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Abstract— We address the problem of modeling and controlling
a swarm of fully actuated point-like robots in three dimensions
by generalizing the planar framework from [1]. We define a
nine-dimensional abstraction of the swarm that has a product
structure of the six-dimensional Euclidean group and a three-
dimensional shape, and is independent of the number of robots.
The group captures the pose of an ellipsoid spanning the swarm
with semiaxes given by the shape variables. The overall abstract
description is invariant to robot permutations. In addition,
the shape is also invariant to left actions of the group. This
description allows one to define and control the behavior of the
swarm at a high level, with automatic generation of individual
robot control laws. We present simulation results for controlling
swarms of rotorcrafts.

I. INTRODUCTION

As a result of advances in computation, communication,

sensor, and actuator technology, it is now possible to build

teams of hundreds of small and inexpensive ground, air, and

underwater robots. Such swarms of autonomous agents pro-

vide increased robustness to individual failures, the possibility

to cover wide regions, and improved computational power

through parallelism. However, planning and controlling such

large teams of agents with limited communication and compu-

tation capabilities is a difficult problem that has received much

attention from various communities. Even though, in some

cases, it was observed or proved that local interaction rules in

distributed natural or engineered multi-agent systems produce

global behavior [6], [8], [16], some fundamental questions

still remain to be answered. What is a good description that

captures the essential features of a swarm? How do we specify

its behavior? How can we reduce the size of the planning and

control problem to make it computationally feasible?

One way of reducing the dimension of the control problem

for large numbers of robots is to require them to conform

to a rigid virtual structure [2], [5]. In this case, the motion

planning problem is reduced to a left invariant control system

on SE(3) (or SE(2) in the planar case), and the individual

trajectories are SE(3) (SE(2)) - orbits. Most of the recent

works on stabilization and control of virtual structures model

formations using formation graphs [3], [15], [17], [18]. The

controllers guaranteeing local asymptotic stability of a given

rigid formation can be derived using standard techniques such

as input-output linearization [3], input-to-state stability [19],

Lyapunov energy-type functions [4], [15], and biologically-

inspired artificial potential functions [14]. Virtual structures

unnecessarily constrain the problem, making this approach

inappropriate for tasks such as obstacle avoidance, passing

of narrow tunnels, etc. Also, graph formulations and leader-

follower architectures require identification and ordering of

robots, which makes the overall architecture sensitive to fail-

ures.

The rigidity assumption is relaxed in an attempt to pro-

duce optimal trajectories in a geometrical framework in [2],

however the amount of computation becomes prohibitively

large. The notions of invariance with respect to world frames

and permutations of robots are properly approached in shape

theory in the well known “n-body problem,” where it is

agreed that the coordinates divide into internal (shape) and

orientational coordinates [7]. However, in application it is not

clear how to construct shape coordinates explicitly, unless they

are local or the problem is restricted to three or four bodies

[10], [11], [13]. More recently, some of these ideas were

applied to robotics [20]. However, this work is focused on

constructing maximal shape spaces, and therefore is restricted

to very small teams of robots. The problem of constructing an

abstract description of a planar swarm with a product structure

of a group and a reduced shape space whose dimension does

not scale with the number of robots is approached in [1].

In this paper, we extend the results from [1] to three-

dimensional spaces. For an arbitrarily large swarm of fully

actuated robots in space, we construct a 9-dimensional ab-

straction A with a product structure of group G and shape S,

i.e., A = G × S. The group G is the 6-dimensional SE(3),
which captures the gross position and orientation of the swarm

in a world frame, while the 3-dimensional shape space S is

the general shape of the swarm. The overall abstract space

is invariant to permutations of robots. Additionally, the shape

is invariant to actions of SE(3). We show that the swarm

control problem can be correctly reduced to a left invariant

control system in SE(3) and the control of shape. Moreover,

these features can be controlled independently. The abstraction

that we construct provides a description of the region in the

space occupied by the swarm in terms of a spanning ellipsoid

with semi-axes proportional to s1, s2, s3 and pose (R, d) in

the world frame.

We will distinguish between high level planning or control

via a supervisory agent and low level control for avoiding
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collisions, maintaining formation and conforming to dynamic

constraints. This distinction, which is also used by others (for

example, [9]) is important for deriving decentralized control

laws. Our work is unique in that our abstraction is derived from

the two intrinsic geometric quantities, the Euclidean group

variable, g ∈ G and the shape, s ∈ S, and it provides a

natural representation for planning at the higher level.

From a theoretical and computational point of view, gener-

alizing the results from [1] to 3D raises several challenges. The

main issue is that there is a fundamental difference between

SO(2), the one-dimensional group of rotations in the plane,

and SO(3), the 3-dimensional group of rotations in space.

In contrast to [1], we are not able to derive an analytical

expression for rotation in coordinates, and we do not provide

a closed form expression for the abstraction map. However,

we derive an expression for the tangent map connecting the

velocity in the large dimensional space of the swarm and the

control variables in the abstract space. From an application

point of view, extending [1] to 3D gives one the opportunity

to model and control spatial swarms, such as large groups of

micro UAVs and UUVs.

The remainder of the paper is organized as follows: Section

II details some notation and necessary preliminary definitions.

Section III describes the general problem and defines a set of

requirements to be resolved in the following sections. The

abstraction is presented in Section IV. Sections V and VI

provide the derivation of the control law and a discussion of

the properties and effectiveness of the algorithm. Section VII

presents simulation results. We conclude with final remarks in

Section VIII.

II. NOTATION AND PRELIMINARIES

For any vector ω = (ω1, ω2, ω3) ∈ R
3, we denote by ω̂ ∈

R
3×3 its skew-symmetric form, i.e.,

ω̂ =

⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (1)

For ζ = (ω, v) ∈ R
6, ω, v ∈ R

3, we use the notation ζ̂ to

denote the following 4 × 4 matrix

ζ̂ =
[

ω̂ v
0 0

]
. (2)

The set of all rotations in R
3 is denoted by

SO(3) =
{
R |R ∈ R

3×3, RRT = I, detR = 1
}

,

while the set of rigid body displacements in R
3 is given by

SE(3) =
{

g | g =
[

R μ
0 1

]
, R ∈ SO(3), μ ∈ R

3

}
. (3)

It is well known that both SO(3) and SE(3) are matrix Lie

groups. The Lie algebras of SO(3) and SE(3), denoted by

so(3) and se(3) [12] are defined as

so(3) = {ω̂ |ω ∈ R
3} (4)

and

se(3) = {ζ̂|ζ = (ω, v), ω, v ∈ R
3}, (5)

respectively.

Given a curve R(t) ∈ SO(3) an element ω̂(t) of the Lie

algebra so(3) can be associated to the tangent vector Ṙ(t) at

an arbitrary point t by:

ω̂(t) = RT (t)Ṙ(t). (6)

Similarly, for g(t) = (R(t), μ(t)) ∈ SE(3) an element ζ̂(t)
of the Lie algebra se(3) can be associated to ġ(t) by:

ζ̂(t) = g−1(t)ġ(t) (7)

Conversely, equations (6) and (7), written as Ṙ = Rω̂ and

ġ = gζ̂, can be seen as a left invariant control system on

SO(3) and SE(3), respectively.

III. PROBLEM FORMULATION AND APPROACH

Consider a set of N point-like robots described by position

vectors qi, i = 1, . . . , N in a world frame {W} of a three-

dimensional Euclidean space R
3. We assume that the robots

appear at a high level as kinematically controlled and fully

actuated, i.e., they are described by control systems of the

form

q̇i = ui, i = 1, . . . , N, (8)

where qi ∈ R
3, ui ∈ R

3. We collect all the robot states in

q = [qT
1 , . . . , qT

N ]T ∈ R
3N (referred to as the configuration of

the “swarm”) and the robot controls in u = [uT
1 , . . . , uT

N ]T ∈
R

3N . To recover the individual states and controls, we define

the canonical projection πi(q) = qi, πi(u) = ui, i = 1, . . . , N .

Equations (8) can therefore be written as:

q̇ = u. (9)

Swarming tasks are usually specified in terms of a small set

of essential features, while the exact behavior of each robot is

not of interest. Our goal is to find an abstract description of

the swarm that is rich enough to accommodate a large class

of tasks, and small enough to make the planning and control

problem computationally feasible. We look for abstractions

which have a product structure of a Lie group capturing the

pose of the team in the world frame and a shape, which is

an intrinsic description of the team, invariant to the world

coordinate frame. We will require that the group part can

be controlled separately from shape. In our view, the idea of

having a coordinate-free definition of the shape together with

the fact that the shape and group control laws are decoupled

is fundamental in formation control. Without knowing the

coordinates of the robot in the world frame {W}, only the

shape variables can be measured and controlled using on-board

sensors of the robots.

Coordinates of geometrical objects describing the region

occupied by the robots can serve as abstract descriptions

of the team. For example, in [1], it is shown that a large

class of planar tasks can be accomplished by controlling the

pose (position of the center and orientation) and semi-axes
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Fig. 1. Control and communication architecture. A supervisory agent
prescribes the abstract state trajectory a(t) and communicates that state to
each robot Ri. Each robot requires knowledge of its position qi and a(t) in
order to calculate and apply its individual control law.

of a spanning ellipse, while making sure that the robots stay

inside it. In this case, the Lie group, SE(2), is the set of all

translations and rotations in plane and the shape is R
2. Inspired

by this idea, in three dimensions, we look for abstraction maps

φ : R
3N → SE(3) × R

3, φ(q) = a = (g, s) (10)

where a is called the abstract state, g is the group variable,

and s is the shape variable. We require that g be the pose of

a spanning ellipsoid, while s gives a description of its shape.

The invariance property with respect to changes in the world

frame can formally be written as

φ(q) = (g, s) ⇒ φ(ḡq) = (ḡq, s), (11)

where ḡq represents the block diagonal action of the group

element ḡ on the configuration q ∈ Q and ḡg represents the

left translation of g by ḡ using the composition rule on the

group G.

To control the essential features (i.e., the abstract state), we

design feedback control laws for group ug : SE(3) → R
6 and

shape us : R
3 → R

3. The resulting control systems can now

be written in the form

ġ = gûg (12)

and

ṡ = us, (13)

respectively. The individual robot control laws (8) are sought

in the form

ui = ui(qi, a), i = 1, . . . , N. (14)

In other words, at each time instant the control for robot

i depends on its own state qi and the abstract state a, and

does not explicitly depend on any of the other robot states.

The dependence on a can be explicit or through the feedback

control laws ug(q) and us(s). While this approach appears

to require a centralized communication architecture, it only

requires partial state feedback. The abstract state can be

estimated by a supervisory agent (for example, a blimp-like

mother ship for a swarm of UAVs) as shown in Fig. 1. If the

supervisor can measure and estimate (for example, using a

camera and GPS) the abstract state, a, and broadcast it to all

the robots, then each robot can compute its own control using

its state and equation (14). Alternatively, each robot can use

its own sensors with a decentralized estimator to estimate the

abstract state.

The two control systems (12) and (13) are called decoupled
if, in the closed loop control system (8), (14), the group

control ug does not affect the shape s and the shape control

us does not affect the group variables g through the map (10).

If decoupling is achieved, one can move a swarm in space

while preserving its shape, or can keep the swarm in place

and change its shape.

Finally, since the abstract state captures the interesting

features of the swarm, we want to make sure that, during the

design process, we do not allow the swarm to spend energy in

motions which are captured in the abstract space. In other

words, we require that ȧ = 0 if and only if q̇ = 0. To

summarize, in this paper we consider the following problem:

Problem 1: Find an abstraction (10) of the swarm and robot

control laws (8) so that

(i) The abstraction provides a description of the region in

space spanned by the swarm and is invariant to robot

permutations and changes in the world frame,

(ii) The group and shape variables can be controlled sepa-

rately,

(iii) The velocity in the abstract space is zero if and only if

the velocity of the swarm is zero,

(iv) The control law of an individual robot depends only on

its own state and the abstract state.

IV. ABSTRACTION AND PHYSICAL SIGNIFICANCE

We denote the group part g ∈ SE(3) of the abstract state

a as g = (R,μ), where R ∈ SO(3) is the rotational part and

μ ∈ R
3 is the translational part. For an arbitrary configuration

q ∈ Q, we define the translational part of the group as

μ =
1
N

N∑
i=1

qi ∈ R
3. (15)

Let

ri = [xi, yi, zi]T = RT(qi − μ), i = 1, . . . , N. (16)

The rotational part R ∈ SO(3) (which is three-dimensional)

is defined by the following three equations:

N∑
i=1

xiyi =
N∑

i=1

xizi =
N∑

i=1

yizi = 0. (17)

In this paper, we restrict our attention to a three-dimensional

shape space s = (s1, s2, s3) defined by

s1 =
N∑

i=1

x2
i

N − 1
, s2 =

N∑
i=1

y2
i

N − 1
, s3 =

N∑
i=1

z2
i

N − 1
. (18)

The dimension of the abstract space SE(3)× R
3 is therefore

nine, independent of the number of robots. The rotation R
defined by equations (17) can be seen as the rotation diago-

nalizing the inertia tensor of the system of particles qi with

respect to the centroid and orientation {W}, while (N −1)s1,
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(N−1)s2, (N−1)s3 are its eigenvalues. In this interpretation,

the invariance of the abstraction with respect to changes in the

world frame is apparent. Also, since only “democratic” sums

over all robot indices are involved in equations (15), (17), and

(18), it is easy to see that the definitions of group and shape

are invariant to permutations of robots as well, as required in

Problem (1).

Let

Xw =
N∑

i=1

(qi − μ)(qi − μ)T (19)

denote the matrix of second moments of the swarm in the

world frame {W}. By (16) and (17), we have

Xw = RXbR
T, (20)

where

Xb =
N∑

i=1

riri
T =

N∑
i=1

⎡
⎣ x2

i 0 0
0 y2

i 0
0 0 z2

i

⎤
⎦ . (21)

Although the abstraction does not require the swarm to

be distributed in any particular manner, a normal distribution

permits the definition of a physical intpretation that is useful

in application and offers an intuitive understanding of the

abstraction. Let

Σ =
1

N − 1
Xw. (22)

μ and Σ given by (15) and (22) can be interpreted as sample

mean and covariance of a random variable with realizations

qi. If the random variable is known to be normally distributed,

then, for a sufficiently large N , μ and Σ converge to the real

parameters of the normal distribution. R defined by Eqns. (17)

is the rotation that diagonalizes the covariance and s1, s2,

s3 are the eigenvalues of the covariance matrix. This means

that, for a large number of normally distributed robots, μ, R,

s1, s2, and s3 give the pose and semiaxes of a concentration

ellipsoid. Specifically, the contours of constant probability p
for a trivariate normal distribution with mean μ and covariance

Σ are described by

(x− μ)TΣ−1(x− μ) = −(3 ln(2π) + 2 ln(p
√

s1s2s3)). (23)

The ellipsoid in (23), called the equipotential or concentration
ellipsoid, has the property that p percent of the points are

inside it and can thus be used as a spanning region for the

robots, assuming that they are normally distributed. Therefore

we can make the following statement: p percent of a large
number N of normally distributed robots described by a 9 -
dimensional abstract variable a = (g, s) = (R, μ, s1, s2, s3)
is enclosed in an ellipsoid centered at μ, rotated by R ∈
SO(3) in the world frame {W} and with semiaxes

√
cs1,√

cs2, and
√

cs3, where c is given by the right side of (23).

V. CONTROL OF GROUP AND SHAPE

In this section, we construct the control systems for group

(Eqn. (12)) and shape (Eqn. (13)), and discuss their decoupling

as defined in Section III.

By differentiating (20) with respect to time, we get:

Ẋw = ṘXbR
T + RẊbR

T + RXbṘ
T. (24)

The expansion of (24) using the equations (6), (18), and (21)

yields,

RTẊwR = ω̂Xb + Xbω̂ + Ẋb, (25)

or

RTẊwR =

(N − 1)

⎡
⎣ ṡ1 (s1 − s2)ω3 (s3 − s1)ω2

(s2 − s1)ω3 ṡ2 (s2 − s3)ω1

(s1 − s3)ω2 (s3 − s2)ω1 ṡ3

⎤
⎦ .

(26)

Note that each component of a is inherently an element of

(26). Consider the following definition,

Aj
k =

ej
TRTẊwRek

N − 1
. (27)

By varying j and k, the individual elements of the matrix

on the right side of (26) are readily extracted. A few more

definitions are helpful to reduce the complexity of the algebra

necessary to show that the system is decoupled. Define

Hi
j = Reiej

TRT, T i
j = Hi

j + Hj
i , (28)

where [e1 e2 e3] = I3 and i, j = {1, 2, 3}. Note the following

properties of these definitions (for i �= j),

Hi
i = Hi = Hi

T, HiHj = 0, T i
j = T i

j
T = T j

i . (29)

Additionally define pi = qi − μ. Therefore, through algebraic

simplification Aj
k is reduced to

Aj
k =

ej
TRTẊwRek

N − 1

=
1

N − 1

N∑
i=1

[
q̇i

THj
kpi + pi

THj
k q̇i

]

=
1

N − 1

N∑
i=1

pi
TT j

k q̇i.

(30)

The result of (30) provides the time derivative of the abstract

variables, less μ̇ which is

μ̇ =
1
N

N∑
i=1

q̇i. (31)

The derivative of the shape variables are found to be, for j =
{1, 2, 3},

ṡj =
2

N − 1

N∑
i=1

pi
THj q̇i, (32)

and

ω1 =
∑N

i=1 pi
TT 2

3 q̇i

(N − 1)(s2 − s3)
, ω2 =

∑N
i=1 pi

TT 1
3 q̇i

(N − 1)(s3 − s1)
,

ω3 =
∑N

i=1 pi
TT 1

2 q̇i

(N − 1)(s1 − s2)
.

(33)
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Equations (31), (32), and (33) allow the definition of a linear

transformation between the time derivatives of the abstract

variables and of the swarm configuration:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

ω2

ω3

μ̇
ṡ1

ṡ2

ṡ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

N − 1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1
T

T 2
3

s2−s3
. . .

pN
T

T 2
3

s2−s3

p1
T

T 1
3

s3−s1
. . .

pN
T

T 1
3

s3−s1

p1
T

T 1
2

s1−s2
. . .

pN
T

T 1
2

s1−s2
N−1

N I3 . . . N−1
N I3

2p1
TH1 . . . 2pN

TH1

2p1
TH2 . . . 2pN

TH2

2p1
TH3 . . . 2pN

TH3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q̇. (34)

Some simple calculations show that the linear map in (34)

is full row rank unless s1, s2, s3 = 0, which corresponds to

the degenerate case when the swarm reduces to a point. If we

exclude this situation, we can find the velocity of the swarm

state as a function of the abstract controls by using the Moore

Penrose inverse, corresponding to a minimum length solution

in Euclidean metric. This results in the form:

q̇ =
s2 − s3

s2 + s3
ω1X

ω1
q +

s3 − s1

s1 + s3
ω2X

ω2
q

+
s1 − s2

s1 + s2
ω3X

ω3
q + μ̇Xμ

q +
3∑

m=1

ṡm

2sm
Xsm

q ,
(35)

where (with {i, j, k} = {1, 2, 3}, {2, 1, 3}, {3, 1, 2})

Xωi
q =

[
T j

k (q1 − μ) . . . T j
k (qN − μ)

]
T,

Xμ
q =

[
I3 . . . I3

]
T,

(36)

and (with j = {1, 2, 3})

Xsj
q =

[
Hj(q1 − μ) . . . Hj(qN − μ)

]
T. (37)

Each direction is independent of the other directions due to

orthogonality, shown by the following equations:

HiHj = 0 when i �= j,

HiT
j
k = 0 if i �= j, k,

HiT
i
j = Hi

j or HjT
i
j = Hj

i ,

N∑
i=1

pi
THi

jpi = 0 when i �= j,

(38)

from (21) and (29). From (18) it is clear that each direction

X
sj
q is orthogonal. Since

∑N
i=1 pi

TT j
kTm

n pi is non-zero only if

j = n and k = m the directions related to the group are also

orthogonal. Additionally any combination of the group and

shape directions, (i.e X
ωj
q or Xμ

q and X
sj
q ) is zero. Therefore

the group and shape directions are also orthogonal from

each other demonstrating that the abstraction is completely

decoupled.
Using the canonical projection of (35), the individual control

law for each agent as presented in (14) is found to be

ui = q̇i =
s2 − s3

s2 + s3
T 2

3 (qi − μ)ω1 +
s3 − s1

s1 + s3
T 1

3 (qi − μ)ω2

+
s1 − s2

s1 + s2
T 1

2 (qi − μ)ω3 + μ̇ +
3∑

k=1

ṡk

2sk
Hk(qi − μ).

(39)

Note that the controller for each agent is only dependent

on its state qi and the abstract state a which is requirement

(iv) of Problem (1). A global observer that is able to acquire

knowledge of the state and provide the values of the abstract

state is sufficient to control the entire system.

From (34) and (35) it is clear that the abstraction variables

are zero if and only if the configuration space is not changing

as required by statement (iii) in Problem (1).

VI. CONTROL OF THE ABSTRACT STATE

Denote the desired abstract state trajectory by ades(t), the

planned trajectory provided either by the supervisory agent or

by a human commander. Because of the product structure, we

can write:

ades(t) = [gdes(t), sdes(t)].

We now design exponentially stabilizing controllers on SE(3)
and R

3 for the group and shape variables. For (13),

us = ṡdes(t) + Ks(sdes(t) − s(t)) (40)

guarantees that the error in shape goes exponentially to zero

provided Ks is chosen to be a 3 × 3 positive definite matrix.

On SE(3), we use the left-invariant kinematic metric for

measuring errors between poses. Given the trajectory gdes(t),
the desired twist is given by

ξ̂des
g (t) = (gdes(t))−1ġdes(t).

The error between poses g1 and g2 is given by the log map on

SE(3): e = log(g−1
1 g2) [12]. Thus, for (12), the closed-loop

control is given by:

ug = ξdes(t) + Kg(eg(t)) (41)

where

êg(t) = log(g−1(t)gdes(t)).

This control law guarantees that the trajectory g(t) converges

exponentially to gdes(t).
While we control the abstract description of the swarm to

a desired behavior, as in input-output linearization problems,

we need to make sure that the overall state of the swarm is

bounded. In other words, we need to prove that bounds on the

abstract state imply bounds on the state of the swarm. To this

goal, assume that, for k = {1, 2, 3},

‖μ − μdes‖ ≤ Mμ (42)

|sk − sdes
k | ≤ Msk

. (43)

Note that

s1 + s2 + s3 =
1

N − 1

N∑
i=1

(qi − μ)T(qi − μ), (44)

by the fact that H1 + H2 + H3 = I3. Considering equations

(43) – (44) we see that

‖qi − μ‖ ≤
√

(N − 1)(s1 + s2 + s3)

≤
√

(N − 1)(Ms1 + Ms2 + Ms3 + sdes
1 + sdes

2 + sdes
3 ),
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Fig. 2. The concentration ellipsoid surrounds the motion of 100 robots passing through a corridor. The trajectory for the system is defined in four segments.
The first, 2(a), changes the position, orientation, and shape in the approach to the hallway. The second, 2(b), is a trajectory down the length of the hallway
with vertical orientation. The third and final segments, 2(c)–2(d), are the reorientation, resizing, and passing of the swarm for the smaller hallway.

for i = 1, . . . , N . From (42),

‖qi − μdes‖ = ‖qi − μ + μ − μdes‖ ≤ ‖qi − μ‖ + ‖μ − μdes‖
≤

√
(N − 1)(Ms1 + Ms2 + Ms3 + s̄des) + Mμ,

where s̄des = sdes
1 + sdes

2 + sdes
3 . Therefore, assuming that the

system is finite and the configuration of the swarm is initially

bounded, the control algorithm will maintain the boundness

of the system.

VII. SIMULATION RESULTS

In this section we present a simulation demonstrating the

theoretical results discussed in this paper. Consider the task of

driving a swarm of 100 robots, such as micro UAVs, through a

constrained region similar to a series of hallways or corridors.

In Fig. 2 we demonstrate the theoretic results of controlling the

group through two hallways. The first hallway is considerably

larger than the second hallway. The definition of the desired

trajectories ades(t) is done in segments to emphasize the

implication of the decoupled nature of the control law. In Fig.

2(a), the group is driven to an initial position, orientation,

and shape in preparation for the first corridor. Note that the

major axis of the concentration ellipse is vertically oriented

while in Fig. 2(d) the major axis is oriented such that it is

aligned with the direction of forward motion. After the initial

formation the group variables are defined such that the swarm

moves to the intersection of the hallways while the shape of

the group is increased to leverage the available space (i.e. Fig.

2(b)). Fig. 2(c) depicts the transition as the swarm approaches

the intersection, the orientation aligns with the walls of the

hallway and the general size of the swarm is reduced. The

final segment of the simulation maintains the orientation and

shape of the swarm while varying μdes(t) to traverse the length

of the corridor (Fig. 2(d)).

VIII. CONCLUSION

In this paper we propose a method for controlling swarms

of robots in three dimensions based on an abstraction that

reduces the complexity of planning and control in the original

high dimensional space to planning in a lower dimensional

abstract space. The abstraction is invariant to the number and

permutations of robots and permits decoupled control of the

abstracted pose and shape of the large group of robots. The

individual control laws are dependent only on the robot’s

current position and the state of the abstraction.
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