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Abstract— We study the problem of feedback control for a
class of non-linear hybrid systems characterized by rectangular
invariants and multi-affine dynamics, which we call Rectangu-
lar Multi-Affine Hybrid Systems. The goal is to find initial
states and feedback control strategies so that all trajectories
of the closed loop system satisfy arbitrary specifications given
as temporal logic formulas over the set of discrete states of
the system. Sufficient conditions for solvability are obtained
in terms of sets of linear inequalities. If these conditions are
satisfied, a control strategy is automatically constructed. The
computation consists of polyhedral set operations, construction
of Büchi automata from linear temporal logic formulas, and
searches on graphs.

I. INTRODUCTION

Temporal logics [6] were developed for specifying the
correctness of digital circuits and computer programs. How-
ever, due to their resemblance to natural language, their
expressivity, and the existence of off-the-shelf algorithms for
model checking, temporal logics have the potential to impact
several other areas of engineering. Analysis of systems
with continuous dynamics based on qualitative simulations
and temporal logic was proposed in [18], [7]. Control of
linear systems from temporal logic specifications has been
considered in both discrete [19] and continuous time [15].
The use of temporal logic for task specification and controller
synthesis in robotics has been advocated in [8], [16]. In the
area of systems biology, the qualitative behavior of genetic
circuits can be expressed in temporal logic, and model
checking can be used for analysis, as suggested in [2].

Hybrid systems combine continuous and discrete dynam-
ics and have been found to be very useful in modelling
processes from various areas including automated high-
way systems, embedded automotive and avionic controllers,
manufacturing systems, real-time communication networks,
cooperative robotics, and molecular networks. Such systems
are characterized by a set of continuous dynamics, a set of
predicates over the continuous state space giving invariants
and guards, and a set of maps modelling transitions and
resets. The discrete states can be seen as a set of symbols
labelling the invariants. The semantics of such systems can
be conceptually defined as follows: the continuous state of
the system evolves along a given vector field as long as the
corresponding invariant is true, and no guard is hit. When
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this happens, a transition occurs to another invariant (discrete
state), possibly with an associated reset of the continuous
state in the new invariant (see [1] for detailed definitions).

In this paper, we focus on Rectangular Multi-Affine Hy-
brid Systems (RMAHS), which have (multi-dimensional)
rectangular invariants and multi-affine (i.e., affine in each
continuous state component) vector fields. This class of
dynamics is rather large, and includes the celebrated Euler,
Volterra and Lotka-Volterra equations, attitude and velocity
control systems for aircraft and underwater vehicles [3], and
models of genetic regulatory networks [4]. We assume the
guards are given by the facets of the invariants and the
resets are arbitrary. For such systems, we consider control
specifications given as arbitrary LTL−X formulas over the
discrete states of the system. Intuitively, such specifications
are logical and temporal statements about the reachability of
the invariants by the continuous trajectories of the system.
We derive sufficient conditions for the existence of feedback
control strategies in terms of sets of linear inequalities. If
these conditions are satisfied, a control strategy in the form
of a multi-affine state feedback controller is automatically
constructed. The computation consists of polyhedral set oper-
ations, construction of Büchi automata from linear temporal
logic formulas, and searches on graphs.

This paper is related to [11], [12], [5]. The results on
facet reachability for simplices by trajectories of affine vector
fields derived in [11] are used to solve a very similar problem
to the one we consider in this paper - the difference is that
the invariants and guards of the hybrid system are simplices,
the dynamics are affine, and the specifications are simpler,
in the form of reach-avoid problems. The starting point for
this paper is [5], where the problem of reachability of a
facet of a rectangle by the trajectories of a continuous multi-
affine system was studied. In order to deal with the more
general problem formulated here, in this paper we present
an extension of the main reachability theorem from [5].

Section II provides some preliminaries necessary through-
out the paper. The problem is formulated in Section III. In
Section IV we derive sufficient conditions that guarantee that
all trajectories of a multi-affine system leave a rectangle
through one or more specified facets. The control strategy
providing a solution to the main problem is presented in
Section V, and an example is presented in Section VI. We
conclude with final remarks in Section VII.

II. PRELIMINARIES

A. Transition systems and linear temporal logic

A transition system is a tuple T = (Q, Q0,→,Π,�),
where Q is a set of states, Q0 ⊆ Q is a set of initial states,
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→⊆ Q×Q is a transition relation, Π is a finite set of atomic
propositions, and �⊆ Q×Π is a satisfaction relation. For an
arbitrary proposition π ∈ Π, we define [[π]] = {q ∈ Q|q �
π} as the set of all states satisfying it. Conversely, for an
arbitrary state q ∈ Q, let Πq = {π ∈ Π | q � π}, Πq ∈ 2Π,
denote the set of all atomic propositions satisfied at q. A
trajectory or run of T starting from q is an infinite sequence
r = r(1)r(2)r(3) . . . with the property that r(1) = q,
r(i) ∈ Q, and (r(i), r(i+1)) ∈→, for all i ≥ 1. A trajectory
r = r(1)r(2)r(3) . . . defines a word w = w(1)w(2)w(3) . . .,
where w(i) = Πr(i).

Next, we give a brief review of the propositional linear
temporal logic LTL−X [6]. A linear temporal logic LTL−X

formula over Π is recursively defined as follows: (i) Every
atomic proposition πi, i = 1, . . . , K is a formula, and (ii) If
φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, φ1Uφ2 are also
formulas. The semantics of LTL−X formulas are given over
words of transition system T . Formally, the satisfaction of
formula φ at position i ∈ N of word w, denoted by w(i) � φ,
is defined recursively as follows: (1) w(i) � π if π ∈ w(i),
(2) w(i) � ¬φ if w(i) � φ, (3) w(i) � φ1∨φ2 if w(i) � φ1 or
w(i) � φ2, and (4) w(i) � φ1Uφ2 if there exist a j ≥ i such
that w(j) � φ2 and for all i ≤ k < j we have w(k) � φ1.
Finally, a word w satisfies an LTL−X formula φ, written as
w � φ, if w(1) � φ.

The symbols ¬ and ∨ stand for negation and disjunction.
The Boolean constants � and ⊥ are defined as � = π ∨¬π
and ⊥ = ¬�. The other Boolean connectors ∧ (conjunction),
⇒ (implication), and ⇔ (equivalence) are defined from ¬
and ∨ in the usual way. The temporal operator U is called
the until operator. Formula φ1Uφ2 intuitively means that
(over a word) φ2 will eventually become true and φ1 is true
until this happens. Two useful additional temporal operators,
”eventually” and ”always” can be defined as ♦φ = �Uφ
and �φ = φU⊥, respectively. Formula ♦φ means that φ
becomes eventually true, whereas �φ indicates that φ is true
at all positions of w. More expressiveness can be achieved by
combining the temporal operators. Examples include �♦φ
(φ is true infinitely often) and ♦�φ (φ becomes eventually
true and stays true forever).

B. Rectangles and multi-affine functions

For N ∈ N, an N -dimensional rectangle RN (a, b) in the
Euclidean space R

N is characterized by two vectors a =
(a1, . . . , aN ) and b = (b1, . . . , bN ) with the property that
ai < bi for all i = 1, . . . , N :

RN (a, b) =
∏N

i=1[ai, bi] =
{x ∈ R

N | ∀i ∈ {1, . . . , N} : ai ≤ xi ≤ bi}. (1)

Let VN (a, b) =
∏N

i=1{ai, bi} be the set of vertices of
RN (a, b), and FN (a, b) the set of facets of RN (a, b).
FN (a, b) has 2N elements: for each i ∈ {1, . . . , N} the
intersections of RN (a, b) with the hyperplanes xi = ai or
xi = bi are facets of RN (a, b), with normal vectors −ei

and +ei respectively, pointing out of the rectangle. Here

e1, . . . , eN denote the standard basis of R
N . For any facet

F ∈ FN (a, b), V(F ) denotes the set of vertices of F .
Definition 1: A multi-affine function h : R

N −→ R
q (with

N, q ∈ N), is a function that is affine in each of its variables,
i.e. h is of the form

h(x1, . . . , xN ) =
∑

i1,...,iN∈{0,1}
ci1,...,iN

xi1
1 · · ·xiN

N ,

with ci1,...,iN
∈ R

q for all i1, . . . , iN ∈ {0, 1}, and using the
convention that if ik = 0, then xik

k ≡ 1.
Multi-affine functions on multi-dimensional rectangles sat-

isfy the following properties ([5]):
(i) (Multi-affine functions are uniquely determined by their

values at the vertices of a multi-dimensional rectangle)
For any function g : VN (a, b) −→ R

q there exists
a unique multi-affine function h : R

N −→ R
q with

the property that h(v) = g(v) for all v ∈ VN (a, b).
In particular, if ξk : VN (a, b) −→ {0, 1} denotes the
indicator function for the k-th component of a vertex v,
i.e. ξk(v) = 0 if vk = ak, and ξk(v) = 1 if vk = bk,
then h is given by

h(x1, . . . , xN ) =
∑

v∈VN (a,b)

∏n
k=1(

xk−ak

bk−ak

)ξk(v) (
bk−xk

bk−ak

)1−ξk(v)

· g(v).
(2)

(ii) In every point x ∈ RN (a, b) the value h(x) of a multi-
affine function is a convex combination of the values
{h(v) | v ∈ VN (a, b)}. Furthermore, if x belongs to a
face of RN (a, b), then h(x) is a convex combination of
the values of h at the vertices of that face.

III. PROBLEM FORMULATION

Definition 2: A Rectangular Multi-Affine Hybrid System
(RMAHS) is a tuple

H = (Q, X0, T, N, Inv, G, r, S, U) (3)

where Q is a finite set of discrete states (or modes), T ⊆
Q × Q is a set of discrete transitions, N : Q → N is
a map giving the dimension Nq of the continuous state
in each mode q, Inv : Q → 2R

Nq
is the invariant map

defined as Inv(q) = RNq
(aq, bq),

⋃
q∈Q Inv(q) is the set

of continuous states, X =
⋃

q∈Q q × Inv(q) is the total
hybrid state space. G is a guard which associates a subset
of FNq

(aq, bq) to each transition (q, q′) ∈ T . r is a reset
map r(q,q′) : RNq

(aq, bq) → RNq′ (aq′ , bq′). Finally, S is an
assignment of control systems to each invariant set in the
form

Sq(xq) = hq(xq) + Bqu, (4)

where hq : R
Nq → R

Nq is multi-affine, Bq ∈ R
Nq×m, and

u ∈ U , where U is a polytope in R
m capturing the control

bounds. The continuous evolution of the system in each Nq-
dimensional rectangle RNq

(aq, bq) is given by

ẋq(t) = hq(xq(t)) + Bqu(t), xq(t0) = x0
q (5)

In Definition 2, we assume that for every mode q, the
guard sets consist of facets of the rectangle Inv(q), in such
a way that the guard sets cover the boundary of the rectangle
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and they do not overlap. Also, we assume that, through the
reset map r(q,q′), the initial state x0

q′ in the new mode q′

is uniquely determined by the final continuous state in the
previous mode q. Since the explicit form of these reset maps
does not play a role in the rest of the paper, they are not
specified any further.

The semantics of the hybrid system in Definition 2 are
given by its trajectories (q, xq) as continuous time evolves.
Explicitly, the system starts at time 0 from any initial state
(q0, x

0
q0

) ∈ X0 and evolves in RNq0
(aq0 , bq0) along the

vector field (5) with q = q0 until a guard is hit. If we denote
this guard by G(q0, q1), then the discrete transition (q0, q1)
is taken, the continuous state is reset to x0

q1
∈ RNq1

(aq1 , bq1)
in accordance to r(q0,q1), and the procedure is reiterated. In
this paper we are only interested in the discrete part of the
trajectory:

Definition 3: A word generated by a trajectory (q, xq(t)),
q ∈ Q, t ≥ 0 of H starting from (q0, x

0
q0

) is an infinite
sequence w = w(1)w(2), . . . satisfying w(i) ∈ Q for all
i = 1, 2, . . . and constructed inductively by the following
three rules: (1) w(1) = q0, (2) a symbol w(i + 1) �= w(i),
i ≥ 1 is added to the sequence if (w(i), w(i + 1)) ∈ T
and the continuous trajectory xw(i) initialized at x0

w(i) hits
the guard G(w(i), w(i + 1)) in finite time, without crossing
other facets first, (3) an infinite number of symbols w(i),
i ≥ 1 is added to the sequence if the continuous trajectory
xw(i) initialized at x0

w(i) stays in Inv(w(i)) for all future
times (without crossing any of the guards G(w(i), q), with
(w(i), q) ∈ T ).

Informally, by Definition 3, the word generated by a
trajectory of H is the enumeration of the modes reached
by the trajectory, with infinitely many repetitions of a mode
if that mode is reached and then never left.

Definition 4: The hybrid system H from Definition 2
satisfies an LTL−X formula φ over Q if and only if all the
words produced by all its trajectories satisfy the formula.

Problem 1: For an arbitrary LTL−X formula φ over Q,
find a set of initial states X0 and a feedback control strategy
u ∈ U so that the closed loop hybrid system H satisfies
formula φ.

The feedback control strategy will consist of an as-
signment of multi-affine state feedback controllers to each
rectangle, with the possibility that more than one feedback
controller is assigned to a given rectangle.

The solution to Problem 1 is presented in the next two
sections. In Section IV, we focus on one mode, and derive
sufficient conditions that guarantee that all trajectories of a
multi-affine system leave the state rectangle through one or
more a priori specified facets 1. In the hybrid system H ,
this corresponds to the enabling of a guard corresponding to
a transition. These conditions will lead in Section V to the
construction of a generator transition system, with the prop-
erty that all its words can be produced by H , independent of
the value of the initial state in an invariant, and independent

1The results of this section are an extension of our previous work [5], in
which we derived sufficient conditions for control to a facet. They may be
considered as generalizations of the results in [11] to the multi-affine case.

of the reset maps. A procedure very similar to LTL model
checking will be used on the generator transition system to
find runs satisfying the formula. These runs will eventually
generate the feedback control strategy at the end of Section
V.

IV. CONTROL-TO-FACET PROBLEMS

We focus on one mode q, and consider the multi-affine
system

ẋ(t) = h(x(t)) + Bu(t), x(t0) = x0 ∈ RN (a, b), (6)

on the multi-dimensional rectangle RN (a, b), and with input
u ∈ U . To limit the number of possible transitions from mode
q to other modes, a feedback should be chosen in such a way,
that the continuous state can only leave RN (a, b) through a
facet that belongs to a specific subset E of the set FN (a, b)
of facets of RN (a, b), called the admissible exit facets.

Problem 2 (Control-to-facet): Let E ⊂ FN (a, b). Find an
admissible multi-affine feedback k : RN (a, b) −→ U such
that the multi-affine closed-loop system

ẋ(t) = h(x(t)) + Bk(x(t)), x(0) = x0, (7)

satisfies the following property: for every x0 ∈ RN (a, b),
solution x(t, x0) of (7) leaves rectangle RN (a, b) in finite
time by crossing one of the facets F ∈ E . If E = ∅, all
solutions x(t, x0) of (7) should remain in RN (a, b) for all
t ≥ 0.

Lemma 1: [5] Solutions x(t, x0) of closed-loop system
(7) can not leave RN (a, b) by crossing one of the facets
in FN (a, b)\E if and only if

∀F ∈ FN (a, b)\E , ∀x ∈ F : nT
F (h(x)+Bk(x)) ≤ 0, (8)

with nF the unit outward normal vector of facet F (i.e., apart
from the sign, nF is a unit vector).

The next result provides a sufficient condition to guarantee
that all state trajectories leave the rectangle in finite time.

Lemma 2: Let ẋ = h(x) be an autonomous multi-affine
system on rectangle RN (a, b), and consider the following
claims
(i) ∃n ∈ R

N ∀x ∈ RN (a, b) : nT h(x) > 0,
(ii) For all x0 ∈ RN (a, b), trajectory x(t, x0) leaves

RN (a, b) in finite time,
(iii) ∀x ∈ RN (a, b) : h(x) �= 0.
Then (i) =⇒ (ii) =⇒ (iii).

Proof: (i) =⇒ (ii): Since RN (a, b) is a compact set, (i)
guarantees that there exists a c > 0 such that the velocity in
the direction of n is always larger than c. Hence RN (a, b)
is left in finite time.

(ii) =⇒ (iii): Suppose h(x0) = 0. Then x(t, x0) = x0 for
all t ≥ 0. This yields a contradiction.

For affine systems on polytopes, one may also prove that
(iii) =⇒ (i) (see [12]). This implication is no longer valid in
the multi-affine case, because the set {h(x) | x ∈ RN (a, b)}
is not necessarily convex.

Next, like in [5], [11], [12], [17], the conditions in Lemmas
1 and 2 are restated in terms of linear inequalities at the
vertices of the state rectangle.
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Theorem 1: Consider a multi-affine system (6) on a multi-
dimensional rectangle RN (a, b), with inputs from an input
polytope U ⊂ R

m. Let E ⊂ FN (a, b) be a set of admissible
exit facets. For every vertex v ∈ VN (a, b), let Fv = {F ∈
FN (a, b) | v ∈ V(F )} denote the set of all facets of RN (a, b)
of which v is a vertex. For all v ∈ VN (a, b) we define the
(possibly empty) input polytope

Uv := {u ∈ U | nT
F (h(v) + Bu) ≤ 0 for all F ∈ Fv\E}.

If E �= ∅, then Problem 2 is solvable if the following
conditions are satisfied:
(i) Uv �= ∅ for all v ∈ VN (a, b),

(ii) For all v ∈ VN (a, b) the input polytope Uv has a vertex
wv such that

0 �∈ Conv({h(v) + Bwv | v ∈ VN (a, b)}),
where Conv denotes the convex hull. In particular, if for all
v ∈ VN (a, b) inputs uv ∈ Uv are chosen in such a way
that 0 �∈ Conv({h(v) + Buv | v ∈ VN (a, b)}), then an
admissible multi-affine state feedback solving Problem 2 is
given by formula (2), with g(v) replaced by uv .

If E = ∅, then Problem 2 is solvable if and only if Uv �= ∅

for all v ∈ VN (a, b). In this case, every choice g(v) ∈ Uv in
formula (2) yields a multi-affine feedback solution.

Proof: (Case E �= ∅): Assume there exist uv ∈ Uv,
(v ∈ VN (a, b)), satisfying condition (ii). Let k denote the
multi-affine function (2), with g(v) replaced by uv . Then k
is an admissible multi-affine feedback, because k(v) ∈ U
for all v ∈ VN (a, b), and U is convex. Let F ∈ FN (a, b)\E .
Then for all v ∈ V(F ) we have nT

F (h(v) + Bk(v)) =
nT

F (h(v) + Buv) ≤ 0. Since the closed-loop dynamics
h(x) + Bk(x) is multi-affine, this implies that nT

F (h(x) +
Bk(x)) ≤ 0 for all x ∈ F , and the closed-loop system
cannot leave RN (a, b) by crossing facet F . Finally, since
0 �∈ Conv({h(v) + Buv | v ∈ VN (a, b)}) =: P , there exists
a hyperplane nT x = α with α > 0, that separates P and {0}.
Since the closed-loop dynamics is multi-affine, this implies
that nT (h(x) + Bk(x)) > α > 0 for all x ∈ RN (a, b).
Hence, all state trajectories leave the state rectangle in finite
time. Since facets F ∈ FN (a, b)\E cannot be crossed, the
state leaves RN (a, b) through an admissible exit facet F ∈ E .

(Case E = ∅): Sufficiency may be proved as above. For
necessity we refer to [12], where a similar proof is given for
the affine case.

Remark 1: The importance of Theorem 1 lies in the fact
that the sufficient conditions for solvability of Problem 2
can be checked in a finite number of steps, using existing
software on polyhedral sets (see e.g. [9], [14]). Furthermore,
the theorem describes a constructive method for finding an
admissible multi-affine feedback solution.

In [11], [12], the same problem has been solved for affine
systems on simplices. In this situation the conditions of
Theorem 1 turn out to be both necessary and sufficient.

V. CONTROL STRATEGY

Definition 5: The generator transition system Tg =
(Qg, Qg0,→g,Πg,�g) is defined by

• Qg = Qg0 = Q,
• For all q, q′ ∈ Q, (q, q′) ∈→g if either (q, q′) ∈ T and

there exists a solution to Problem 2 with E = G(q, q′),
or q = q′ and there exists a solution to Problem 2 with
E = ∅,

• Πg = Q and (q, q′) ∈�g if and only if q = q′.
In other words, the states of the generator transition system

Tg are the modes of H . Its set of transitions is the union of
two sets of transitions. The first set is a subset of transitions
of H for which multi-affine feedback controllers can be
constructed so that all the continuous states in the invariant
corresponding to the source discrete state can be driven to
the corresponding guard in finite time. The second set is a set
of self-transitions corresponding to the possibility of keeping
all the continuous states in the corresponding invariant for
all future times. Finally, the predicates associated with the
states are the states themselves.

In the following, we use the notation kqq′(x) to denote the
feedback controller corresponding to transition (q, q′) of Tg .

To find runs of Tg satisfying an arbitrary LTL−X formula
φ over Q, we start by translating φ into a Büchi automaton
Bφ. To this goal, we use the conversion algorithm described
in [10] and its freely downloadable implementation LTL2BA.
Then we take the (synchronous) product of Tg with Bφ

to obtain a product automaton Ag,φ [13]. We use standard
algorithms for graph traversing on Ag,φ and eventually
project back to find the desired runs of Tg . This approach
is inspired by model checking algorithms, which are used
to verify if a transition system satisfies a property expressed
in terms of LTL. The difference is that a model checker
constructs a Büchi automaton for the negation of the LTL
formula and the product automaton is checked for emptiness
(i.e. non-existence of accepted runs).

While we refer the reader to [15] for details, it is important
to note that we consider only runs of Tg that have a special
structure composed of one prefix and an infinite number of
repetitions of a suffix. Note that this is not restrictive, since
it can be proved [13] that, if there is an accepted run, then
there is at least one accepted run with the above structure. Let
rq = rq(1)rq(2)rq(3) . . ., rq(j) ∈ Q denote the nonempty
run of Tg starting from state q, i.e., rq(1) = q, q ∈ Q0, where
Q0 ⊆ Q is the set of indices of all nonempty runs. The set
Q0 is found by checking for existence of nonempty runs
from each initial state of product automaton Ag,φ. The fact
that rq has the prefix-suffix structure can be formally written
as: for any q ∈ Q0, there exists nq

p and nq
s such that for any

j > nq
p +nq

s, rq(j) = rq((j −nq
p − 1)mod nq

s +nq
p +1). nq

p

and nq
s are the number of states in prefix and suffix of rq,

respectively and thus the run rq contains at most nq
p + nq

s

different states.
In [15] we also proved that, in a run rq, q ∈ Q0 of Tg ,

none of the states can be succeeded by itself, except for
the state of a suffix of length one (case in which this state
will be infinitely repeated). More formally, each run rq =
rq(1)rq(2)rq(3) . . ., q ∈ Q0, satisfies the following property:
rq(j) �= rq(j + 1), ∀j ∈ N \ {0}, j �= nq

p + k nq
s + 1, k ∈ N.

Moreover, if nq
s ≥ 2, rq(j) �= rq(j + 1), ∀j ∈ N \ {0}.
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We are now ready to provide a solution to Problem 1. The
set of initial states is

X0 =
⋃

q∈Q0

q × Inv(q) (9)

where, as defined above, Q0 is the set of all states of Tg from
which there exists non-empty runs satisfying the formula.
The control strategy is defined as follows:

Definition 6 (Control strategy): A control strategy for H
corresponding to an LTL−X formula φ is a tuple Cφ =
(L,L0, u, I, Rel), where:

• L = {lqrq(j)rq(j+1) | q ∈ Q, j ≥ 1} is its set of
locations 2,

• L0 = {lqqrq(2), q ∈ Q0} is the set of initial locations,
• I(lqrq(j)rq(j+1)) = Inv(rq(j)) gives the invariant for

each location,
• u is a map which assigns to each location lqrq(j)rq(j+1)

and continuous state xq ∈ I(lqrq(j)rq(j+1)) a feedback
controller u(lqrq(j)rq(j+1), xq) = krq(j)rq(j+1)(xq),

• Rel ⊆ L × L, Rel =
{(lqrq(j)rq(j+1), l

q
rq(j+1)rq(j+2)), q ∈ Q0, j ≥

1, rq(j) �= rq(j + 1)}
A location lqrq(j)rq(j+1) corresponds to position j in run

rq, with rq satisfying φ and determined as explained before.
According to the structure of runs described above, the set
of locations L is finite, even though the runs are infinite. A
location lqrq(j)rq(j+1) corresponds to driving all continuous
states from rectangle Inv(rq(j)) to the guard G(rq(j), rq(j+
1)) in finite time if (rq(j), rq(j + 1)) ∈ T , or to keeping
the state of the system in Inv(rq(j)) without hitting any
guard for all times if rq(j) = rq(j +1), by using the control
krq(j)rq(j+1)(xq). Note that there can be several locations
of Cφ mapped to the same invariant Inv(q), q ∈ Q of H .
These can correspond to different runs of Tg passing through
q or to states of the same run passing through q at different
times and with different successors.

The semantics of the closed loop system (3), (5) with
control strategy from Definition 6 is defined as follows:
starting from (q, x0

q) ∈ X0 and location l = lqqrq(2) ∈ L0,
feedback controller u(l, xq) is applied to system (3), (5) as
long as the state xq ∈ I(l). When (and if) H takes a discrete
transition corresponding to its semantics defined in Section
III, then the location of Cφ is updated to l′ according to
(l, l′) ∈ Rel and the process continues.

We are now ready to provide a solution to Problem 1:
Theorem 2: The hybrid system H (equations (3), (5)),

with feedback control strategy given by Definition 6 and set
of initial states as in (9), satisfies the LTL−X formula φ.

Proof: The proof follows from the construction of Cφ

from Definition 6, the satisfaction of an LTL−X formula by
words generated by hybrid trajectories of H as in Definition
3, and from the sufficient conditions given by Theorem 1.

2The locations of Cφ should not be confused with the discrete states
(modes) of the hybrid system H . Note that other authors use ’locations’,
’discrete states’, and ’modes’ interchangeably for the discrete states of a
hybrid system.

Let (q, xq(t)) denote the trajectory of H , evolving under
control law Cφ, and starting from an arbitrary initial state
(q0, x

0
q0

) ∈ X0, with X0 given by (9). From Definition 3, the
corresponding word w has w(1) = q0. The feedback control
kq0rq0 (2)(xq0) is designed in accordance with Theorem 1.

If rq0(2) = q0, then kq0rq0 (2)(xq0) is a solution of Problem
2 for rectangle RNq0

(aq0 , bq0) with E = ∅. From Definition
6, location lq0

q0q0
cannot be left, so the control law does not

change. Thus, RNq0
(aq0 , bq0) is never left by the continuous

trajectory, and Definition 3 implies that w = q0q0 . . .. As
noted before, equality rq0(2) = q0 holds only if rq0 =
q0q0 . . ., and because rq0 satisfies φ, Definition 4 implies that
H , under control strategy Cφ, also satisfies specification φ.

If rq0(2) �= q0, then kq0rq0 (2)(xq0) is a solution of Problem
2 for rectangle RNq0

(aq0 , bq0) with E = G(q0, rq0(2)). Thus,
the guard G(q0, rq0(2)) is hit in finite time, the mode of H
becomes rq0(2) and Cφ updates its location to lq0

rq0 (2)rq0 (3).
From Definition 3, the symbol w(2) = rq0(2) is added to
word w and the process continues in the same manner. A
similar reasoning can be used for any position in the run,
and we conclude that the obtained word w is equal to rq0 ,
which proves the theorem.

Remark 2: It is possible that the trajectories of the closed
loop system visit some states more than once, and have
different velocities at the same continuous state at different
times. Therefore, the obtained feedback controllers are in
general time-variant.

Remark 3: Our approach to solving Problem 1 is obvi-
ously conservative. If the proposed control strategy does
not yield a solution, this does not imply that there exists
no solution. The conservativeness of our approach arises
from different sources. First of all, we do not consider
the influence of the reset maps. Secondly, in every state
rectangle all initial states are treated in the same way, instead
of allowing a partitioning of the state rectangle, in which
each part may behave differently. Finally, Theorem 1 only
provides sufficient conditions for existence of controllers,
instead of equivalent conditions.

VI. EXAMPLE

Consider a Rectangular Multi-Affine Hybrid System H
with set of modes Q = {q1, q2, q3, q4}. The continu-
ous state space corresponding to each mode is a two-
dimensional rectangle, defined by aq1 = aq3 = (0, 0),
bq1 = bq3 = (2, 1) and aq2 = aq4 = (0, 0), bq2 =
bq4 = (1, 1). The facets of each rectangle qi, i = 1, . . . , 4
are denoted by F qi

1 = {(x1, x2) ∈ R2(aqi
, bqi

)|x2 =
aqi

(2)}, F qi

2 = {(x1, x2) ∈ R2(aqi
, bqi

)|x1 = bqi
(1)},

F qi

3 = {(x1, x2) ∈ R2(aqi
, bqi

)|x2 = bqi
(2)} and F qi

4 =
{(x1, x2) ∈ R2(aqi

, bqi
)|x1 = aqi

(1)}. The guards of
the hybrid system are given by G(q1, q2) = {F q1

2 , F q1
3 },

G(q1, q4) = {F q1
1 , F q1

4 }, G(q2, q1) = {F q2
1 }, G(q2, q3) =

{F q2
2 , F q2

3 }, G(q2, q4) = {F q2
4 }, G(q3, q1) = {F q3

1 , F q3
2 },

G(q3, q4) = {F q3
3 , F q3

4 }, G(q4, q1) = {F q4
4 }, G(q4, q3) =

{F q4
1 , F q4

2 , F q4
3 }.

The input u is in the set U = [−1, 1], and the continuous
dynamics of H are given by: ẋq1 = (2 − 0.5x1 + x2 +

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 ThA08.3

2623
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 28,2023 at 12:26:36 UTC from IEEE Xplore.  Restrictions apply. 



x1x2 + u, 2 − 0.5x1x2 + 0.5u), ẋq2 = (−1 + 1.5x1 +
0.5x2 − 2x1x2 − 2u, 1.5− x1 − 3x2 + 1.5x1x2 + u), ẋq3 =
(1 − 1.5x1 − 0.5x2 + 0.75x1x2, 2 − x1 − 3x2 + x1x2),
ẋq4 = (0.5 − 0.5x1 − 1.5x2 + x1x2 + u, 0.5 + 1.5x1 −
x2 − 2x1x2 − u). (For notational convenience we omitted
the subscripts qi from the continuous state components x1

and x2). An explicit definition of reset maps is not required in
our approach; for simplicity we assume that each reset map
positions the continuous state in the centroid of the rectangle
corresponding to the new mode.

In order to construct the generator transition system Tg ,
we repeatedly apply Theorem 1 to each mode of H and for
each guard set, including the empty one (for stay inside). For
mode q1 we obtain that transition to q2 can be guaranteed
for any initial continuous state in mode q1 by the control
law kq1q2(x) = 1, x ∈ R2(aq1 , bq1), while transitions to q4

and self loop in q1 cannot be guaranteed, so they will not
appear in Tg . Similarly, from mode q2, transitions to q1 and
q3 cannot be guaranteed, transition to q4 is guaranteed by
kq2q4(x) = 1, while self loop in q2 is possible under the
control law kq2q2(x) = −1 + 2x1 − x1x2, x ∈ R2(aq2 , bq2).
The control input doesn’t affect the continuous dynamics
inside mode q3, but Theorem 1 reveals that R2(aq3 , bq3) is a
sink for trajectories originating inside it, so Tg includes a self
loop in q3, with a dummy control law, e.g. kq3q3(x) = 0,
x ∈ R2(aq3 , bq3). Mode q4 has transitions to q1 (enabled by
kq4q1(x) = −1 + 2x2 − 2x1x2), to q3 (under control law
kq4q3(x) = 1), and self loop (with kq4q4(x) = −x1 + x2 −
x1x2), x ∈ R2(aq4 , bq4).

We impose the specification φ = q1 ∧ ♦q2 ∧ ♦q4 ∧
♦�q2 ∧ �¬q3, meaning that the hybrid system should start
from mode q1, then visit modes q2 and q4, and eventually
converge to mode q2, while always avoiding mode q3. The
specification can be met, and the corresponding discrete run
of Tg has a four state prefix and a one state suffix in the
form: rq1 = q1q2q4q1q2q2q2 . . .. Therefore, the controller Cφ

has four locations (lq1
q1q2

, lq1
q2q4

, lq1
q4q1

, lq1
q2q2

), and the involved
controllers are: kq1q2 (while continuous state is in mode q1),
kq2q4 (when mode q2 is visited for the first time), kq4q1 (in
mode q4) and kq2q2 (when mode q2 is visited for the second
time). The control law in mode q2 is time-variant, as noted
in Remark 2.

VII. CONCLUDING REMARKS

We studied the problem of controlling Rectangular Multi-
Affine Hybrid Systems (RMAHS) from specifications given
in terms of LTL−X formulas over the set of their discrete
states. We derived sufficient conditions for existence of
controllers and a computationally efficient algorithm for
automatic construction of such controllers. The conditions
are stated in terms of sets of linear inequalities, and the
involved computation consists of polyhedral set operations,
construction of Büchi automata, and searches on graphs. In
the future, we will apply these results to hybrid models of
robotic and biological systems.
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