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Controlling a Class of Nonlinear Systems
on Rectangles

Calin Belta, Member, IEEE, and Luc C. G. J. M. Habets

Abstract—In this paper, we focus on a particular class of non-
linear affine control systems of the form _ = ( ) + , where
the drift is a multi-affine vector field (i.e., affine in each state com-
ponent), the control distribution is constant, and the control is
constrained to a convex set. For such a system, we first derive nec-
essary and sufficient conditions for the existence of a multiaffine
feedback control law keeping the system in a rectangular invariant.
We then derive sufficient conditions for driving all initial states in
a rectangle through a desired facet in finite time. If the control con-
straints are polyhedral, we show that all these conditions translate
to checking the feasibility of systems of linear inequalities to be sat-
isfied by the control at the vertices of the state rectangle. This work
is motivated by the need to construct discrete abstractions for con-
tinuous and hybrid systems, in which analysis and control tasks
specified in terms of reachability of sets of states can be reduced to
searches on finite graphs. We show the application of our results to
the problem of controlling the angular velocity of an aircraft with
gas jet actuators.

Index Terms—Aircraft control, convex analysis, hybrid systems,
nonlinear systems.

I. INTRODUCTION

THE central problems in formal analysis of systems are
reachability analysis and safety verification. The goal of

reachability analysis is to construct the set of states reached
by trajectories of the system originating in a given (possibly
uncountable) initial set. Safety verification is the problem of
proving that a system does not have any trajectory from a given
initial set to a given final (unsafe) set. For discrete systems with
a finite number of states, these problems are decidable, i.e., can
be solved by a computer in a finite number of steps. For contin-
uous and hybrid (i.e., described by both continuous and discrete
dynamics) systems, these problems are very difficult (in general
undecidable) because of the uncountability of the state space.

One way to solve formal analysis problems for continuous
and hybrid systems is to construct the set of states reached by
the system, or an over-approximation of this set, by working
directly in the continuous state space. Such methods are called
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direct and are not the subject of this paper. Our work is related
to the group of indirect methods, where the main idea is to map
the continuous or hybrid system to a discrete transition system
through an iterative partitioning procedure producing finer and
finer quotients, until the initial system and the discrete quotients
become equivalent with respect to reachability properties. This
procedure is called abstraction and the corresponding algorithm
is called the bi-simulation algorithm. If such an iterative refine-
ment procedure terminates, then the initial continuous or hybrid
systems and their discrete quotient are called bi-similar and the
reachability problem is called decidable. The bi-simulation rela-
tion was first introduced in [28], [23], formally defined for linear
control systems in [27], and for nonlinear systems in an abstract
categorical context in [14]. However, in [15], it has been shown
that reachability is undecidable for a very simple class of hybrid
systems. Several decidable classes have been identified though
by restricting the continuous behavior of the hybrid system, as
in the case of timed automata [3], multi-rate automata [1], [25],
and rectangular automata [15], [29], or by restricting the dis-
crete behavior, as in order-minimal hybrid systems [18], [19].
All these decidable classes are too weak to represent continuous
and hybrid system models that arise in practice. Then one might
be satisfied with sufficient abstractions, i.e., with a discrete quo-
tient that can be used to over-approximate the reachable set of
the initial system. But even finding the discrete quotient is not
at all trivial. Related work focuses on partitioning using linear
functions of the continuous variables, as in the method of pred-
icate abstractions [2], [30], or using polynomial functions as in
[30] and [10]. However, to derive the transitions of the discrete
quotient, one has to be able to either integrate the vector fields of
the initial system [2], or use computationally expensive decision
procedures such as quantifier elimination for real closed fields
and theorem proving [30], which severely limit the dimensions
of the problems that can be approached.

In this paper, we focus on a particular class of nonlinear affine
control systems of the form , where the drift
is a multi-affine vector field ( i.e., affine in each state compo-
nent), the control distribution is constant, and the control is
constrained to a convex set. This class of continuous dynamics
is rather large, and includes the celebrated Euler–Volterra [31]
and Lotka-Volterra [22] equations, attitude and velocity control
systems for aircraft [26] and underwater vehicles [4] (in this case
the control directions capture the axes about which the control
torques are applied), and models of genetic regulatory networks
(where product type nonlinearities model mass action kinetics
and the elements of capture permeability of membrane) [7],
[5]. For such systems, we define rectangular partitions of the
state space and use the relationship between the structure of the
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vector fields and the shape of the regions to solve two prob-
lems: Problem 1: Keep the system in a rectangle for all times
and Problem 2: drive the system through an exit facet in finite
time. In this paper, we show that if the control constraint set
is polyhedral, then the solutions to the above problems can be
parameterized by polyhedral sets. The main idea in constructing
solutions to Problems 1 and 2 is using a very interesting property
of multiaffine functions on rectangles: a multiaffine function is
uniquely determined by its values at the vertices of a rectangle
and its restriction to the rectangle is a convex combination of
these values. The solutions to Problems 1 and 2 enable one to
construct computationally efficient characterizations of decid-
ability of such systems. Indeed, a partitioned continuous system
is bisimilar with the discrete quotient produced by the partition
if and only if all initial states in a region either stay in the region
forever or transit in finite time to just one neighbor.

This work draws inspiration from [11]–[13]. In these works,
the authors study affine continuous dynamics on simplices. The
starting point for their results is an observation similar to the
one we use in this paper: an affine function is uniquely deter-
mined by its values at the vertices of a simplex and its restric-
tion to the simplex is a convex combination of these values. In
this paper, we extend these results to a larger class of contin-
uous dynamics, i.e., we allow for product type nonlinearities.
Moreover, we focus on a different partition geometry, which is
more attractive for large dimensional problems. Although trian-
gulations may be carried out in Euclidean spaces of any finite
dimension (see e.g., [20] and [8]), rectangular grids are easier
to work with, certainly in problems of higher dimension.

The rest of the paper is structured as follows. In Section II, we
introduce the notation and give some basic definitions, before
we formally state the problems in Section III. The interesting
properties of multi-affine functions on rectangles enabling the
framework of this paper are presented in Section IV. Based on
this, in Section V, we present the main theorems providing so-
lutions to the problems stated in Section III. Our approach is
illustrated in Section VI by an application to the control of an
aircraft with gas jet actuators. We conclude in Section VII with
final remarks and directions for future work.

II. PRELIMINARIES

Let and consider the -dimensional Euclidean space
. A full dimensional polytope is defined as the convex

hull of at least affinely independent points in . A
facet of is the intersection of with one of its supporting
hyperplanes. More generally, a face of is the intersection of

with several of its supporting hyperplanes. If the dimension
of the intersection is (with ) the face is called a

-face. In particular, all facets of are -faces, and the
vertices of are 0-faces.

An -dimensional rectangle in is characterized by two
vectors and ,
with the property that for all :

(1)

The set of vertices of is denoted by , and may be char-
acterized as

(2)

Let with . Then every -face of the
-dimensional rectangle , characterized by equations of

the form

or
...

...

or

where and for , is
isomorphic with an -dimensional rectangle. We are
particularly interested in facets. For , let

denote the indicator function

(3)

Then, has facets described by

(4)

for all , . The outer normal of facet
is given by

(5)

for all , , where ,
denote the Euclidean basis of .

We end the discussion on rectangles by noting that an ar-
bitrary facet has vertices , with

. Moreover, for an arbitrary vertex , the
facets containing it are given by , .
Definition 1 (Multiaffine Function): A multiaffine function

(with ) is a function in which each
of the components is a polynomial in the indeter-
minates , with the property that the degree of ,

, in any of the indeterminates is less
than or equal to 1. Stated differently, has the form

(6)
with for all and using the
convention that if , then .

For example, for and arbitrary , all multiaffine func-
tions have the form ,
where , .

Finally, note that if is an -face of , then the
restriction of to is a multiaffine function on an

-dimensional rectangle.
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III. PROBLEM FORMULATION

With the notation and definitions introduced in the previous
section, we are now ready to formulate the problems we study in
this paper. As already outlined in the Introduction, we consider
control systems of the form:

(7)

where the state is restricted to a rectangular region of
as defined in (1) and the input is constrained in a convex set

. The vector field is assumed to be multi-affine as
defined in (6) and is a constant matrix of control di-
rections. Note that the systems we consider are a particular class
of nonlinear affine control systems [16], which have the general
form , where is a “drift” vector field and

is a matrix spanning the control distribution. Therefore, in
this paper, we consider a particular class of drift, and constant
control distributions.

We first consider the problem of designing bounded feedback
control laws that keep the state trajectories of the closed-loop
system in the rectangle .

1) Problem 1 (Rectangular Invariant): Determine a feedback
control law for system (7), such that the corre-
sponding closed-loop system is positively invariant on the rec-
tangle .

The positive invariance condition in the above problem means
that, if a state trajectory of the closed-loop system satisfies

, then for all .
We then consider the problem of controlling system (7) so

that in finite time the state is driven to a desired facet of ,
without leaving before this desired facet is reached.

2) Problem 2 (Control to a Facet): Determine a feedback
control law for system (7) such that, indepen-
dent of the initial state, all state trajectories of the closed-loop
system leave through a desired facet in finite time, mean-
while guaranteeing that a trajectory does not leave the rectangle
through any of the the remaining facets.

To solve Problems 1 and 2, we restrict our attention to mul-
tiaffine feedback controllers . In this case, the feedback
law is automatically continuous and bounded on , and the
closed-loop system is multiaffine.

IV. MULTIAFFINE FUNCTIONS ON RECTANGLES

In this section, we state and prove an interesting property of
multiaffine functions on rectangles: a multiaffine function (6)
defined on an -dimensional rectangle (1) is uniquely deter-
mined by its values at the vertices. Moreover, inside the rec-
tangle, the function is a convex combination of its values at the

vertices. These results constitute the basis for the main theorems
stated and proved in Section V, which provide solutions to Prob-
lems 1 and 2.

Lemma 1: Let be an -dimensional rectangle with
as vertex set. Let be a multiaffine function, and
assume that

(8)

Then .
Proof: (By induction). : If and

and is affine, then .
Induction Step: There exist multiaffine functions

and such that

Then, for all vertices
of the -dimensional rectangle

we have

(9)

Subtraction of both equations yields
, and since , we obtain

for all .
This implies that also for all

. By the induction hypothesis
and , hence .

Proposition 1: Let be an -dimensional rectangle in
, and let be a map, relating every vertex

of to a vector in . Then there exists a unique multiaffine
function such that

(10)

Moreover, if for every the image of
under is denoted by and ,

, is given by (3), then the multi-affine map
realizing (10) is given by (11), as shown at the

bottom of the page.

(11)
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Proof: It follows from (3) that, for every
, the product

contains either a factor or a factor
; if , then the first factor is present,

and if , then the second factor is present. This proves
that defined in (11) is multiaffine. Furthermore, for every
fixed

if
if

So, indeed for
all .

If is a multiaffine function satisfying (10),
then is multiaffine, and for all

. By Lemma 1, , hence, defined in
(11) is unique.

Proposition 2: In every point , the value of a
multi-affine function is a convex combination
of the values of at the vertices of .

Proof: According to Proposition 1 we have (12), as shown
at the bottom of the page, and by applying the same proposition
to the identity function , which is of course a multiaffine
function from to

(13)
Since for all , it follows that for

, the product

(14)

Hence, (12) and (13) show that is a convex com-
bination of the values of at the vertices of .

Corollary 1: Let be a multiaffine function
on the -dimensional rectangle . Let ,
and let be the face of of lowest dimension of which

is an element. Then, is a convex
combination of the values of at the vertices of .

Lemma 2: Let and . Then,
everywhere in if and only if , for all

. stands for any of , , , , .
Proof: The necessity follows immediately from the fact

that the vertices belong to . The sufficiency is
also immediate from the fact that is a scalar multiaffine
function and, therefore, its restriction to the rectangle is a
convex combination of its values at the ver-
tices .

It is easy to see that Lemma 2 remains valid if is restricted
to a facet of .

V. CONTROL OF MULTIAFFINE SYSTEMS ON RECTANGLES

The following theorem gives a complete description of the
solution to Problem 1 under the assumption that the feedback
controllers are restricted to multiaffine functions of the state.
It basically states that there exists a multiaffine feedback con-
troller solving Problem 1 if and only if , , and are
such that, at each vertex , we can choose a control

so that the velocity of the closed-loop system
at the vertex has negative projec-

tions along the outer normals of all facets containing that vertex.
Formally, we have the following.

Theorem 1 (Equivalent Condition for Problem 1): There ex-
ists a multiaffine feedback control law for
system (7) such that all state trajectories of the corresponding
closed-loop system that start in the rectangle , remain in the
rectangle for all times if and only if the following sets are
nonempty:

(15)

for all .
Proof: For sufficiency, if all the sets are

nonempty, than we can choose arbitrary
and let be the unique multiaffine function

on taking the values at the vertices. Such a
function can be constructed using (11). By Proposition 2,
is a convex combination of everywhere in , and
since and is convex, it follows that ,

.
The vector field of the closed-loop system

is a multiaffine function on with values at the ver-
tices . The inequalities in-
side (15) state that, for an arbitrary vertex ,

has a negative projection along
the outer normals of all facets containing the vertex. This is

(12)
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equivalent to saying that, for an arbitrary facet, the vector field
of the closed-loop system is oriented inside the facet at the
vertices. Formally, for any facet , we have

for all with . From Lemma 2, we
conclude that

(16)

for all . In combination with the Lipschitz conti-
nuity of the velocity vector field , condition (16)
guarantees that the state of the closed-loop system cannot leave
the rectangle through any of the facets (see, e.g., [13, App. A]
for a similar proof in case of systems with affine dynamics). This
proves the first part of the equivalence.

For necessity, assume there exists a multiaffine control law
solving Problem 1. Then, we take
and we will prove that .

Of course, . We only need to show that

for all and . If we assume
by contradiction that there exists a vertex and a
direction so that the previous inequality is false
(i.e., satisfied with “ ”), then by continuity this implies that
there exists a whole neighborhood of in in
which has a strictly positive projection along

. Then, there will exist trajectories of the system leaving
the rectangle through facet . This gives a contradiction
and the theorem is proved.

Next, we give sufficient conditions for the existence of
a solution to Problem 2: If , , and are such that,
at each vertex , we can choose a control

so that the velocity of the closed-loop
system at the vertex has a strictly
positive projection along the outer normal of the exit facet
and a negative projection along the outer normals of all facets
containing that vertex different from the exit facet, then we can
construct a solution of Problem 2. Formally, we have the
following.

Theorem 2 (Sufficient Conditions for Problem 2): There ex-
ists a multiaffine feedback control law for system
(7) such that all state trajectories of the corresponding closed-
loop system that start in the rectangle are driven through an
arbitrary facet in finite time, without crossing other
facets first, if the following sets are nonempty:

and

for all (17)

for all vertices .

Proof: Choose arbitrary and let
be the unique multiaffine function on taking the values

at the vertices as shown in (11). By Proposition 2,
is a convex combination of everywhere in ,

and since , it follows that , .
First, using arguments similar to those in the proof of The-

orem 1, we note that the state of the closed-loop system cannot
leave the rectangle through any of the facets different from

. Indeed, from the second line of (17), we have

for all , , which means that the vector
field corresponding to the closed-loop system has negative pro-
jection along the outer normals of all facets different
from the exit facet and the one opposite to it in the
th direction. Using the convexity property of multiaffine func-

tions in the form of Lemma 2, and the fact that the vector field
is Lipschitz continuous, we conclude that the state

of the closed-loop system cannot leave the rectangle through any
of these facets. For the facet opposite to , since its outer
normal is , the inequality is strict according to the first
line of (17). Therefore, the state trajectory of the closed-loop
system can only leave through .

Since

for all , by Lemma 2, we conclude that there

exists an such that every-
where in . Therefore, the state trajectories of the closed-loop
system have a strictly positive speed in the direction of
and the Theorem is proved.

Remark 1: Under the conditions of Theorem 2, the state of
the closed-loop system leaves the rectangle the very first time
it hits the exit facet. On the exit facet, trajectories cannot turn
back into the rectangle .

Remark 2 (Necessary Conditions for Control to a Facet): The
sufficient conditions in Theorem 2 are somewhat stronger than
necessary ones. For example, if one additionally requires that
the property described in Remark 1 has to be satisfied, one can
easily prove along the same lines that the sufficient conditions
become necessary if we relax the requirement that at the vertices
opposed to the exit facet the projection of the closed-loop vector
field along the outer normal of the exit facet is only positive as
opposed to strictly positive. On the other hand, it is also possible
to relax the property described in Remark 1 that all trajectories
leave immediately upon reaching the exit facet. Instead,
one may allow that some trajectories turn back into before
they leave the rectangle through the required exit facet on a later
occasion. In this case, it is not necessary that in all vertices of
the exit facet the vector field of the closed-loop system has a
positive component in the direction of .

Remark 3 (Computational Issues): The sets in
Theorem 1 and in Theorem 2 represent allowed sets
for controls at the vertices. If these sets are nonempty, any choice
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of control values in these sets will lead to a perfectly
valid multiaffine feedback control law by (11). If
the allowed control set is a polyhedral subset of , then
checking the nonemptiness of and re-
duces to checking the feasibility of a set of linear inequalities,
for which there exist several computationally powerful algo-
rithms and software packages (see, e.g., [9] and [17]).

Remark 4 (Constant Feedback Control): An interesting spe-
cial case of Theorem 2 is when

An element in the aforementioned set can be used as a constant
(independent of the current state) control that solves Problem 2.
Note that this is consistent with (11). Indeed, if
for all , then due to (13). This case
may be extremely useful in practical situations, where the state

is not available for feedback.

VI. EXAMPLE: ANGULAR VELOCITY CONTROL

In this section, we first make the important observation that
the class of systems studied in this paper includes attitude and
angular velocity control systems for aircraft and underwater ve-
hicles. We then show a numerical example for angular velocity
control of an aircraft with gas-jet actuators.

A. Aircraft and Underwater Vehicles

Consider an arbitrarily shaped aircraft with a body fixed
frame in motion with respect to a world frame . Let

be the inertia matrix of the aircraft with respect to its body
frame and its mass. Let be the axes about
which the corresponding control torques are applied
by means of opposing pairs of gas jets. Let denote the angular
velocity in the body frame, the translational velocity of the
origin of the body in body coordinates, and the total force
applied to the body at the center of mass expressed in the body
frame. Then, the kinematic equations of the aircraft can be
written as

(18)

(19)

Similarly, for an underwater vehicle modeled as a neutrally
buoyant rigid body submerged in an ideal fluid, if the center
of gravity of the vehicle coincides with the center of buoyancy,
then the equations of motion can be written as [21]

(20)

(21)

where is an added mass matrix which incorporates the mass
of the body and the mass of the fluid replaced by the body [21]
and all the remaining variables have the same meaning as before.

The position and orientation in the world frame of both
systems described previously are identified with , the Lie

group of rigid body displacements in

(22)

where denotes the displacement of the origin of the body frame
in and its rotation

(23)

The equations relating their positions and velocities are

(24)

(25)

where is the skew symmetric operator.
If quaternions ( denotes the unit

sphere in ) are chosen to parameterize , (24) can
be written as

(26)

where are the components of the angular velocity
.
There are situations, especially in space missions, in which

one is not interested in controlling the pose (displacement and
rotation) of a spacecraft or underwater vehicle in a reference
frame, but rather in regulating the body velocities of translation
and rotation. In this case, (18) and (19), respectively (20) and
(21), can be seen as control systems with states and
controls . However, there are several situa-
tions in which one is interested in controlling only the attitude
of a vehicle in a given world frame, and then (19) and (26) can
be seen as a control system with state and control
variables . The main observation in this sec-
tion is that all control systems mentioned before are affine con-
trol systems with multi-affine drift and constant control distri-
bution as described in (7). The set captures the physical con-
trol bounds. Using the results of this paper, we can approach
the rigid body control problem from a totally different perspec-
tive. Our approach is somewhere in between stabilization to a
point and interpolation between two end positions in the con-
figuration space. We propose a feedback control law, that may
contain some discontinuities, which allows for a “maneuvering”
procedure (consisting of continuous trajectories), i.e., driving a
rigid body attitude or angular velocity control system between
arbitrary initial and final regions of the state–space, while satis-
fying bounds on inputs and state. An illustrative task that we can
solve with this procedure is the following. Given an aircraft or
underwater vehicle with gas jet actuators and physical bounds
on the control torques, which is initially rotating at a certain
angular velocity (not necessarily precisely known), we want to
drive it towards a final, desired angular velocity. We also require
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that a priori given bounds on the velocity are satisfied during the
transition. After the desired region of the state space is reached,
one can use a locally stabilizing control law [6], [24], if conver-
gence to a specific state is required. Of course we need to make
sure that the local region of attraction includes the target region
of our algorithm. Note that globally stabilizing controllers exist
as well, but using those there is no way one can guarantee that
the trajectories converging to a desired equilibrium satisfy the
required bounds on inputs and state. Especially the possibility
to guarantee that certain bounds on inputs and velocities are re-
spected by the feedback controller, makes the design method
proposed in this paper attractive in a large area of applications.

B. Maneuvering in the Angular Velocity Space

Consider a parallelepiped aircraft with gas-jet actuators. As-
sume that the frame is fixed at the center of the aircraft and
aligned with its principal axis, so that .
Assume that , i.e., the system is con-
trollable. Without loss of generality, we will take the control
directions as being the Euclidean basis vectors ,
and the control will be reparameterized by along these direc-
tions. Then, the angular control system (19) takes the form of
the known controlled Euler’s equations

(27)

Assuming that the aircraft spans between and along the
direction ( ) of the body frame , we have

(28)

Finally, the controls are limited to take values in . Con-
trol system (27) is obviously of the form (7) with , the
multiaffine drift

control directions , and set of admissible controls
.

Consider the following control scenario. Assume that the air-
craft is initially rotating around the -axis of its body frame
at speed . The goal is to control the aircraft so that it eventu-
ally rotates around its -axis at the same speed and remains in
this state for all times. Moreover, while transiting from the initial
to the final state, the aircraft is forbidden to develop rotational
speed around its -axis.

To capture the uncertainty on knowledge of the state as well
as sensor noise, we allow for deviations of amplitude in all
directions. Under this assumption, the initial state of rotation is
assumed to be the collection of all states in a small cube centered
at and with side . The amount of allowed speed

of rotation around the -axis is assumed to be and the goal is
to drive and keep the system in a small cube centered at

, and with side , where is a small number.
Using the results of this paper, we can provide a solution to this
problem in terms of a feedback control law by defining a set of
rectangles in the velocity space and solving control problems of
the type Problems 1 and 2.

Explicitly, according to the specifications of the task, consider
a set of four pairwise adjacent rectangles as shown in Fig. 1(a).
The task is accomplished if the following controllers are de-
signed.

• Controller 1: “Drive” the system down along the -axis
while keeping the absolute values of and less than .
The solution to this problem is found by applying Theorem
2 to Rectangle 1 defined by
with exit facet [see Fig. 1(a)].

• Controller 2: “Take the turn” around origin. This control
law can be derived by applying Theorem 2 to Rectangle 2
defined by with exit facet
[see Fig. 1(a)].

• Controller 3: Drive the system along the -axis while
keeping the absolute values of and less than . The
solution is found by applying Theorem 2 to Rectangle 3
defined by with exit facet

[see Fig. 1(a)].
• Controller 4: Keep the system in a cubic box centered at

and side . The controller is designed by ap-
plying Theorem 1 to Rectangle 4 defined by

[see Fig. 1(a)].
We used the following numerical data:

A possible choice of Controllers 1–4 is given later. ,
represent the controls at the vertices of Rectangle

where Controller is defined, obtained as a solution of the set
of linear inequalities (17) for and (15) for .

, is the feedback control valid everywhere in
the corresponding rectangle, uniquely determined by its values

at the vertices.
1) Controller 1 (Defined in Rectangle 1):
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Fig. 1. (a) Region in the angular velocity space (! ; ! ; ! ) corresponding to the maneuvering task. The small rectangle on the ! – axis in the upper part
represents the initial state of rotation about the body z – axis. The small rectangle on the ! – axis represents the final state of rotation about the body x – axis.
The thick line represents a closed-loop trajectory starting at (0; �; ! ). (b) Controls corresponding to the trajectory shown in (a).

2) Controller 2 (Defined in Rectangle 2):

3) Controller 3 (Defined in Rectangle 3):

4) Controller 4 (Defined in Rectangle 4):
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Fig. 2. Vector field of the closed-loop system is continuous everywhere, except on the boundary between Rectangles 1 and 2. In Rectangles 2 and 3, the feedback
law is the same. On the common facet of Rectangles 3 and 4 again a switch to another feedback law takes place, but the vector field of the closed-loop system is
continuous here because both feedback laws coincide on this common facet.

It is easily verified that on the common facet of Rectangles 2
and 3, and also on the common facet of Rectangles 3 and 4, the
vector field of the closed-loop system is continuous. In Rect-
angles 2 and 3, the feedback laws are even the same, and no
switch between different feedbacks is required, when the state
trajectory crosses the common facet of these two rectan-
gles. On the common facet of Rectangles 3 and 4, i.e., the facet

, the situation is slightly different. Here a switch
from feedback law to feedback law occurs, but since both
feedback laws coincide on the common facet, this does not lead
to a discontinuity in the vector field of the closed-loop system.
Note that a switch from feedback law to feedback law is
required, in order to guarantee that after entering Rectangle 4,
the state trajectory will never leave this rectangle anymore.

On the common facet of Rectangles 1 and 2, i.e., the facet
, the feedback laws and do not coincide. This leads

to a discontinuity in the vector field of the closed-loop system.
So, in order to avoid ambiguity of the definition of the feed-
back law on this common facet, one has to specify it explicitly.
We choose the feedback law on this common facet to be equal
to . In this way, it is guaranteed that the constructed feed-
back law solves the given reachability problem. Indeed, feed-
back on Rectangle 1 guarantees that every trajectory starting
in Rectangle 1 reaches facet in finite time, without
leaving through other facets first. On the common facet ,
one switches (discontinuously) to feedback law . Since the
component of the closed-loop vector field in the direction of

remains negative, the trajectory will cross the common facet
, and feedback guarantees that the trajectory

will cross the common facet of Rectangle 2 and Rectangle 3, and
reaches Rectangle 4 in finite time. After a (continuous) switch
to feedback law , the state trajectory will remain in Rectangle
4 forever.

Note that the feedback law is constructed in such a way
that any state trajectory of the closed-loop system will only
cross the common facet of two rectangles once, because on
both sides of the common facet, the closed-loop vector field
is pointing in the same direction w.r.t. the normal vector of
this common facet.

A trajectory of the closed-loop system in the angular velocity
space startingfrom isshownforillustration
in Fig. 1(a). It can be seen that all specifications are satisfied,
i.e., the trajectory travels through Rectangles 1–3 and stabilizes
in Rectangle 4. The controls , , and producing this
trajectory, which are plotted in Fig. 1(b), are bounded in
as required. It is also interesting to note that the inputs
and are continuous everywhere. This follows from the fact
that on common facets the definition of the feedback laws
for inputs and coincide. The only discontinuous input
is ; as soon as at Rectangle 2 is reached, it switches
from 0 to 0.5. The (dis)continuity of the closed-loop vector
field and the continuity of the trajectory are also illustrated
in Fig. 2, where the regions around the small Rectangles 2
and 4 are zoomed in.

Remark 5: Note that the overall controller constructed in this
example is a piecewise affine controller. This is a coincidence,
caused by the particular choice of the input values at the vertices.
A different choice of these input values leads to a different con-
trol law, that, in general, will be piecewise multiaffine instead of
piecewise affine.

VII. CONCLUDING REMARKS

In this paper, we start from the important observation that
a multi-affine function is uniquely determined by its values at
the vertices of a full dimensional rectangle and the restriction
of the function to the rectangle is a convex combination of
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these values. Using these properties, we derive necessary and
sufficient conditions for the existence of a multiaffine feedback
law keeping the state of an affine control system with multi-affine
drift and constant control distribution in a rectangle. We also
derive sufficient conditions for driving all state trajectories
of such a system through a desired facet of a rectangle in
finite time. If the control constraints are polyhedral, we show
that all these conditions translate to solving sets of linear
inequalities.

In the future, we will use these results to develop a frame-
work for computationally efficient construction of discrete ab-
stractions for continuous and hybrid systems with multiaffine
dynamics. Specifically, using iterative rectangular partitions and
the results presented in this paper, we want to construct dis-
crete quotients that are either equivalent with continuous or hy-
brid systems with respect to reachability properties, or over-ap-
proximate their reachable sets. Even though the class of sys-
tems that we consider in this paper is rather large, including
Euler–Volterra, and Lotka–Volterra equations, attitude and ve-
locity control systems for aircraft and underwater vehicles, as
well as models of biomolecular networks, in the future we will
try to extend these results to more complicated dynamics, such
as polynomial dynamics.
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