical

processes exhibit discrete dynamics due to the action of

elements ranging from valves, gears and switches in electro-

mechanical systems to transcriptional regulators in genetic

and metabolic networks. Hybrid systems are used as main

modeling framework in a large number of areas such as

automated highway systems, air-traffic management sys-

tems, embedded automotive and avionic controllers, manu-

facturing systems, robotics, genetic and metabolic networks,

real-time communication networks, and real-time circuits.

Formal verification is a very important issue during system

design. The goal of formal verification is to prove that the

system performs as expected. As the automated systems are

growing in scale and complexity, the possibility of subtle

errors becomes much larger. As a result, it is crucial to

ensure that the system is always safe.

Formal analysis is concerned with reachability analysis,

which is the problem of determining the set of states reached

by a system starting from a given initial set, and safety
verification, which is the problem of formally proving that a

system does not have any trajectories connecting two given

sets of states. A class of problems like the ones defined

above is called decidable, if there exists a computational

procedure that can decide, in a finite number of steps,

whether any system in the class verifies any property in

the class. For purely discrete systems described by finite

state machines, decidability is an easy task, since it can
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be performed by exhaustively searching the state set. For

hybrid and continuous systems, decidability is an important

issue because the number of states in a continuous state set

is uncountable.

In this paper, we consider a particular case of hybrid

systems, that consist of specific dynamics (vector fields),

defined in non-overlapping regions of the state space, called

invariants. The decidability of such hybrid systems with

given vector fields and given invariants is an important

but difficult problem, that is not solved in this paper.

Instead, we prove the decidability of a certain class of

hybrid systems with prescribed invariants, but with arbitrary

vector fields, restricted to a certain class. In other words,

given the invariants, we want to construct vector fields

so that the resulting hybrid system is decidable. This re-

verse engineering procedure is suggested by robotic motion

planning problems, where a partition of the task space is

naturally induced by the position and size of obstacles,

and initial and goal regions, and vector fields have to be

assigned to each of the regions so that the robots move from

the initial to the final region while avoiding the obstacles

and observing velocity bounds. The decidability of the

corresponding hybrid systems reduces the motion planning

problem to a search on a finite graph.

We focus on two classes of hybrid systems: triangular

affine systems, i.e., hybrid systems with triangular invariants

and affine dynamics, and rectangular multi-affine systems,

which are hybrid systems with rectangular invariants and

multi-affine dynamics. There are several reasons for our

choice of these classes of systems. First, given a polyhedral

state set, triangulation and rectangular partition are the

most attractive procedures for partitioning [5]. Second,

affine vector fields are largely encountered in practice, as

linearization of nonlinear systems around operating points

(not necessarily equilibria). Third, nonlinear multi-affine

dynamics are used for modeling in several application

areas, ranging from biochemical networks [6], control of

spacecraft and underwater vehicles [7], to competition and

selection processes in economy and chemical networks.

Moreover, affine systems on simplices and multi-affine

systems on (multi-dimensional) rectangles, have some very

interesting properties [8], [6] that can be used in the study

of decidability problems for hybrid systems with these types

of dynamics and invariants.

In this paper, we show that, if the triangular or rect-

angular invariants are given, the existence of affine or

multi-affine dynamics rendering the corresponding hybrid

systems decidable can be guaranteed by the nonemptiness

of several polyhedral sets. We also provide formulas for the

construction of the vector fields. These results are based on
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the fact that affine vector fields on simplices and multi-affine

vector fields on multi-dimensional rectangles are uniquely

determined by their values at the vertices. The values at all

other points are convex combinations of the values at the

vertices.

The paper is organized as follows. In Section II, we

give definitions of hybrid systems, discrete quotients, and

introduce the idea of simulation and bi-simulation. The

problem is formulated in Section III. Affine hybrid systems

with triangular invariants are treated in Section IV and

multi-affine systems with rectangular invariants in Section

V. An example of motion generation for a group of robots

using decidable triangular affine systems is given in Section

VI. The paper ends with conclusions and final remarks in

Section VII.

II. BI-SIMILAR DISCRETE ABSTRACTIONS FOR HYBRID

SYSTEMS

Formally, a hybrid system [9], [10] is defined as a tuple

HS = (X , L,X0, I, f, T ), (1)

where X ⊆ IRN
, N ∈ IN is the continuous state space, L

is a finite set of locations (also called modes), X = L×X
is the overall state space of the system, (l, x) ∈ L × X
denotes its state, X0 ⊆ X is the set of initial states, I is the

invariant, which assigns to each location l ∈ L an invariant

set I(l) ⊆ X , f : L → (X → TX ) is a mapping that

specifies the continuous flow (vector field) in each location,

and T ⊂ L×X×L is a set of discrete transitions. Motivated

by robotic motion planing problems, we consider a special

case of (1), where the invariants I(l) are non-overlapping

polyhedral regions in IRN
. In particular we assume that if

the intersection I(li) ∩ I(lj) of two polyhedral regions is

nonempty, then it is a common face of I(li) and I(lj). In

this case, a transition T from li to lj occurs when a state

x flows through the boundary between I(li) and I(lj).
The main idea in formal analysis is to be able to map the

trajectories of a hybrid system to trajectories of a discrete

system, i.e., to transform a problem with an uncountable

number of states to a decidable problem with finitely many

states, that is equivalent to the first as far as reachability

properties are concerned. This procedure is called abstrac-
tion.

The discrete quotient transition system DS for the hybrid

system HS defined in (1) is a tuple

DS = (L,L0, t), (2)

where L is the set of locations from the definition of HS,

L0 is the set of discrete initial states corresponding to X0,

and t ⊆ L × L is the set of transitions defined as follows:

there exists a transition t = (l, l′) if and only if there exists

x ∈ X so that (l, x, l′) is a transition T of HS.

From this definition of DS, it is obvious to see that the

discrete quotient system DS can reach everything that the

initial hybrid system can reach, and can therefore be used

for conservative reachability analysis, i.e., to construct over-

approximations of the reachable sets of HS. We say that

DS simulates HS. However, the converse is in general not

true. Indeed, it is easy to imagine that there are situations

in which DS has trajectories that do not correspond to

trajectories of HS. This can happen when different initial

states in an arbitrary location I(l) have different properties

with respect to the reachability of the neighboring regions

of I(l). One such situation corresponds to the case when

some initial states in I(l) stay inside I(l), while others leave

I(l), which makes HS and DS not equivalent with respect

to reachability of neighbors. Another situation corresponds

to the case when different initial states transit to different

neighbors of I(l). Even though HS and DS are equivalent

with respect to reachability of neighbors of I(l) (provided

that no states stay inside I(l) forever), the conservativeness

appears while constructing the discrete quotient over several

invariants. An illustration of this idea is given in Figure 1

(a), where the discrete trajectory l1 → l2 → l3, which exists

because of the definition of the discrete quotient, does not

imply that there is a trajectory of HS passing through I(l1),
I(l2), and I(l3). The degree of conservativeness increases

with the dimension of the problem. This situation can be

eliminated through refined partitioning, as shown in Figure

1 (b). If such an iterative refinement procedure terminates,

i.e., produces a discrete quotient with at most one transition

from each discrete state, with the guarantee that all initial

states in the corresponding invariant flow in finite time to

the corresponding neighbor, HS and DS are called bi-
similar, i.e., they are equivalent with respect to reachability

properties. The bi-simulation relation was first introduced

in [11], [12], formally defined for linear control systems in

[13], and for nonlinear systems in an abstract categorical

context in [14].

In [15], it has been shown that reachability is undecid-

able for a very simple class of hybrid systems. Several

decidable classes have been identified though by restricting

the continuous behavior of the hybrid system, as in the

case of timed automata [16], multirate automata [17], [18],

and rectangular automata [15], [19], or by restricting the

discrete behavior, as in order-minimal hybrid systems [20],

[21], [22]. All these decidable classes are too weak to

represent continuous and hybrid system models that arise

in practice. Then one might be satisfied with sufficient

abstractions, as the discrete quotient system defined by (2).

But even finding the discrete quotient is not at all trivial.

Related work focuses on partitioning using linear functions

of the continuous variables, as in the method of predicate

abstractions [23], [24], or using polynomial functions as in

[24], [25]. However, to derive the transitions of the discrete

quotient, one has to be able to either integrate the vector

fields of the initial system [23], or use computationally

expensive decision procedures such as quantifier elimination

for real closed fields and theorem proving [24], which

seriously limits the dimension of the problems that can be

solved in one of these ways.
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Fig. 1. The bi-simulation algorithm is an iterative refinement of partition, which terminates if, in the discrete quotient, there is at most one transition
from each state: (a) DS simulates HS but HS does not simulate DS and (b) DS and HS are bi-similar.

III. PROBLEM FORMULATION

As stated in the Introduction, we will not address the

decidability of hybrid systems with given vector fields and

invariants in general, but rather characterize a class of de-

cidable hybrid systems with given triangular or rectangular

invariants and arbitrary affine or multi-affine vector fields.

In other words, for these two classes of systems, given the

invariants I(l), l ∈ L, we want to construct vector fields

fl so that the resulting hybrid system HS (1) is bi-similar

with its discrete quotient DS (2). Moreover, motivated by

robotic motion planning problems, we impose polyhedral

bounds for the vector fields:

Problem 1: Consider a polyhedral region X of IRN
with

a given triangulation or rectangular partition I(l), l ∈ L.

Let U be a polyhedral subset of IRN
. Characterize a class

of hybrid systems HS with affine or multi-affine dynamics

fl : I(l) −→ U , that are guaranteed to be decidable without

further refinement of the fixed partition I(l), l ∈ L.

IV. TRIANGULAR AFFINE HYBRID SYSTEMS

Let N ∈ IN and consider N + 1 affinely independent

points v1, . . . , vN+1 in the Euclidean space IRN
, i.e., there

exists no hyperplane of IRN
containing v1, . . . , vN+1. Then

the simplex SN with vertices v1, . . . , vN+1 is defined as the

convex hull of v1, . . . , vN+1:

SN = {x ∈ IRN |x =
N+1∑
i=1

λivi,

N+1∑
i=1

λi = 1, λi ≥ 0}
(3)

For i ∈ {1, . . . , N + 1}, the convex hull of

{v1, . . . , vN+1}\{vi} is a facet of SN and is denoted by Fi.

Let ni denote the corresponding unit outer normal vector.

For m ∈ IN, let f : IRN → IRm
be an arbitrary affine

function

f(x) = Ax + b, (4)

with A ∈ IRm×N
and b ∈ IRm

. Then we have:

Lemma 2: ([8, p. 26]) The affine function (4) is uniquely

determined by its values f(vi) = gi, i = 1, . . . , N + 1 at

the vertices of SN . Moreover, the restriction of f to SN

is a convex combination of its values at the vertices and is

given by:

f(x) = GV −1

[
x
1

]
, x ∈ SN (5)

where

G = [ g1 . . . gN+1 ] (6)

and

V =
[

v1 . . . vN+1

1 . . . 1

]
(7)

are m × (N + 1) and (N + 1) × (N + 1) real matrices.

Remark 3: The restriction of an affine function f to a

facet Fi of SN (i.e. Fi itself is a simplex in IRN−1
) is

affine and for any x ∈ Fi, f(x) is a convex combination of

the values of f at the vertices of Fi.

Remark 4: Affine functions (4) defined on general full

dimensional polytopes PN are still convex combinations of

their values at the vertices. However, the convex combina-

tions are not unique and expression (5) for the construction

of the affine function cannot be used, unless the polytope is

triangulated, and (5) can be used in each simplex (see [8]).

In the rest of this section, we will restrict our attention

to affine functions (4) with m = N defined on a simplex

SN and with values in a polyhedral subset U of IRN
, i.e.,

to affine vector fields with polyhedral bounds:

ẋ = f(x), f : SN → U ⊆ IRN
(8)

Proposition 5: For any i = 1, . . . , N +1, and any initial

state in SN , there is no trajectory of (8) leaving SN through

Fi if and only if nT
i f(vj) ≤ 0, for all j = 1, . . . , N + 1,

j �= i.
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Proof: For sufficiency, nT
i f(vj) ≤ 0, for all j =

1, . . . , N +1, j �= i implies nT
i f(x) ≤ 0, for all x ∈ Fi, and

therefore the system cannot cross facet Fi. The necessity is

easily proved by contradiction. Suppose that there exists a

vertex vk, k = 1, . . . , N + 1, k �= i so that nT
i f(vk) > 0,

then, by continuity of f , there exists a whole neighborhood

around vk where nT
i f(vk) > 0. So there are initial states

in this neighborhood such that the corresponding state

trajectories leave SN through Fi.

Proposition 5 can be used to provide a characterization of

the requirement that an affine system can either stay inside

a simplex forever, or drive all initial states in a simplex

through a desired facet (i.e., to a neighbor) in finite time.

If one of these conditions is satisfied in all invariants of a

triangular affine hybrid system HS , this hybrid system is

bi-similar with its discrete quotient transition system DS,

and therefore it is guaranteed that HS is decidable.

Specifically, the affine system (8), (4) starting in

SN will never leave SN if and only if there exist

f(v1), . . . , f(vN+1) ∈ U so that for all i = 1, . . . , N+1 we

have nT
i f(vj) ≤ 0, for all j = 1, . . . , N + 1, j �= i. These

conditions can be equivalently formulated as feasibility

checks at the vertices:

Proposition 6: There exists an affine vector field on

SN whose trajectories never leave SN if and only if the

following N + 1 polyhedral sets are nonempty:

Uj = U
⋂

{g ∈ IRN |nT
i g ≤ 0, i = 1, . . . , N + 1, i �= j}

(9)

j = 1, . . . , N + 1.

Also, it can be shown [8] that the affine vector field (8),

(4) drives all initial states in the simplex SN through a

facet Fi, i = 1, . . . , N + 1 in finite time if there exist

g1, . . . , gN+1 ∈ U so that (1) nT
i gj > 0 for j = 1, . . . , N +

1, and (2) nT
k gj ≤ 0 for all k, j = 1, . . . , N +1 with k �= i,

and j �= k. As before, these conditions can be equivalently

formulated at the vertices as follows:

Proposition 7: There exists an affine vector field (8)

driving all initial states in the simplex SN through the facet

Fi in finite time if the following sets are nonempty:

Ui = U
⋂

{g ∈ IRN |nT
j g ≤ 0, (10)

j = 1, . . . , N + 1, j �= i and nT
i g > 0}, (11)

Uj = U
⋂

{g ∈ IRN |nT
i g > 0 and (12)

nT
k g ≤ 0 for all k = 1, . . . , N + 1, k �= j, k �= i} (13)

for all j = 1, . . . , N + 1, j �= i.
If the sets from Propositions 6 or 7 are all nonempty,

then any choice of gi ∈ Ui, i = 1, . . . , N + 1 will give a

valid affine vector field by formula (5). Indeed, for every

x ∈ SN , we know that f(x) is a convex combination

of g1, . . . , gN+1 ∈ U . Hence, f(x) is contained in the

convex hull of g1, . . . , gN+1, which is the smallest convex

set containing g1, . . . , gN+1, and therefore included in U .

So the vector field is bounded everywhere in the simplex

as required.

Propositions 6 and 7 provide a solution to Problem 1 for

the case of triangular affine systems.

Theorem 8: Let I(l), l ∈ L be a given set of triangular

invariants belonging to a hybrid system HS. Let U ⊂ IRN

be a polyhedral set. If for every l ∈ L there exists a

vector field fl : I(l) −→ U satisfying either Proposition

6 or Proposition 7 with arbitrary exit facet Fi, and such

that adjacent simplices do not have the same exit facet,

then the corresponding hybrid system HS is bi-similar with

its discrete quotient system DS, (and therefore decidable).

Moreover, the bi-similarity of HS and DS can be shown

without iterative refinement of the fixed partition I(l), l ∈
L.

Note that in a worst case scenario, checking the sufficient

conditions for bi-similarity between HS and its discrete

quotient DS requires the application of Proposition 6 and

Proposition 7 to each of the N + 1 facets of each of the

simplices I(l), l ∈ L.

V. RECTANGULAR MULTI-AFFINE HYBRID SYSTEMS

An N -dimensional rectangle in IRN
is characterized

by two vectors a = (a1, . . . , aN ) ∈ IRN
and b =

(b1, . . . , bN ) ∈ IRN
, with the property that ai < bi for

all i = 1, . . . , N :

RN = {x = (x1, . . . , xN ) ∈ IRN | ai ≤ xi ≤ bi,

i = 1, . . . , N}. (14)

The set of 2N vertices of RN is denoted by VN , and may

be characterized as

VN =
N∏

i=1

{ai, bi} (15)

For k = 1, . . . , N , let ξk : {ak, bk} −→ {0, 1} denote the

indicator function

ξk(ak) = 0, ξk(bk) = 1, k = 1, . . . , N. (16)

Then RN has 2N facets described by

F
j,ξj(wj)
N = RN ∩ {x ∈ IRN | xj = wj}, (17)

with corresponding outer normals given by

n
j,ξj(wj)
N = (−1)ξj(wj)+1ej , (18)

for all wj ∈ {aj , bj} and j = 1, . . . , N , where ej , j =
1, . . . , N denotes the Euclidean basis of IRN

.

A multi-affine function f : IRN −→ IRm
(with N,m ∈

IN) is a polynomial in the indeterminates x1, . . . , xN with

the property that the degree of f in any of the indeterminates

x1, . . . , xN is less than or equal to 1. Stated differently, f
has the form

f(x1, . . . , xN ) =
∑

i1,...,iN∈{0,1}
ci1,...,iN

xi1
1 · · ·xiN

N , (19)
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with ci1,...,iN
∈ IRm

for all i1, . . . , iN ∈ {0, 1} and using

the convention that if ik = 0, then xik

k = 1.

Lemma 9: A multi-affine function (19) is uniquely de-

termined by its values f(v1, . . . , vN ) at the vertices of

an N -dimensional rectangle RN . Moreover, its restriction

f : RN −→ IRm
is a (unique) convex combination of its

values at the vertices:

f(x1, . . . , xN ) =
∑

(v1,...,vN )∈VN

∏N
k=1

(
xk−ak

bk−ak

)ξk(vk)

·(
bk−xk

bk−ak

)1−ξk(vk)

f(v1, . . . , vN )
(20)

The proof of the above Lemma can be found in [26].

Remark 10: The restriction of a multi-affine function f

on RN to a facet F
j,ξj(wj)
N , wj ∈ {aj , bj}, j = 1, . . . , N of

RN (which is a rectangle in IRN−1
) is itself a multi-affine

function, and for each x ∈ F
j,ξj(wj)
N , f(x) is a convex

combination of the values of f at the vertices of F
j,ξj(wj)
N .

Using the property of Remark 10, the results of Propo-

sitions 5, 6, and 7 for affine systems on simplices, may be

generalized to multi-affine systems with polyhedral bounds

defined on rectangles:

ẋ = f(x), f : RN → U ⊆ IRN
(21)

Proposition 11: For any j = 1, . . . , N , and any wj ∈
{aj , bj}, there is no trajectory of (21), (19) leaving RN

through F
j,ξj(wj)
N if and only if n

j,ξj(wj)
N

T
f(v) ≤ 0, for all

v = (v1, . . . vN ) ∈ VN with vj = wj .

Proposition 12: There exists a multi-affine vector field

(21), (19) on RN whose trajectories never leave RN if and

only if the following 2N polyhedral sets are nonempty:

U(v1,...,vN ) = U ∩
N⋂

j=1

{g ∈ IRN |nj,ξj(vj)
N

T
g ≤ 0} (22)

for all (v1, . . . , vN ) ∈ VN .

Proposition 13: There exists a multi-affine vector field

(21), (19) driving all initial states in the rectangle RN

through an arbitrary exit facet F
j,ξj(wj)
N in finite time if

the following 2N sets are nonempty:

U(v1,...,vN ) = U
⋂

{g ∈ IRN |nj,ξj(wj)
N

T
g > 0 and

n
i,ξi(vi)
N

T
g ≤ 0 for all i = 1, . . . , N, i �= j} (23)

for all vertices (v1, . . . , vN ) ∈ VN .

A proof of Proposition (13) can be found in [26].

Propositions 12 and 13 provide a solution to Problem 1

for rectangular multi-affine hybrid systems.

Theorem 14: Let I(l), l ∈ L be a given set of rectangular

invariants belonging to a multi-affine hybrid system HS.

Let U ⊂ IRN
be a polyhedral set. If for every l ∈ L there

exists a vector field fl : I(l) −→ U satisfying either Propo-

sition 12 or Proposition 13 for an arbitrary exit facet F of

the rectangle I(l), and such that adjacent rectangles do not

have the same exit facet, then the corresponding multi-affine

hybrid system HS is bi-similar with its discrete quotient

Fig. 2. A triangular partition of a planar environment. The shaded regions
represent obstacles. Robots starting from arbitrary initial positions in the
lower triangle are required to leave the rectangular region in finite time
through the upper edge, while avoiding obstacles and observing velocity
bounds. Nine sample trajectories are shown for illustration.

system DS, (and therefore decidable). Furthermore, the bi-

similarity of HS and DS can be shown without iterative

refinement of the fixed partition I(l), l ∈ L.

In a worst case scenario, checking the sufficient condi-

tions of Theorem 14 for bi-similarity between HS and its

discrete quotient DS requires the application of Proposition

12 and Proposition 13 to each of the 2N facets of each of

the (multi-dimensional) rectangles I(l), l ∈ L.

VI. MOTION PLANNING EXAMPLE

Consider a large number M of identical fully actuated

planar robots described by control systems

ẋi = ui, i = 1, . . . , M, ui ∈ U (24)

where xi ∈ IR2
is the position vector of robot i in the

world frame and ui ∈ U ⊆ IR2
is the corresponding control

restricted to a rectangular set U = [−1 , 1] × [0 , 1], i.e.,
the control magnitude on each axis is bounded to 1 and the

robots are restricted to move in the direction of positive y.

The task is to generate feedback control laws ui(xi) to

move the robots from an initial to a final region of the task

space in finite time, while avoiding obstacles and observing

the velocity bounds ui ∈ U . Assume that the initial region,

the position and size of the obstacles, and the final region

induce a triangular partition of the plane as shown in Figure

2. We solve this problem by constructing vector fields that

obey the control restrictions everywhere in a triangle and

drive all states in the initial triangle through the desired

sequence corresponding to the task.
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Fig. 3. The choice of vector fields at the vertices of each triangle and
the corresponding unique affine vector fields in each triangle.

Using Proposition 7 in each of the allowed triangular

invariants I(li), i = 1, . . . , 4 (i.e., triangles which are not

occupied by obstacles), we derived necessary and sufficient

conditions for the existence of affine vector fields (restricted

to the polyhedral set U ) driving all initial states through a

separating facet in finite time. Our choice of vector fields

at the vertices and the corresponding unique affine vector

fields for each of the triangles are given in Figure 3.

Note that, for adjacent triangles, we chose the same

velocity values at the vertices corresponding to the common

facet. This guarantees the continuity of the vector field ev-

erywhere. Indeed, the vector fields in two adjacent triangles

coincide on the separating facet, since their restrictions to

the separating facet, which is a lower dimensional simplex,

are uniquely determined by the values at the corresponding

vertices. Therefore, the condition in Theorem 8 that adjacent

simplices do not have the same exit facet is automatically

satisfied.

The trajectories of M = 9 robots originating at arbitrary

initial states in the initial triangle are shown for illustration

in Figure 2.

VII. CONCLUSION

In this paper, we consider the problem of constructing

vector fields with polyhedral bounds in each of the regions

produced by a partition of a state space so that the resulting

hybrid system is decidable. We consider two classes of

hybrid systems, triangular affine systems and rectangular

multi-affine systems, and show that the decidability of such

systems is guaranteed if some specified polyhedral sets

are nonempty. This reverse engineered approach to formal

analysis of hybrid systems is illustrated in a robotic motion

generation simulation example. Future work will be focused

on property based reachability analysis, safety verification,

and control of such systems, as well as on applications to

motion and control problems in robotics.
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