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Abstract 

We present a method to coordinate a large number of under - 
actuated robots by designing control laws on a small dimen- 
sional manifold, independent on the number and ordering of 
the robots. The small dimensional description of the team 
has a product structure of a Lie group, which captures the 
dependence of the ensemble on the world frame, and a shape 
manifold, which is an intrinsic description of the team. We 
design decoupled controls for group and shape. The individ- 
ual control laws which are mapped to the desired collective 
behavior can be realized by feedback depending only on the 
current state of the robot and the state on the small dimen- 
sional manifold, so that the robots have to broadcast their 
states and only have to listen to some coordinating agent 
with small bandwidth. 

1 Introduction 

We approach the problem of controlling a large number 
of car -like robots required to accomplish a mission as a 
team. For example, consider the task of moving hundreds 
of robots from arbitrary initial positions through a tunnel 
while staying grouped so that the distance between each 
pair does not exceed a certain value. The simplest solution, 
generating motion plans or control laws for each robot, is 
obviously not feasible from a computational viewpoint. It 
is desired to have a certain level of abstraction: the motion 
generatiadcontrol problem should be solved in a lower di- 
mensional space which captures the behavior of the group 
and the nature of the task. 

The robots can be required to form a virtual sfrucfure. In 
this case, the problem is reduced to a left invariant control 
system on SE(1) (1 = 1,2), and the individual trajecto- 
ries are SE(1) - orbits [l]. The literature on stabilization 
and control of virtual structures is rather extensive. Most of 
the recent works model formations using fonnation graphs, 
which are graphs whose nodes capture the individual agent 
kinematics or dynamics, and whose edges represent inter- 
agent constraints that must be satisfied [9]. Characteriza- 
tions of rigid formations can be found in [6, I]. The con- 
trollers guaranteeing local asymptotic stability of a given 
rigid formation are derived using Lyapunov energy-type 

functions [91. Examples of such functions include positive 
definite convex fonnationfunctions [ 5 ]  and biologically in- 
spired artiJcinl potenrialfunctions [8]. The global minima 
of such functions exhibit SE([ ) ,  I = 1, 2,3 symmetry and 
also expansiodcontraction symmetries, which can be used 
to decouple the mission control problem into a formation 
keeping subproblem and a maneuver subproblem [8] .  

The virtual structure approach is not appropriate for many 
applications, including obstacle avoidance, tunnel passing, 
etc. Also, the rigid formulation is based on identified robots, 
which makes the obtained control laws and motion plans in- 
valid in the case of individual failures. Moreover, the rigid- 
ity constraint induces an inherent coupling between the con- 
trol systems on the symmetry group and the shape space. 
For example, in [SI, the authors have to limit the speed of 
convergence on the symmetry group so that, while moving 
as a group, the individual agents do not leave the local re- 
gions of attractions guaranteeing convergence to the desired 
shape. 

In this paper we build on [2]. The robots are modeled as 
underactuated kinematic drift - free control systems. We 
define outputs which give the Cartesian coordinates of some 
reference points on the robots, which are used in the formu- 
lation of the collective tasks, I.e.,, in a cooperative mission, 
the robots are represented by their reference points. Us- 
ing input - output feedback linearization for each robot, the 
controls are related to the velocities of the output through 
a linear nonsingular map. We then propose an abstraction 
based on the definition of a map Q from the space of all 
robot outputs to a lower dimensional abstraction manifold 
A. We require the abstraction manifold to have a product 
structure A = G x S, where G is a Lie gmup that cap- 
tures the dependence of the problem on the chosen world 
coordinate frame and S is a shape manifold, which is an 
intrinsic description of the team. We also impose that the 
map Q is so that each abstract variable can be controlled in- 
dependently, so that the user can easily design controllers to 
only change the shape for example, and keep the group vari- 
able fixed. In this paper, G is SE(2), the special Euclidean 
group in two dimensions, and S gives a description of the 
distribution of the robots along the axes of a virtual frame 
whose pose on the world frame evolves on G. The task to be 
accomplished by the team suggests a natural feedback con- 
trol system on A. We show that the individual control laws 
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which are mapped to the desired team behavior can be real- 
ized by feedback depending only on the current state of the 
robot and the state on the abstraction manifold, so that the 
robots have to broadcast the coordinates of their reference 
points and only have to listen to some coordinating agent 
with small bandwidth. 

2 Problem formulation 

Consider N identical car - like planar robots. In the world 
frame {W}, robot i is described by a 3 - dimensional state 
vector xi  = [ x i ,  z;, i = 1 , .  . . N ,  where ( x i ,  x i )  give 
the Cartesian coordinates of the robot center and x i  mea- 
sures the orientation of the robot frame in {W}. Each robot 
is modeled as a kinematic, drift free control system 

j.' = G(x')u' = gi(x')U: + gz(x')Ui (1) 

where the control vector fields are given by 

f o r s  = [ X ~ , X ~ , X ~ ] ~ .  The control ui = (ui,ui) consists 
of driving and steering speeds. On each robot we pick a 
reference point P; different from the robot center and with 
coordinates ( d ,  0 )  in the robot frame. The Cartesian coor- 
dinates qa = (q1,q;) of the reference points are used to 
formulate cooperative tasks. In other words, for each robot 
i, i = 1 , .  . . , N ,  we define an output map 

q' = h(x') (3) 

where h is given by 

1 x i + d c o s x 3  
x2 + d sin xs h ( x )  = (4) 

Problem 1 (Control) Design conrml laws U', i = 
1,. . . , N so that the team of N mbors accomplishes a co- 
operarive task formulated in f e w  of the chosen reference 
points q'. 

Examples of tasks include stabilization inside a given region 
of the space, tunnel passing, expansions and contractions, 
etc., Before we start, note that the choice of output function 
h together with the linearity of dynamics (I) in ut leads to 
a linear nonsingular relationship between the derivative of 
the output$ and the control variables q' = dh(xi)G(xi))ni ,  
unless d = 0. d h  denotes the differential of h.  Therefore, 
we can define new inputs 

4' 0% (5)  

which are related to the original ones by 

U' = A(xi )ui  (6) 

where 

Equations (I), (3). (5) and (6) represent an input output. 
feedback linearization problem [7]. The next natural step 
would be to set U' = gd + k(qid - q'), k > 0 so that q' 
exponentially tracks a given desired trajectory q"(t). Al- 
ternatively, in the next section we show how the redefined 
inputs vi can be designed so that the robots described by the 
reference points q'. i = 1, . . . , N have a desired collective 
behavior. 

3 Abstraction: general considerations 

Collect all the robot outputs q' and redefined inputs U' to- 
gether into a 2N-dimensional control system 

q = u ,  q E Q ,  u E V  (8) 

where 

and allow to recover the individual states and controls by 
using the canonical projection 

r*(q) =pa,  n,(u) =U', i = 1, .. . , N  (IO) 

Given a large number of robots represented by the carte- 
sian coordinates qi of the chosen reference points Pi, or, 
equivalently, a q E Q, we want to solve motion generation 
I control problems on a smaller dimensional space, which 
captures the essential features of the group, according to the 
class of tasks to be accomplished. 

The abstraction is based on the definition of a map 

4 : Q + A ,  4 ( d  = a 

which satisfies the following properties: 

(i) The map 4 is a surjective submersion. 

(ii) The map 4 is invariant to permutations of the robots 
and the dimension n of A is not dependent on the 
number of robots N. 

(iii) We require that A have a product structure 

A = G x S, a = ( g ,  s), 4 = (&, A)  (12) 

where G is a Lie group. An arbitrary g E G is called 
gmup, orpose and an s E S is called shape. 

(iv) The control systems on the group G and shape S are 
decoupled. 
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(v) The amount of inter - robot communication in the 
overall control architecture is limited. 

Instead of designing motion on the high dimensional space 
Q, we want to be able to describe collective behaviors in 
terms of time - parameterized curves on the small dimen- 
sional manifold A. This problem can be treated as an input 
- output linearization problem for the system described by 
(8) and ( I  I) .  Let the new inputs be denoted by w E R”. 
Then 

b = W  (13) 
and, since w = d4(q )u ,  we have 

U = d$T(dQd$T)-’w (14) 

Note that the submersion condition (i) on 4 implies the sur- 
jectivity of the differential dQ at any q E Q, which guar- 
antees the existence of controls U pushed forward to any 
small dimensional control w on the abstraction manifold 
A. Moreover, 41,. . . , dn are functionally independent, or, 
equivalently, d4 = (d&, . . . , d $ N )  is full row rank and the 
inversion in (14) is well defined (dQ, should be interpreted 
as rows giving the coordinates of the corresponding differ- 
ential one form and d+ is the row span of ddi’s).  

We want the dimension of the control problem to be inde- 
pendent of the number of agents and also independent on 
possible ordering of the robots. Requirement (ii) will pro- 
vide control laws which are robust to individual failures and 
also good scaling properties. 

The main idea of requirement (iii) is to have a control suited 
description of the team of robots a in terms of the pose g of a 
virtual structure, which captures the dependence of the team 
on the world frame {W},  plus a shape s, which is decoupled 
from g. and therefore, an intrinsic property of the formation. 
In other words, if is an arbitrary element of G, we require 
the map @to satisfy 

4(P) = (g2 s) * 4(Bd = (Sg, .) (15) 

where Bq represents the action of the group element g on the 
configuration q E Q and Bg represents the left translation of 
g by using the composition rule on the group G. Since we 
only approach planar robots in this paper, G is SE(2) .  Bq 
represents a rigid displacement of all the robots by 9. (15) 
is a left invariance - type property of the map 4, which gives 
invariance of our to be designed control laws to the pose of 
the world frame {W}. Indeed, if the world frame {W}  is 
displaced by g, the shape s is not affected while the pose g 
is left translated by g. 

If requirement (iv) is satisfied, then one can design con- 
trol laws for the interest variables a E A separately, e.g, 
change the pose of the formation g while preserving the 
shape s. The control systems on G and S are decoupled 
if dQ, and d4. are orthogonal as subspaces (we assume that 

I 

U0 lin U 0  lin 
... 

Figure 1: Overall control architecture 

Q is equiped with an Euclidean metric). Moreover, if d&’s 
are all orthogonal, from (14) we have 

from which the decoupling of the control variables on A is 
obvious. 

To limit the amount of inter - robot communication in the 
overall control scheme (requirement (v)). we propose an 
architecture where the control law U‘ of a robot only de- 
pends adi ts  own state xi and the state of the low dimen- 
sional abstraction manifold a E A. Since ui = A(xi)ui and 
qi = h(s’), this is achieved if 

. .  
U’ = ni(u) = u*(q‘,a) (17) 

Pictorially, ,the desired control architecture is given in Fig- 
ure 1. 

Finally, note that, from (14), it follows that the abstract state 
a is at rest (a = w = 0) if and only if all the reference 
points q‘ are at rest (q = u = 0). This guarantees that each 
individual motion can be “seen” in the small dimensional 
manifold A and, therefore, can be “penalized by control. 

4 Control of spatial distribution 

In this section we define a physically significant abstraction 
( I  1) with a product structure (12) as follows. For an arbi- 
trary configuration q E Q, the group part g of the abstract 
state a is defined by g = (R, p)  E G = SE(2). Let 

, 

1522 

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 28,2023 at 22:43:44 UTC from IEEE Xplore.  Restrictions apply. 



and 

H I  = I2 + R2E2, H2 = I2 - R2E2, H3 = RZE1 (22) 

It is obvious that the abstraction defined by (18), (19), and 
(20) has constant dimension n = 5 and is invariant to per- 
mutations of the robots (requirement (ii)). In [3], it is shown 
that dp, de, dsl, and ds2 are orthogonal with respect to the 
Euclidean metric on Q. Therefore, each of the abstract vari- 
ables can be controlled separately and requirement (iv) is 
satisfied. Then it makes sense to design separate controls 
w = (w,,, W O ,  wdl. tos2) at a point a = (p ,  8, s l ,  sz). Ex- 
amples of feedback controllers on the small manifold A in- 
clude stabilization to a point 

f i  = w,, = Ke(5d - p) ,  e = WO = kg(Bd - 6') 
SI = Wg1 = k , , (s ,  - SI) ,  s2  = w,, = ks*(s$ - s2) 

(23) 
and trajectory tracking 

6 = U,, = KP(/ld(t) - P ( t ) ) + i L d ( t )  

(24) 
e = we = kg(ed( t )  - e ( t ) ) + e d ( t )  

SI = = k * l ( s m  - Sl(t))  + s . l d ( t )  

d 2  = WB2 = k,,(s$(t)  - S 2 ( t ) )  + i 2 d ( t )  

where K,, E R2" is a positive definite matrix and kg, 
k,, > 0. 

4.1 Significance 
As shown in [31, there are two slightly different interpreta- 
tions of the abstraction defined by (IS), (19), and (20). Let 

r = -(N - I)E,CE, (26) 

Equation (26) simply states that I? is obtained from (N - 
l )C by.interchanging the diagonal elements and multiply- 
ing the extra - diagonal elements by -1. Therefore, r and 
( N  - l ) C  have the same eigenstructure. 

First, p and r in (18) and (26) can be seen as the centroid 
and inertia tensor of the system of particles q' with respect 
to the centroid and orientation {W} ,  Let {A{} define a vir- 
tual frame with pose g = (R: p )  in {W}.  The rotation 
equation (19) defines the orientation of the virtual frame so 
that the inenia tensor of the system of points in {hf} is di- 
agonal. (N - 1)sl and ( N  - 1 ) s ~  are the eigenvalues of the 
tensor and are therefore measures of the spatial distribution 
of the reference points qi along the axis of the virtual frame 
{ A I } .  In [31 it is shown that the shape variables provide a 
bound for the region occupied by the robots: An ensamble 
of N mbors described by a 5 - dimensional abstract vari- 
able a = (g, s) = (R; p, S I ,  s2) is enclosed in a rectangle 
centered at p and rotated by R E SO(2) in the world frame 
{I+'}. The sides of the rectangle are given by 2 d m  
and 2 d m .  

Alternatively, p and C given by (18) and (25) can be inter- 
preted as sample mean and covariance of a random variable 
with realizations q'. If the random variable is known to be 
normally distributed, then, for a sufficiently large N, p and 
C converge to the real parameters of the normal distribution. 
R is the rotation that diagonalizes the covariance and SI, s2 
are the eigenvalues of the covariance matrix. This means 
that, for a large number of normally distributed reference 
points q', p, R, s1 and s2 give the pose and semiaxes of a 
concentration ellipsoid. 

Specifically. it is known that contours of constant probabil- 
ity p for normally distributed points in plane with mean p 
and covariance C are ellipses described by 

(z - p ) T C - l ( z  - p)  = C, c = -2ln(l - p )  (27) 

The ellipse in (27), called equipotential or concentration 
ellipse, has the property that p percent of the points are 
inside it, md can be therefore used as a spanning region 
for our robots, under the assumption that they are normally 
distributed. Therefore we can make the following state- 
ment: p percent of a large number N of normally dis- 
tributedpoints described by a 5 - dimensional abstract vari- 
able a = (g, s) = (R,  f i ,  SI, sa) is enclosed in an ellipse 
centered at p, rotated by R E SO(2) in the world frame 
{ W }  and with semiaxes 6 and &, where c is given 
by (27). 

Even though the normal distribution assumption might seem 
very restrictive, we show in [3] that it is enough that the ref- 
erence points q' be normally distributed in the initial con- 
figuration. Our controls laws will preserve the normal dis- 
tribution. 

The abstraction based on the spanning rectangle has the ad- 
vantage that it provides a rigurous bound for the region oc- 
cupied by the robots and does not rely on any assumption 
on the distribution of the robots. The main disadvantage is 
that this estimate becomes too conservative when the num- 
ber of robots is large. Indeed, the lengths of the sides of the 
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Figure 2: The position and orientation of the team is stabilized at desired values while shape is preserved 

rectangle scale with m, so for a large N the spanning 
rectangle might become very large, even though the robots 
might be grouped around the centroid p. 

On the other hand, the size of the concentration ellipsoid 
does not scale with the number of robots, which makes 
this approach very attractive for very large N .  However, 
it has the disadvantage of assuming a normally distributed 
initial configuration of the team ahd does not provide a rig- 
umus bound for the region occupied by the robots. Roughly 
speaking, (1 - p ) N  are left out of the pellipse. Increasing 
p will decrease the number of the robots which be outside 
but will also increase the size of the ellipsoid. 

4.2 Individual control laws 

fied by the map 6 defined by (18). (19), and (20) if and only 
if s1 # 0 and s2 # 0. These cases of zero shape physically 
correspond to degenerate situations when all the robots are 
on the Oy and Ox axis of the formation frame { A l } ,  respec- 
tively. Excluding these degenerate cases, dWdJ is invert- 
ible and after some calculations, the projection (IO) of (14) 
leads to the following velocity for the reference point Pi 

vi = ~ i ( v )  = w p  + z H 3 ( q i  - p)we 

In [3], it is shown that the submerSion condition (i) is satis- 

(28) 
+&H1(9i - p)w,, + & W ? i  - p b s 2  

The solution to Problem 1 is therefore given by ui defined 
by (6) and (28) 

Note that the overall control architecture implementing (28) 
fits the structure in Figure 1. Each robot i needs to im- 
plement controller Ci, which is only dependent on its own 
state x i  and the small dimensional abstract state a. Also, 
each robot has to send its output qi to the abstract control 
system, which calculates and then broadcasts the updated 
abstract state. Therefore, robot i only has to broadcast its 
2-dimensional output qi and listen to a the 5-dimensional 
abstract state a, independent on the number of robots N .  

In [3], it is shown that if control law (28) is applied to all the 
robots, then the set of points with cooedinates q' in the plane 

undergoes an affine transformation. Any affine transforma- 
tion is known to preserve collinearity, ratios of distances on 
lines, and parallelism. Therefore, control law (28) can be 
used for formations in which preserving properties like the 
ones mentioned above is important. Even more interesting, 
it is known that affine transformations preserve the normal 
distribution. This means that if the robots are initially nor- 
mally distributed, by applying the control laws (28). they 
remain normally distributed. The 5 - dimensional abstract 
state, interpreted as sample mean p and sample covariance 
E, gives us control over the pose, aspect ratio and size of 
the concentration ellipsoid as defined above. 

4 3  Internal dynamics 
Note that (23) or (24) only guarantee the desired behavior 
and therefore the boundness of the 5 - dimensional a E A. 
Now the hardest problem, as in most input - output feedback 
linearization problems, is to prove the boudness of the inter- 
nal dynamics. This usually implies a change of coordinates 
and explicit calculation of the zero dynamics. Fortunately, 
the boundness of a E A together with the definition of 6 
easily imply the boundness of each of q', i = 1 , .  . . , N [3]. 
Moreover, in the stabilization to a point case, (23), it can 
be proven that for any pd, Bd,  sf. si, the closed loop sys- 
tem (28), (23) globally asymptotically converges on Q to the 
equilibrium manifold p = pd. 9 = Od,  SI = sf, s2 = sf. 
We conclude that the overall system is well behaved on Q. 
Moreover, the remaining 1 - dimensional intemal dynamics 
of each robot can also be proved to be bounded. [4]. 

5 Experimental results 

The experiments were performed using a team of five car- 
like robots. Each robot is equipped with its own proces- 
sor and an omnidirectional camera. Communication among 
robots is needed to estimate the individual orientations xi 
and relies on IEEE 802.1 1 networking. A calibrated over- 
head camera is used to localize the Cartesian coordinates 
of the reference points qi .  A centralized computer calcu- 
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Figure 3: Initial and final configuration in an expansion maneu- 
ver - control of shape while pose in preserved 

lates the 5 - dimensional team variable a = (p, 0: sl, s2) 

and broadcasts it hack to the robots together with q‘ from 
the overhead camera. Each robot has then complete infor- 
mation on its state xi and the state a and can compute its 
own control ut. All this computation is executed in approx- 
imately 15 H r  in the slowest computer. Note that the actual 
comunication architecture that we use in the experiments 
does not exactly fit the one we claim in Figure 1 because in 
our indoor setup the robots are not able to determine their 
own position and orientation. 

5.1 Group control 
In the first experiment we show how the pose of the team 
can be controlled while shape is preserved, illustrating the 
decoupling property of controllers (6), (28). The robots are 
initially “almost” alligned with the Oy axes of the world 
frame: p = (2.2020,1.6817). B = -1.499rad. s1 = 
0.5417. s2 = 1.6798e - 4. We use controllers (23) with 
Kp = 412, ko = 4, k,, = k,, = 0 to stabilize the team 
at pd = (2.2,3.7), Bd = 0, and the shape, according to 
our theoretical results, should he preserved. The results are 
shown in Figure 2. 

5.2 Shape control 
The second experiment illustrates an expansion maneu- 
ver. Instead of plotting the experimental data, as in Sec- 
tion 5.1, we show the initial and final snaphots from the 
actual experiment in Figure 3. The robots were initially 
grouped in a small circle SI = s2 = 0.0738 around p = 
(2.4607,2.6185). We again used stabilizing controllers (23) 
but this time with K,, = 0, ko = 0, k,, = k,, = 4 to sta- 
bilize the team at sf = sf = 0.6078. The pose of the team, 
as predicted by our theoretical results, was preserved. 

6 Conclusion and future work 

We propose a control architecture for a large number of 
robots required to accomplish a task as a team. The co- 
operative mission is formulated in terms of Cartesian coor- 
dinates of some reference points chosen on the robots. We 
propose an abstraction based on the definition of a map from 
the space of the reference points to a small dimensional ab- 
straction manifold with a poduct structure of a Lie group 
and a shape space. The task to be accomplished by the team 
suggests a natural feedback control system on the abstrac- 

tion manifold. We focus on car - like robots and show that 
the group and shape variables can he controlled separately. 
The individual control laws which are mapped to the desired 
behavior of the team can be realized by feedback depend- 
ing only on the robots’ current state and the small dimen- 
sional state on the abstraction manifold. Future work will 
be directed towards incorporating more shape variables, ac- 
comodating other types of under-actuation constraints, ex- 
tending the results to 3-D environments, and implementing 
the obtained control architectures in our blimp - car outdoor 
experimental platform. 
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