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Abstract— We address the problem of controlling a Markov
Decision Process (MDP) such that the probability of satisfying a
temporal logic specification over a set of properties associated
to its states is maximized. We focus on specifications given
as formulas of Probabilistic Computation Tree Logic (PCTL)
and show that controllers can be synthesized by adapting
existing PCTL model checking algorithms. We illustrate the
approach by applying it to the automatic deployment of a
mobile robot in an indoor-like environment with respect to a
PCTL specification.

I. INTRODUCTION

Markov decision processes (MDPs) offer a mathematical
framework for modeling systems with stochastic dynamics.
These models provide an effective means for describing pro-
cesses in which sequential decision making is involved. They
can be applied in many fields including economics, biology,
and engineering. In general, the “solution” to an MDP is a
control policy which minimizes a particular cost defined with
respect to the states in the MDP. While powerful, there are
many tasks and goals which could be considered for an MDP
that cannot easily be described in terms of a cost function.

A more general, and perhaps more natural, approach to
describing a specification for a given model can be found
in the field of verification of stochastic systems. Under
these schemes, a temporal logic, such as probabilistic Linear
Temporal Logic (pLTL) [1] and Probabilistic Computation
Tree Logic (PCTL) [2], are used to describe a property over
the system. These properties are typically expressed over
the states of an MDP and may involve temporal conditions.
Examples specifications include “deadlock occurs with prob-
ability at most 0.01” and “find the maximum probability of
reaching an unstable state within k steps”. Model checking
algorithms are then used to calculate the probability that the
MDP will satisfy the given specification [3]–[7].

In the area of motion planning and robotics, recent works
have suggested the use of such temporal logics as motion
specification languages [8]–[12]. Their use enables increased
expressivity over “classical” methods involving only state-
to-state transfers. Algorithms inspired from model checking
[13], [14] or temporal logic games [15] are used to find
motion plans and control strategies from such specifications.
Under these schemes, the system is first abstracted to a
transition system. Most existing methods proceed based on
two main assumptions. First, that the transition system is
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either purely deterministic or purely nondeterministic [16].
Second, the current state of the system is known precisely.
In realistic applications, however, noisy sensors and actuators
can cause both of these assumptions to fail.

In order to develop an approach in which the system noise
is explicitly considered, in an earlier work we considered an
MDP model of a system and task specifications given in a
small segment of PCTL formulas, namely those containing
only a single instance of a particular temporal operator (“un-
til”) [17]. In this work, we develop a strategy for controlling
an MDP with respect to a specification given in the full
range of PCTL formulas. Specifically, the main contribution
of this work is twofold: development of control algorithms
for nested formulas which increases the expressivity of
PCTL specifications, and implementation of the algorithms
as a synthesis tool. When applied to robotic systems, our
approach provides a framework for robotic control from
temporal logic specifications with probabilistic guarantees.
As a result, our approach will automatically determine a
control strategy that maximizes the probability of satisfying
a rich specification. Examples of complex missions include
“Eventually reach A and then B with probability greater than
0.9 while avoiding the regions from which the probabilities
of converging to D is greater than 0.2”.

While the building blocks of our control synthesis algo-
rithm are based on an adaptation of existing PCTL model
checking algorithms [6], the synthesis approach to formulas
with more than one temporal operator and the framework
are, to the best of our knowledge, novel and quite general. In
short, given a specification as a PCTL formula, the algorithm
returns the maximum satisfaction probability and the corre-
sponding control strategy. Our algorithm uses sub-algorithms
corresponding to each temporal operator as building blocks
for construction of a control strategy from a formula with
multiple operators. The most computationally expensive sub-
algorithm requires solving a linear programming problem.

To illustrate the method, we deployed a robot from PCTL
specifications by using our Robotic InDoor Environment
(RIDE) simulator [18]. This simulator mimics the motion
of an iRobot Create platform equipped with a laptop, RFID
reader, and laser range finder moving autonomously through
corridors and intersections.

The remainder of the paper is organized as follows. In Sec.
II, we formally define MDP, probability measure over paths
of MDP, and PCTL. In Sec. III, we formulate the problem
and state our approach. The MDP control synthesis from
PCTL formulas is discussed in Sec. IV. The results of the
simulation case studies are included in Sec. V. The paper
concludes with final remarks in Sec. VI.
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Fig. 1. A four-state MDP.

II. PRELIMINARIES

Given a set Q, let |Q| and 2Q denote its cardinality and
power set, respectively.

Definition 1 (MDP): An MDP is a tuple M =
(Q, q0, Act, Steps,Π, L) where Q is a finite set of states and
q0 ∈ Q is the initial state. Act denotes a set of actions and
Steps : Q → 2Act×Σ(Q) is a transition probability function
where Σ(Q) is the set of all discrete probability distributions
over the set Q. Π is a finite set of atomic propositions, and
L : Q → 2Π is a labeling function assigning to each state
possibly several elements of Π.
The set of actions available at q ∈ Q is denoted by A(q).
The function Steps is often represented as a matrix with
|Q| columns and

∑|Q|−1
i=0 |A(qi)| rows. For each action

a ∈ A(qi), we denote the probability of transitioning from
state qi to state qj under the action a as σqi

a (qj) and the
corresponding probability distribution function as σqi

a . Each
σqi
a corresponds to one row in the matrix form of Steps.
To illustrate these definitions, a simple MDP is shown in

Fig. 1. The actions available at each state are A(q0) = {a1},
A(q1) = {a2, a3, a4}, and A(q2) = A(q3) = {a1, a4}. The
labels are L(q0) = {Init}, L(q2) = {R2}, and L(q3) =
{R3}. The matrix representation of Steps is given by

Steps =

q0; a1

q1; a2

q1; a3

q1; a4

q2; a1

q2; a4

q3; a1

q3; a4



0 1 0 0
0 0.1 0.5 0.4
0 0 0.56 0.44

0.8 0.2 0 0
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 .

A. Paths, Control Policies, and Probabilistic Measures
A path ω through an MDP is a sequence of states ω =

q0q1 . . . qiqi+1 . . . where each transition is induced by a
choice of action at the current step i ≥ 0. We denote the
ith state of a path ω by ω(i) and the set of all finite and
infinite paths by Pathfin and Path, respectively.

A control policy is a function µ : Pathfin → Act. That
is, for every finite path, a policy specifies the next action to
be applied. If a control policy depends only on the last state
of ωfin, it is called a stationary policy. Under a policy µ,
an MDP becomes a Markov chain, Dµ. Let Pathµ ⊆ Path
and Pathfinµ ⊆ Pathfin denote the set of infinite and finite
paths that can be produced under µ. Since there is a one-
to-one mapping between Pathµ and the set of paths of Dµ,
using standard techniques for Markov chains, a σ-algebra
and probability measure over Pathµ can be defined [17].

B. Probabilistic Computation Tree Logic (PCTL)

We use PCTL [6] , a probabilistic extension of CTL that
includes a probabilistic operator P , to write specifications of
MDP. The syntax of PCTL is defined as follows:

φ ::= true | π | ¬φ | φ ∧ φ | P./ p[ψ] state formulas
ψ ::= Xφ | φU≤k φ | φU φ path formulas

where π ∈ Π is an atomic proposition, ./∈ {≤, <, ≥, >
}, p ∈ [0, 1], and k ∈ N. State formulas φ are evaluated over
states of MDP while path formulas ψ are assessed over paths
and only allowed as the parameter of the P./ p[ψ] operator.
Intuitively, a state q satisfies P./ p[ψ] if pqµ (the probability of
all the infinite paths starting from q and satisfying ψ under
policy µ) is in the range ./ p. Temporal logic operators X
(“next”), U≤k (“bounded until”), and U (“until”) are allowed
in path formulas. Given �, the satisfaction relation, q � π ⇔
π ∈ L(q). For any path ω ∈ Path, ω � Xφ ⇔ ω(1) � φ.
Moreover, ω � φ1U≤kφ2 ⇔ ∃i ≤ k, ω(i) � φ2 ∧ ω(j) �
φ1∀j < i, and ω � φ1 U φ2 ⇔ ∃ k ≥ 0, ω � φ1 U≤k φ2.

III. PROBLEM FORMULATION AND APPROACH

In this paper, we consider the following problem:
Problem 1: Given a Markov decision process model M

and a PCTL specification formula φ over Π, find a control
policy that maximizes the probability of satisfying φ.

Our control synthesis algorithm takes a PCTL formula φ
and an MDPM, and returns both the optimal probability of
satisfying φ and the corresponding control policy. The basic
algorithm proceeds by constructing the parse tree for φ and
treating each operator in the formula separately. The method
of control synthesis for each temporal operator is presented in
Sec. IV-A, IV-B, and IV-C. These algorithms are inspired by
model checking [6] with a few modifications such as finding
all the satisfying actions for the “next” operator and pro-
ducing a stationary policy for the “bounded until” operator.
Moreover, we make the connection between these algorithms
and the Maximum Reachability Probability problem [19].
In Sec. IV-D, we show how to construct a control strategy
from a PCTL formula with nested P-operators. It should be
noted that in general we are interested in finding the control
policy that produces the maximum/minimum probability of
satisfying the given specification. Such PCTL formulas have
the form Pmax=?[ψ] and Pmin=?[ψ]. For PCTL formulas
of the form P./p[ψ], we still use the algorithms that return
optimal policies (with the exception of the case discussed
in Sec. IV-D). For these formulas, we first find the control
policy µ and then check whether pqµ(φ) satisfies the bound ./
p. For the case ./∈ {>,≥}, we use the policy that maximizes
the probability of satisfaction. Similarly, we determine the
policy corresponding to minimum probability if ./∈ {<,≤}.

IV. PCTL CONTROL SYNTHESIS

A. Next Operator

For the “next” temporal operator, we present two algo-
rithms. One finds the optimal control strategy, and the other
determines all the satisfying policies. For PCTL formulas
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that include only one P-operator, the optimal control strategy
algorithm is always used. For nested P-operator formulas,
both algorithms are used. This becomes clear in Sec. IV-D.

1) Next (Optimal) - φ = Pmax=?[Xφ1]: For this
operator, we need to determine the action that pro-
duces the maximum probability of satisfying Xφ1 at
each state. Thus, we only need to consider the immedi-
ate transitions at each state. Hence, the problem reduces
to: x∗qi

= maxa∈A(qi)

∑
qj∈Sat(φ1) σ

qi
a (qj), µ∗(qi) =

arg maxa∈A(qi)

∑
qj∈Sat(φ1) σ

qi
a (qj), where x∗qi

denotes the
optimal probability of satisfying φ at state qi ∈ Q, Sat(φ1)
is the set of states that satisfy φ1, and µ∗ represents the
optimal policy.

To solve the above maximization problem, we define a
state-indexed vector φ1 with entries φ1(qi) equal to 1 if qi �
φ1 and 0 otherwise. To compute the maximum probability,
first, the matrix Steps is multiplied by φ1. The result is a
vector whose entries are the probabilities of satisfying Xφ1

where each row corresponds to a state-action pair. Then, the
maximization operation is performed on this vector which
selects the maximum probabilities and the corresponding
actions at each state. The resulting control strategy is station-
ary, and the complexity of achieving it is one vector-matrix
multiplication followed by a one dimensional search.

To demonstrate this method, consider the MDP in Fig. 1
and the formula φ = Pmax=?[X(¬R3)]. The property (¬R3)
is satisfied at states q0, q1, and q2; thus, ¬R3 = (1 1 1 0)T .
Then, Steps ·¬R3 = (1 0.6 0.56 1 1 1 0 1)T . Thus, xqi = 1
for i = 0, . . . , 3 and the optimal stationary policy is µ∗(q0) =
a1, µ∗(q1) = a4, µ∗(q2) = a1 or a4, and µ∗(q3) = a4.

2) Next (All) - P./p[Xφ1]: Here, we are interested in
finding all the policies that satisfy the formula. The algo-
rithm is the same as the one for Next Optimal up to the
maximization step. After obtaining the vector Steps · φ1,
which includes the probabilities of satisfying Xφ1 for each
state-action pair, we eliminate the state-action pairs whose
probabilities are not in the range of ./ p. This operation
determines all the states, actions, and their corresponding
probabilities that satisfy P./p[Xφ1]. It should be noted that
this algorithm is only used in nested formulas (Sec. IV-D).

To illustrate this algorithm, consider the example in Sec.
IV-A.1 with the formula φ = P≥0.6[X(¬R3)]. All satisfying
actions at states q0, q1, q2, and q3 are {a1}, {a2, a4},
{a1, a4}, and {a4} respectively.

B. Bounded Until Operator
For this operator, we also introduce two algorithms: opti-

mal and stationary. The optimal algorithm produces a history
dependent control policy. The stationary algorithm results in
a stationary policy and is used only for nested formulas.

1) Bounded Until (Optimal) - φ = Pmax=?[φ1U≤kφ2]:
To find the probabilities pqmax(φ1U≤kφ2), we first group the
MDP states into three subsets: states that always satisfy the
specification Qyes, states that never satisfy the specification
Qno, and the remaining states Q?.

Qyes = Sat(φ2), Qno = Q \ (Sat(φ1) ∪ Sat(φ2)),
Q? = Q \ (Qyes ∪Qno).

Trivially, the probabilities of the states in Qyes and in Qno

are 1 and 0 respectively. The probabilities for the remaining
states qi ∈ Q? are defined recursively. If k = 0, then
pqi
max(φ1U≤kφ2) = 0 ∀qi ∈ Q?. For k > 0,

xkqi
= max
a∈A(qi)

∑
qj∈Q?

σqi
a (qj)xk−1

qi
+

∑
qj∈Qyes

σqi
a (qj)∀qi ∈ Q?

µ∗
k

(qi) = arg max
a∈A(qi)

∑
qj∈Q?

σqi
a (qj)xk−1

qi
+

∑
qj∈Qyes

σqi
a (qj)

for all qi ∈ Q?, where xkqi
and µ∗

k

(qi) denote the probability
of satisfying φ and the corresponding optimal action at state
qi ∈ Q? at time step k respectively.

Thus, the computation of pqmax(φ1U≤kφ2) can be carried
out in k iterations, each similar to the process described
for Optimal Next (Sec. IV-A.1). The additional step here
is that after each maximization operation, the entries of the
resultant vector corresponding to states Qyes and Qno are
replaced with 1 and 0 respectively. This step is performed
to guarantee that the state-indexed vector always carries the
correct probabilities.The complexity of this algorithm is k
matrix-vector multiplication and k maximization operations.
The overall policy is time dependent. That is for each time
index k, an action is assigned to each satisfying state.

To illustrate the optimal algorithm for “bounded until”,
again consider the MDP in Fig. 1 and the PCTL formula φ =
Pmax=?[trueU≤2R3]. By inspection, we have Qyes = {q3},
Qno = ∅, and Q? = {q0, q1, q2}. By following the method
presented above, we compute x1 = (0 0.44 0 1)T and
µ∗

1
(q1) = a3. This means that q1 satisfies φ with probability

0.44 and action a3 in one step. Another iteration results in
x2 = (0.44 0.444 0 1)T and µ∗

2
(q0) = a1 and µ∗

2
(q1) =

a2. Thus, q1 satisfies the formula with maximum probability
of 0.444 in two steps or less with selection of actions a2 and
a3 in the first and second time steps, respectively. Moreover,
q0 satisfies the formula with probability 0.44 in two steps
with the selection of actions a1 at q0 in the first time step
and a3 at q1 in the second time step.

2) Bounded Until (Stationary) - φ = P./p[φ1U≤kφ2]:
Here, we introduce a sub-optimal algorithm for U≤k operator
which produces a stationary control policy. This algorithm
is used for control synthesis of nested formulas where a
stationary policy is required.

The algorithm is essentially the same as the one for
Optimal Bounded Until with the exception that the optimal
actions determined at each iteration are fixed for the remain-
ing iterations. For instance, consider the example in Sec.
IV-B.1 with the formula P>0.4[trueU≤2R3]. After the first
iteration, we find x1 = (0 0.44 0 1)T and µ(q1) = a3.
For the next iteration, we only use action a3 at q1 which
results in x2 = (0.44 0.44 0 1)T with policy µ(q0) = a1 and
µ(q1) = a3. Thus, the states q0 and q1 satisfy the formula
with the stationary policy µ(q0) = a1 and µ(q1) = a3.

For PCTL formulas of the form φ = P./p[φ1U≤kφ2], it
is theoretically possible to find all the satisfying policies.
This becomes important for completeness of the solution
for nested formulas (Sec. IV-D). However, it only can be
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achieved by enumerating every satisfying path, which leads
to exponential growth in the complexity of the algorithm.
Thus, for large MDPs and time index k, finding all the
satisfying policies might be impracticable. For this reason,
we only use the optimal and stationary algorithms for U≤k.

C. Until Operator - φ = Pmax=?[φ1Uφ2]

To solve for probabilities pqmax(φ1Uφ2), again we begin
by dividing Q into the three subsets Qyes, Qno, and Q?. The
computation of optimal probabilities for the states in Q? is
in fact the Maximal Reachability Probability Problem [19].
Thus, we can compute these probabilities by solving the fol-
lowing linear programming problem. Minimize

∑
qi∈Q? xqi

subject to: xqi
≥

∑
qj∈Q? σqi

a (qj) . xqj
+

∑
qj∈Qyes σqi

a (qj),
for all qi ∈ Q? and (a, σa) ∈ Steps(qi).

The problem admits a unique optimal solution, and the
stationary policy that gives rise to this optimal solution can
be identified. The above linear programming problem can
be solved using classical techniques such as the Simplex
method, ellipsoid method, or value iteration. The complexity
is polynomial in the size of the MDP.

To illustrate this method, again consider the MDP in Fig. 1
with the specification Pmax=? [¬R3 U R2]. Since state q2 is
the only one satisfying the formula with probability one and
q3 is the only one that fails the formula with probability one,
we have the Qyes = {q2}, Qno = {q3}, and Q? = {q0, q1}.
From this we have that xq2 = 1 and xq3 = 0. The solution
to the linear optimization problem can be found to be xq0 =
xq1 = 0.56 under the policy µ(q0) = a1 and µ(q1) = a3.

D. Nesting P-operators

Since each probabilistic operator is a state formula itself,
it is possible to combine these operators by nesting one
inside another. Such a combination of P-operators allows
more expressivity in PCTL formulas.

It should be noted that we require all inner P-operators to
be of the form P./p[ψ] as opposed to being Pmax=?[ψ]. This
is required because each nested probabilistic operator needs
to identify a set of satisfying states. Generally, the nested
formulas can be written in one of the following forms:

φ = Pmax=?[XφR], (1)
φ = Pmax=?[φLU≤kφR], (2)
φ = Pmax=?[φLUφR], (3)

where φR in formula (1) and at least one of φL and φR in
formulas (2) and (3) include a P-operator. Subscripts L and
R stand for to the Left and Right of the temporal operator.

Our method of producing a control strategy treats each
probabilistic operator individually and proceeds as follows.
First, we find the set of initial states QφR

, from which
φR is satisfied. The corresponding control policy µφR

is
also determined. This is achieved by applying the optimal
algorithms shown in Sec. IV-A.1, IV-B.1, and IV-C.

Next, φL is considered. The set of initial states QφL
and

the corresponding control policy µφL
are determined. For φL,

it is desired to find all the satisfying stationary policies. This

is important for completeness of our solution. The PCTL
formulas (2) and (3) require to reach a state in QφR

only by
going through QφL

states. Thus, at QφL
states, all and only

the actions that satisfy φL are to be considered. Nevertheless,
finding all satisfying policies is only feasible for the temporal
operator X (Sec. IV-A.2). For operators U≤k and U in φL,
we use the stationary and optimal algorithms shown in Sec.
IV-B.2 and IV-C, respectively, to find µφL

.
Then, we construct a new MDP M′ ⊆M by eliminating

the actions that are not allowed by µφL
from states QφL

. In
other words, we remove all the action choices at states QφL

except those allowed by µφL
in M. This step is performed

to ensure the satisfaction of the path formula in φL. If this
process results in states with no outgoing transition (blocking
states), a self-transition is added to each of these states. This
guarantees a new non-blocking MDP. In the last step, the
optimal control algorithm is applied for the outer-most P-
operator on the modified MDPM′ to find the optimal control
policy µφ and its corresponding probability value p0 from q0.

It should be noted that, by the nature of the PCTL formu-
las, the execution of the optimal policy µφ only guarantees
satisfaction of a formula φ which specifies that the system
should reach a state in QφR

through the states in QφL
. Hence,

the path formula specified in φR is not satisfied by µφ unless
µφR

is also executed. To ensure the execution of all the
specified tasks in φ and φR, we construct a history dependent
control policy of the following form:
µ : “Apply policy µφ until a state in QφR

is reached. Then,
apply policy µφR

.”
For the same reason, the returned probability value p0 is

the maximum probability of satisfying φ (reaching a state in
QR through states of QL) under µφ from initial state q0. The
probability of satisfying the path formula in φR from q0 by
executing policy µ cannot be found directly because it is not
known which state in QR is reached first. However, since
the probability of satisfying φR from each state in QR is
available, a bound on the probability of satisfying φ and then
φR from q0 can be defined. The lower and upper limits of
this bound are p0p

min
φR

and p0p
max
φR

, respectively, where pminφR

and pmaxφR
denote the minimum and maximum probabilities

of satisfying φR from QφR
respectively.

To illustrate the control synthesis algorithm of nested
formulas, consider again the MDP shown in Fig. 1 with
the formula Pmax=?[P≤0.50[X R2]U≤2 R3]. Since there is
no P-operator on the right side of U≤2, the algorithm
proceeds with finding the all initial states and actions for
φL = P≤0.55[X R2]. By applying the Next All algorithm
(Sec. IV-A.2), we find the satisfying actions {a1} at q0,
{a2, a4} at q1, {a4} at q2, and {a1, a4} at q3. Next, a
new MDP M′ is constructed by eliminating action a3 at
q1 and a1 at q2 which do not satisfy φL. By performing the
optimal control algorithm for “bounded until” (Sec. IV-B.1)
on M′, we find the maximum probability of satisfying φ
to be x̄1 = (0 0.4 0 1)T with the policy µ1(q1) = a2 and
x̄2 = (0.4 0.44 0 1)T with µ2(q0) = a1 and µ2(q1) = a2.
Thus, the maximum probability of satisfying φ from initial
states q0 is 0.4 with the policy µ(q0) = a1 and µ(q1) = a2.
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Fig. 2. Schematic representation of an indoor environment. Each region
has a unique identifier (C1, . . . , C13 for corridors and I1, . . . , I8 for
intersections, respectively). The properties satisfied at the regions are shown
between curly brackets inside the regions: S = Safe, R = Relatively safe, U
= Unsafe, M1 = Medical supply type 1, M2 = Medical supply type 2, D1 =
Destination 1, and D2 = Destination 2.

E. Correctness, Completeness, and Complexity

Our solution to Problem 1 is correct by construction but
conservative for nested formulas. As mentioned above, for
completeness of the solution, we need to consider all the
actions that satisfy φL at each state of QφL

. However, due to
computational complexity, we use the stationary and optimal
algorithms for U≤k and U operators, respectively, which
return only the optimal actions as opposed to all satisfying
actions. Hence, our solution for the formulas whose φL
include “bounded until” or “until” operators is not complete.
In fact, for these formulas, the algorithm may return a
suboptimal policy or may not find a solution at all even
though one might exist.

Nevertheless, our solution for the group of nested PCTL
formulas where φL does not include U≤k or U is complete.
This group of specifications is useful in robotic applications.
In these applications, tasks such as “Eventually reach A and
then reach B while always avoiding C” or “Eventually reach
A through regions from which the probability of convergence
to C is less than 0.30” are of interest.

The overall time complexity for PCTL control synthesis
for an MDP from a formula φ is linear in the size of the
formula and polynomial in the size of the model. That is
because each operator is treated separately. Moreover, the
most expensive case is the “until” operator, for which we
must solve a linear optimization problem of size of the
model, |M|. Using, for example, the ellipsoid method, this
can be done in polynomial time. For MDPs, we define the
size of the model to be

∑
qi∈Q |A(qi)|.

V. CASE STUDY

In this section, we apply the method described above to
the provably-correct deployment of a mobile robot with noisy
sensors and actuators using a simulator.

For this problem, we considered the environment whose
topology is schematically shown in Fig. 2. It consists of

Fig. 3. Simulation snapshots. The different circles around the robot
represent different ”zones” in which different emergency controllers are
activated. The yellow dots represent the laser readings used to define the
target angle. (a) The robot centers itself on a stretch of corridor by using
FollowRoad; (b) The robot applies GoRight in an intersection; (c) The robot
applies GoLeft.

corridors of various widths and lengths (C1, . . . , C13) and
intersections of several shapes and sizes (I1, . . . , I8). There
are six properties of interest about the regions: Safe (S),
Relatively safe (R), Unsafe (U), Medical supply 1 and 2 (M1

and M2), and Destinations 1 and 2 (D1 and D2).
For deployment of the robot, we first considered a set of

feedback control primitives (actions) - FollowRoad, GoRight,
GoLeft, and GoStraight for the robot. The controller Fol-
lowRoad is only available within the corridors. At 4-way
intersections, controllers are GoRight, GoLeft, and GoS-
traight while at 3-way intersections only GoRight and GoLeft
controllers are available. Due to the presence of input-output
noise, the outcome of each control primitive is characterized
probabilistically. Assuming that the robot can determine ex-
actly its current region in the environment, then the primitives
and the transition probabilities yield an MDP model of the
motion of the robot in the environment. (see [17] for a
detailed discussion on creating such models).

A. Construction of the MDP model

Each state of the MDP is a collection of two adjacent re-
gions (a corridor and an intersection). Through this pairing of
regions, we achieved Markovian property [17]. The resulting
MDP has 52 states. The set of actions available at a state is
the set of controllers available at the last region in the set of
regions corresponding to the state. The set of properties of
the MDP was defined to be Π = {S,R,U,M1,M2,D1,D2}.
Each state of the MDP was mapped to the set of properties
that were satisfied at the second region of the state (Fig. 2).

To obtain transition probabilities, we used our RIDE
simulator (Fig. 3). The simulator mimics the motion of
an iRobot Create platform with a laser range finder and
RFID reader in an indoor environment. It includes models of
sensor and actuator noise which has been validated against
the physical system [17]. We performed a total of 500
simulations for each controller available in each MDP state.
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In each trial, the robot was initialized at the beginning of
the first region of each state. If this region was a corridor,
then the FollowRoad controller was applied until the system
transitioned to the second region of the state. If the first
region was an intersection then the controller most likely to
transition the robot to the second region was applied. Once
the second region was reached, one of the allowed actions
was applied and the resulting transition was recorded. The
results were then compiled into the transition probabilities.

B. Case Studies
Consider the RIDE configuration and the following three

motion specifications:
Spec 1: “Reach Destination 1 by always avoiding

Unsafe regions.”
Spec 2: “Reach Destination 1 by going through the

regions from which the probability of converging to a Rel-
atively safe region is less than 0.50 and always avoiding
Unsafe regions.”

Spec 3: “Reach Destination 1 by avoiding Unsafe and
Relatively safe regions if Medical supply 1 is not available at
such regions, and then reach Destination 2 through regions
that are Safe or at which Medical supply 2 is available with
probability greater than or equal to 0.50.”
Given that we are interested in the policy that produces the
maximum probability of satisfying each specification, Spec
1, 2, and 3 translate naturally to the PCTL formulas φ1, φ2,
and φ3, respectively, where

φ1 : Pmax=? [¬UU D1 ]
φ2 : Pmax=? [(P<0.50[X R] ∧ ¬U)U D1 ]
φ3 : Pmax=? [¬U ∧ ¬(R ∧ ¬M1)U (D1 ∧

P≥0.50[(S ∨M2)U D2]) ] (4)

Assuming that the robot begins in C1-I2 (so that physically
it is in I2 having come from C1), we used the computational
framework described in this paper to find control strategies
maximizing the probabilities of satisfying the above specifi-
cations. The maximum probabilities for Spec 1 and 2 were
0.862 and 0.152 respectively. The maximum probability of
Spec 3 was 0.456, and the probability of reaching the second
destination determined in this specification was 0.259. It
should be noted that we were able to produce an exact num-
ber instead of a bound for the probability of satisfaction of
the nested formula (4) because even though two states satisfy
D1 (I8-C13 and I7-C13) only one (I8-C13) is reachable from
the initial state. To confirm these predicted probabilities, we
performed 500 simulations for each of the control strategies.
The simulations showed that the probabilities of satisfying
φ1 and φ2 were 0.838 and 0.118 respectively. The rate of
successful runs for the strategy obtained from φ3 was 0.435
to reach destination 1 and 0.244 to reach destination 1
and then 2. The small discrepancy between the theoretical
values and simulation results is likely due to remaining non-
Markovian behavior of the transitions.

Movies showing the simulation trials obtained by applying
the control strategies resulted from Spec 1, 2, and 3 are
available for download from [18].

VI. CONCLUSION

We presented a computational framework for control
synthesis for an MDP that maximizes the probability of
satisfying a Probabilistic Computation Tree Logic (PCTL)
formula. The approach provides a rich specification language
and probabilistic guarantees on the system performance.
The method was demonstrated through simulations of a
mobile robot being deployed from PCTL specifications in
a partitioned environment.
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