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Abstract 

Given a multi-affine system on an N-dimensional rectan- 
gle, the problem of reaching a particular facet, using multi- 
affine state feedback is studied. Necessary conditions and 
sufficient conditions for the existence of a solution are de- 
rived in terms of linear inequalities on the input vectors at 
the vertices of the rectangle, and a method for constructing a 
multi-affine state feedback solution is presented. The tecb- 
nique is applied to the control of hybrid models of bioregn- 
latory networks. 

1 Introduction 

This paper studies multi-affine dynamical systems evolving 
on rectangles and presents a controller design method for 
reachability of a facet. This problem is motivated by the 
control of multi-affine hybrid systems. 

A hybrid system is a dynamic system that consists of dis- 
crete and continuous components with complex interactions 
[ I  I]. The safety criticality of many embedded systems has 
resulted in significant research on computing reachable sets 
for hybrid systems. 

Piece-wise linear hybrid systems have received great atten- 
tion in the past years. This class of systems consists of au- 
tomata for which each discrete state is an affine system on 
a polyhedral set [12]. Specialized tools like HyTech [XI, 
d/dt [4], and CheckMate 131 have been developed for 
verification of such systems. (CheckMate can also handle 
low-dimensional nonlinear systems). A particular approach 
to the reachability problem was developed by van Schuppen 
in [13], which requires the solution of a facet reachability 
problem of an affine system on a polyhedral s e t  given in 
PI. 
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This paper extends the results derived for linear systems in 
[5,7] to a class of non-linear dynamical systems. We deter- 
mine necessary conditions and sufficient conditions for the 
existence of a multi-affine control such that independent 
of the initial state, the trajectory of the closed loop system 
reaches a particular facet of a rectangle in finite time. 

The main motivation for this work are hybrid models of 
bioregulatory networks, as the one described in [ I ,  21. A 
bioregulatory network is an ensemble of genes, together 
with their products (mRNA and proteins), and other species 
affecting the expression of the genes. Traditionally, the level 
of gene transcription is modeled as a sigmoidal function of 
the concentration of the regulatory species. However, exper- 
imental data on numerous systems in biology suggests that 
regulation can be modeled as a piecewise constant function. 
If we consider all the genes in the network with all the cor- 
responding levels of activation, we end up with a switched 
system with specific dynamics for each mode. The vector 
fields are multi-affine, because of the rate equations that de- 
scribe chemical reactions among species. The invariants of 
the modes are rectangular and the facets correspondto genes 
being turned on or off. An important question is whether 
one can drive a genetic system from an arbitrary initial state 
to a final state so that some genes are tumed on while others 
are not transcribed. To do this, the first problem to be solved 
is driving a system with multi-affine dynamics within rect- 
an,wlar regions so that some desired facet is hit in finite 
time. This is exactly the problem we formulate and solve in 
this work. 

2 Problem formulation 

For N E N, let RN denote the N-dimensional rectangle 
described by: 

R N = { z = ( z l ,  . . . Z ~ ) € R ~ l ~ a i ~ Z i ~ b ; ]  

where ai, bi E I& ai < bi ,  i = 1,. . . , N. A multi-affine 
function f : RN + R'" (with m E N) is a polynomial 
in the indeterminates 21,.  . . , ZN with the property that the 
degree off in any of the indeterminates z1,. . . , ZN is less 
than or equal to 1. Stated differently, f has the form 

f ( Z l 9 . .  , , Z N )  = Ci ,  ..... i .vZ? . "Z$ ,  (1) 
i l . . . . . i ~ E ( O . l }  

with c; ,..... i N  E Em for all i l ,  . . . , i~ E {O, 1) and using 
the convention that if ir = 0, then Z: = 1. 
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Consider the following non-linear control system evolving 
in RN:  

i = f(z) + Bu. (2) 
The drift term f : R N  + RN is a multi-affine function, 
B E R N x m  is a constant matrix whose columns give the 
directly controllable directions, and the input U is assumed 
to take values in a polyhedral set U c Rm only. 

Problem 1. Consider the multi-fine system (2) on the 
rectangle R N ,  and let Fj be a facet of R N ,  with normal vec- 
tor nj pointing out of R N .  For any initial state z o  E R N .  
we have to find a time instant TO 2 0 and an input function 
U : [0, To] -+ U ,  such that 

fiJ Vt E [O,To] : z ( t )  E R N .  

(til z(T0) E Fj, and To is the smallest time-instant in 
the interval [0, 00) for which the state reaches the exit 
facet Fj ,  

(iiiJ nTi(To) > 0,  i.e. the velocity vector Z(To) at the 
point z(T0) E Fj has a positive component in the 
direction of nj. This implies that in the point z ( T , ) ,  
the velocity vector i(T0) points out of the rectangle 
RN.  

Furthermore, this input function U should be realized by the 
application of a continuous feedback law 

u( t )  = k ( z ( t ) ) ,  (3) 

with k : RN 4 U a continuous function, that is indepen- 
dent of the initial state zo. 

For the solution of Problem I ,  we are particularly interested 
in multi-afhe feedback laws k(z). Note that if the feedback 
law k(z) in (3) is multi-affine, the closed-loop system is also 
multi-affine: 

3 hlulti-affine functions o n  the unit cube 

For any full-dimensional polytope f" in WV, a facet of PN 
is the intersection of PN with one of its supporting hyper- 
planes. More generally, a face of PN is the intersection of 
PN with several of its supporting hyperplanes. If the dimen- 
sion of the intersection is n (with 0 _< n < N) the face is 
called an n-face. 

Let ( ~ 1 , .  . . , Z N )  E [0, 1IN be a point in the unit cube 
K N ,  and denote the Z N  vertices of K N  by (il, . . . , i , v ) ,  
il,. . . , i s  E {0,1). Let m E Nand m < N .  Then ev- 
ery N - m-dimensional face F of the unit cube KN = 
{ ( X I . .  . . ,ZN) I zj E [0,1], (i = 1 , .  . .;h')], character- 
ized by m equations of the form 

Zi ,  = 0 or 2il = 1, 

xi, = 0 or z;, = 1, 

where il  , ._ .  ,i, E { l , . .  . , N }  a n d i j  # i k  f o r j  # k, is 
isomorphic with the N - m dimensional unit cube K N - ~ .  
I f f  : KN -+ Rm is a multi-&ne function, and F is an 
N -m-dimensional face of K N .  then the restriction f I F  of 
f to F is a multi-affine function on the N - m-dimensional 
unit cube KN-,. 
Lemma 1. Let f : KN 4 R"' be a multi-afinefunction, 
and assume that 

v(i1,. . . , i N )  E {o, : f ( i 1 , .  . . , i N )  = 0. ( 5 )  

Then f I 0. 
Proposition 1. Let N E N, and consider Z N  B e d  vectors 
zli ,,.... iN E Rm, ((il,. . . , i ~ )  E (0, i"hent/~ereexisrs 
a unique multi-afinefunction f : KN + Rm such that 

"@I,. . . , i ~ )  E {0, l } N  : f ( i i , .  . . , i ~ )  = vi ,,..., i,", (6) 
which is given by 

il.. .i.yc{O.l) k = l  
(7) To simplify the notation and without restricting the gener- 

ality, we will solve the problem on the unit cube K N  = 
[0, 1lN rather than on the arbitrary rectangle RN. Indeed, 
by the affine transformation = qz) = Az+b,  
with 

Pmof: It is obvious that f defined in (7) is multi-affine. 
Moreover, for every (i,, . . . , i ~ )  E {O, 1 I N :  

N 
n(1 - zk) ' - 'kZ2 = 
k=l  

1 
o 

if 
if 

(q,. . . , Z N )  = ( i i ,  . . . , i ~ ) ,  
(21,. . . , Z N )  E {O, l}N\{(i i , .  . . , i ~ ) }  

the problem is translated to the unit cube because s maps 
RN to K N  in such a way that vertices are mapped to ver- 
tices, edges to edges, facets to facets etc. Moreover, since S 
simply consists of a translation and a scaling operation, the 
system remains multi-afhe in the new z-coordinates. In the 
rest of the paper, whqn we refer to Problem 1, we assume 

So indeed f ( i l , .  . . , i ~ )  = U; ,,.... ,,- for all (ii,  . . . , i ~ )  E 
{ o , i ) N ,  

If g : K N  + Iwm is a multi-affine function satisfying (6). 
then h := f - g is multi-fine, and h(i1, . . . , i ~ )  = 0 for 
all ( i l , .  . . , i ~ )  E {O, 1IN. By Lemma 1, h 0, hence f 

0 that the rectangle RN is the unit cube K N .  defined in (7) is unique. 
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Proposition 2. Let f : KN -+ Em be a multi-affinefirnc- 
lion, and let ( A I , .  . . , A N )  E [0, I]". Then f ( A 1 , .  . . , A N )  
is a convex combination of { f ( i i ,  . . . , iN) 1 i l ,  . . . , iN E 
{0,1)}. i.e. f ( A 1 , .  . . , A N )  is a convex combination of the 
values o f f  at rhe venices of K N .  

 mot k t  ( A i , .  . . , A N )  E [o, 1IN. Since f is a multi- 
affine function, representation (7) is also valid for f, with 
ui ,.... ;iN = f ( i 1 , .  . . , i ~ )  for dl ( i i , .  . . , i ~ )  E { O ,  I ) N .  
So, in the point ( A I , .  . . , A N )  we have 

f ( A 1 , .  . . , AN) = 
N 1 n ( l - ~ L ) I - ~ k ~ ~ f ( i l , . . . , i N ) .  (8) 

Also the identity function h I 1 is multi-affine. In this 
situation, representation (7) applies with ~ ; ~ , . . . , i , ~  = 1 for 
( 2 1 , .  . . , iN) E { o ,  I ) ~ .  so in the point ( A I , .  . . , A N ) :  

i x  ,..., i~ , .€{O.l}  k=I 

N U(l - A*)'-'kA: = 1. (9) 
i l :  ... > i . v ~ { O , l )  t=l 

Combining (8) and (9), it is apparent that (8) represents 
f ( A , ,  . . . , AN) as a convex combination of the values of f 
at the venices of KN. 0 

Corollary 1. Let f : KN t R"' be a multi-afinefunc- 
rion. Let (A,, . . . ,AN) E KN, and let F be the face of KN 
of lowest dimension of which ( X I ,  . . . , A N )  is an element. 
Then f ( A l , .  . . ,AN) is a convex combination of the values 
o f f  ar the venices of F. 

4 Necessary conditions for feedback control to a facet 

Proposition 3. Let PN be a full-dimensional polytope 
in Rv with vertices V I , .  . .  , u ~ ,  (hl > N + 1). Let 
Fl , . . . , FK denote the facets of PN, with normal vectors 
nl ,  . . . , nx ,  respectively, pointing out of the polyrope PN. 
For i E {I,. . . , K } .  let li, c {l , .  . . ,hl} be the index 
set such that {vj I j E I$} is the set of wenices of rhe 
facet Fi. Converse11 for every j E {l, . . . , hl), rhe set 
W, c (1, ..., K)containstlieindicesofallfacersofwhich 
uj is a venex. Consider the gs tem 

i = f(z) + G(z) . U, 4 0 )  = 2 0 ,  (10) 

on the polytope PN, nmhere f : PN t EN and G : 
PN -+ RNxm are assumed to be Lipschitz-continuous 
functions. If there exists a feedback U = k ( z ) ,  wirh 
k : PN -+ U a LipscAi~-conrinuousfnction, that solves 
Conrml Problem 1 with exit facer Fl, then there exist inputs 
ul, . . . , UM E U such that 

( I )  v j  E 1 5  : 

( 2 )  V j E  {I, ..., M)\VI: 

(a) 
(b) 

Vi  E 14; : nT(f(uj) + G(vj)uj) 5 0, 
Citw, nr(f(uj) + G(uj)uj) < 0. 

Idea of the prook Suppose that the Lipschitz - continuous 
function k : PN + Li generates a feedback law u(t) = 
k(z(t)) ,  that solves Control Problem 1 .  Then the inputs 
uj = k ( u j )  E U ,  ( j  = 1,. . . , M ) ,  obtained by applying 
feedback k to the vertices u l ,  . . . , u ~ ,  satisfy (1) and (2). 
The proof of this claim is carried out in a similar way as for 
affine systems (see 161, proof of Proposition 3.1). 

The necessary conditions stated in Proposition 3 consist of 
a set of strict and non-strict linear inequalities on the in- 
puts to the system at the vertices of the polytope PN. Since 
also the input set U is assumed to be polyhedral, the exis- 
tence of a solution u l , .  . . , U M  E U may be checked, us- 
ing existing software for polyhedral sets, like e.g. [lo, 141. 
The computation is funher facilitated by the fact that the 
inequalities for each input are completely decoupled. Note 
that the formulation in Proposition 3 is more general than 
needed in this paper; the claim is valid for arbitrary full- 
dimensional polytopes PN and for systems described by 
Lipschitz-continuous dynamics. 

5 Sufficient conditions for feedback control to a facet 

In this section, first sufficient conditions for the solvability 
of Control Problem 1 are stated in terms of the feedback 
function k. These conditions have to be satisfied on the 
polytope PN or its facets. For multi-affine systems on the 
N-dimensional unit cube, convexity properties an used to 
transform these conditions into requirements on the inputs 
to the system at the vertices of the cube K N .  These condi- 
tions turn ont to be comparabe with the necessary conditions 
described in Proposition 3. 

Theorem 1. Let PN be afull-dimensionalpolytope in RN 
with facers Fl, . . . , FK, and let nl, . . . , nK denote the nor- 
mal vectors of Fl, . . . , FK, respectively, poinring our of rhe 
polytope PN. Consider the system 

i = f(z) + G(z) . U ,  ~ ( 0 )  = 20, 

on the polytope PN, wirh f and G Lipschin-continuous 
functions. Ifthere exists a Lipschirzfunction k : PN + U ,  
such tliar 

(i) Vz E PN : nT(f(z) + G(z).  k ( z ) )  > 0, 

then rlie feedback law U = k ( z )  solves Control Problem I 
with exit facet Fl. 
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Pmof If in condition (ii) the inequality is strict, then the 
proof is straightforward. Since the polytope PN is compact, 
andthefunctionz rt nT( f ( z )+G(z) .k (z ) )  is continuous, 
condition (i) implies that there exists a c > 0, such that for 
all z E PN: nT(f(z) + G(z) . k(z)) 2 c. So the closed- 
loop system will move in the direction of FI with a strictly 
positive speed of at least c, and the polytope PN is left in 
finite time. Condition (ii) with strict inequality indicates 
that the state of the closed-loop system can not leave PN 
through any of the facets Fz, . . . , FK. So the state of the 
closed-loop system will leave PN through FI in finite time. 

The extension of the proof to the non-strict inequality in (ii) 
may be canied out in a similar way as for affine systems 
(see [61). 0 

Theorem 2. Let KN be the N-dimensional unit cube in 
RN, and consider the multi-affine system 

f = f(z) + Bu, z(0) = zo E K N  

on K N ,  with B E RNXm, f : KN t RN multi-aflne, 
and U E U ,  with U c Rm a polyhedral set. Each wenex 
(il, .  . . , Z N )  E (0, of K N  is also a vertex of the facets 
z k  = i k ,  ( k  = 1,. . . , N ) ,  with ~ U ~ i ~ l v e c t o r s  ( - l ) i h + l e k ,  
pointing orif of KN. Let 4 := K N  n {z E RN 1 21 = 
1) be the exit facet of KN. Assume that in every vertex 
(il,. . . , i ~ )  E {0 ,  there exists an input ui ,...., ;, such 
thatV(i1, ..., iN) E {O,l)N: 

Let k : K.v --t U be the unique mulri-aflnefunction sat- 
isfving 

v ( i l , .  . . ,iN) E {o, 1)" : k ( i l , .  . . ,iN) = U;!. ..IN, 

that may be constructed using fonnula (7). Then the con- 
tinuous multi-affine feedback law U = k ( z )  solves Conrml 
Pmblem 1. 

Pmoj  The closed-loop dynamics is described by the multi- 
affine function f(z) + Bk(z ) .  According to Proposition 2, 
for every z E KN, f(z) + Bk(z )  is a convex combmation 

Since by construction k ( i l , .  . . , i ~ )  = uil :.... ;..,. condition 
(1) in (1 1) implies that 

O f { f ( i i  ,..., i N ) + B k ( i l  ,..., iN) l i l ,  ..., iNE{0,1}). 

Vz E KN : eT(f(z) + Bk(z)) > 0, 

and condition ( i )  of Theorem 1 is satisfied. 

Similarly, if F, is a facet of K N ,  different from F1, and if Fj 

is described by zj = i j  for a fixed i j  E {0, l}, then Corol- 
lary 1 and the definition of k imply that for every z E Fj, 
the value of f (2) + Bk(z) is a convex combination of 
{f(ii ,... ,Zrv)+BUi,; .... iy I i ~ ,  ..., Zj-l,Zj+~, ..., i N  E 

. .  

~ 
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{ O ,  1)). Hence condition (2) (in combination with condi- 
tion (1)) of formula (1 1) implies that 

Vz E Fj : (-l)'j"eT(f(z) + Bk(z)) 5 0 ,  

and condition (ii) of Theorem 1 is satisfied. 0 

For multi-&ne systems on the unit cube the sufficient 
conditions stated in Theorem 2 differ only slightly from 
the necessary conditions in Proposition 3: for vertices 
(0, i z ,  . , . , i ~ )  of the facet z1 = 0 the necessary condition 

Viz , .  . . , iN E {0,1} : 

eT( f (O , i z , . .  . , i ~ )  + B ~ o ~ i * ~  .... i,) 2 0, 

is replaced by the strict inequality 

Viz, .  . . , i N  E (0, 1) : 

ey ( f (O , i z , .  . . , i ~ )  + Buo,iz ,..., i , )  > 0, 

to obtain a sufficient condition. 

Checldng the sufficient conditions in formula ( I  I )  of The- 
orem 2 requires the solution of 2" systems of N linear in- 
equalities in m unknowns: for each vertex of K N .  one sys- 
tem of N h e a r  inequalities in the unknown U E Rm. If 
a solution exists, construction of a multi-affine feedback is 
immediate, using formula (7). 

Remark 1. Conditions (I) and (2)  in formula (11) of nle- 
orem 2 provide polyhedral sets Ui, , . , . ,~ ,v  of contmls at 
the vertices (il , . . . , in.) that solve Problem I .  If all the 
sets Ui,,..,,ix are non-empty, then one can choose a rep- 
resentant u ~ , , , . . , ; , ~  f m m  each set and ~ o n ~ f r u c t  the feed- 
back contml using formula (7). An interesting special 
care is when nil ...., inEIO,l)  U; ,..... iN # 0. An elemem 
U e n , ?  .., i.vE{O,l)U, ,,..., i N  canbeusedasaconsfMf(in- 
dependent of the current state) control that solves Pmblem 
1. Note rlmt this is consistent with (7): ifui, ..... i ,  = U in 
all venires of a cube, then u(z)  = 8. This case might be ex- 
tremely useful for  practical sifuations when the stare is not 
available for  feedback. 

6 Case study: gene transcription control in Vino  
fischeri 

Vibriofischeri is a marine bacterium that can be found both 
as free-living organism and as a symbiont of some marine 
fish and squid. As a free-living organism, Vfischeri exists 
at low densities and appears to be non-luminescent. As a 
symbiont, the bacteria live at high densities and are, usually, 
luminescent. 

The luminescence in V fscheri is controlled by the tran- 
scriptional activation of the lux genes [9]. A detailed de- 
scription and mathematical modeling is given in [21, where 

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 28,2023 at 23:13:58 UTC from IEEE Xplore.  Restrictions apply. 



a conventional, highly non-linear, purely continuous model 
is compared to a lower dimensional, switched system with 
multi-affine dynamics in each mode. 

Under reasonable assumptions, the system of differential 
equations describing the dynamics of one mode of the sim- 
plified hybrid model is three dimensional z = [ZI 2 2  z 3 I T  

with two inputs U = [U, u2IT in the form given by (2) with 

kZz2 - klZIZ3 

k z z z  - klzlz3 - nz3 
klz l z3  - k 2 z 2  ] , B = [ H] f ( 4  = 

The state variables represent cellular concentsations of dif- 
ferent species and the parameters are binding, dissociation 
and diffusion rates: 

z1 = protein L U ~ R  (ml-3) 
z2 = complex Ai-LuxR (ml-3) 
z3 = autoinducer Ai(mlP3) 
kl = binding rate constant (30 l3m-'t-') 
k2 = dissociation rate constant (IO t-') 
n = diffusion constant (10 t - l )  

where m, I ,  and t are units for mass, length, and time, re- 
spectively. The control variable u1 could be physically rep- 
resented by a plasmid producing protein LuxR, while u2 

is an external source of autoinducer. We want to design a 
multi-affine feedback control so that all states in the rectan- 
gle 

RJ = {z= [ Z 1 Z * Z 3 ] T E d  11 5z< 5 2 ,  i = 1,2,3} 

are driven through the facet z2 = 2. In the larger hybrid 
system, this could correspond to steering the system so that 
the lux gene is switched on. Also, the controls are supposed 
to be constrained in the rectangle 

U = {ZO 5 u1 5 60, 1 5 u2 5 10) 

The vector field of the uncontrolled system (U = 0) is plot- 
ted in Figure 1 (a). We can see that the vector field already 
has a positive component along ez ,  as desired. On the other 
hand, the uncontrolled vector field would steer the system 
out of the rectangle through zI = 1 and z3 = 1, which is 
not desired. So, in this problem, we expect the controls to 
solve the "stay inside" condition. 

First, for simplicity, we change the coordinates so that the 
control problem is reduced to the unit cube K3. In this par- 
ticular case, this consists of translations zi = zi-- 1. In the 
unit cube the dynamics are described by i = f (z )  + Bu, 
where 

1 -kt + kz - k i i i  + kz:2 - k i i j  - k i i i r s  
k1 - k i + t i i i - k z r z + k i r s + k i i i i s  [ - k l + k z - n - k l i r + k 2 r Z - k l : s - - n ~ r - k l i l i s  

j ( ; )  = 

It is easy to see that 

eT+,,l.iz) > 0, -4 ' i l ( i I :o7i3)  < 0, i l r k  E {0,1}, 

mainly because the binding rate kt is significantly higher 
than the dissociation rate k2.  The two above conditions are 
equivalent to condition (1) in formula ( I  1) of Theorem 2 and 
prove that the vector field has a positive component along 
ez everywhere in K3, as observed at the beginning of this 
section. 

To make sure that the system does not leave the rectangle 
through any facet different from 22 = 1, we need to design 
controls. For facet 23 = 1, we require e:i I (<,,;>,I) 5 0 
which is equivalent to 

U!'' 5 7, ,U!" 5 6, U:,, 5 13, U;'' 5 12 (12) 

On the opposite facet z3 = 0, the "stay inside'' conditions 
- e T i  1 (i,.i2,0) 5 o translate to 

U!" >_ 3, ,U!'' 2 2, U;'' 3 6, U:'' 3 5 (13) 

FOI facet z1 = 1, eTi I [ l , i 2 , i s )  5 0 is equivalentto 

U;" 5 50, U:" 5 110, U:" 5 40, U:'' 5 100 (14) 

Finally, for z1 = 0, -e$ I (o,iz.iJ) 5 0 become 

U:'' 2 20, U?'' 2 50, upo 2 10, up1 2 40 (15) 

According to the above conditions, we can choose the con- 
trols at the vertices: 

Going back to the original coordinates, the multi-affine 
feedbackcontrolis givenby u(z) = [U~(Z),U*(Z)]~ with 

(16) 
Ui(Z) = - lo(Zz+21(-1+23)-423) ,  
U Z ( 2 )  = 2 1 ( 3 + 2 2 ( - 1 + 2 3 ) ) - ( - - 2 + 2 2 ) 2 3  

The controlled vector field is plotted in Figure 1 (b) 

Acarefulexaminationof (IZ)and(l3)showsthataconstant 
u2 = 6 solves the problem, according to Remark I .  We 
cannot say the same tbiig about ul, because the intersection 
of the allowed controls u1 at the vertices is empty, as it can 
be noticed from (14) and (15). 

The controlled vector field with u1 as in (16) and uz = 6 is 
given in Figure 1 (c). 

7 Concluding remarks 

For multi-&ne systems on the N-dimensional unit cube, 
necessary conditions were derived for the existence of a 
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1.21 
1.2 

I 

Figure 1: The orientation of the vector field,in the rectangle 1 5 z, 5 2, i = 1 , 2 , 3  together with some trajectories originating within: (a) 
the uncontrolled case, (b) the contmlled case using (16). and (c) the controlled case with 112 L 6 . 

continuous feedback law, that realizes the control objective 
of steering the state in finite time to a particular facet of the 
cube. These conditions consisi of linear inequalities on the 
inputs at the vertices of the cube. For the same control proh- 
lem also a set of (slightly stronger) sufficient conditions in 
terms of linear inequalities was obtained, and a method for 
constructing a continuous multi-affine state feedback law 
solving the reachability problem under consideration was 
described. The method can be applied to the control of hy- 
brid models of bioregulatory networks. A case study of gene 
transcription control for the bacterium Vibrio fischeri was 
presented. Such approaches may lead to novel methods for 
designing and engineering biological circuits. 
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