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Abstract

In this work we consider the multi-image object matching problem, extend a centralized solution of the problem to a
distributed solution, and present an experimental application of the centralized solution. Multi-image feature matching
is a keystone of many applications, including simultaneous localization and mapping, homography, object detection,
and structure from motion. We first review the QuickMatch algorithm for multi-image feature matching. We then present
a scheme for distributing sets of features across computational units (agents) that largely preserves feature match
quality and minimizes communication between agents (avoiding, in particular, the need of flooding all data to all
agents). Finally, we show how QuickMatch performs on an object matching test with low quality images. The centralized
QuickMatch algorithm is compared to other standard matching algorithms, while the Distributed QuickMatch algorithm
is compared to the centralized algorithm in terms of preservation of match consistency. The presented experiment
shows that QuickMatch matches features across a large number of images and features in larger numbers and more

accurately than standard techniques.
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Introduction

Motivation

Matching is a fundamental operation common in robotics
and computer vision algorithms such as Structure from
Motion (SfM), Simultaneous Localization And Mapping
(SLAM), and object detection and tracking. Matching in
these domains is typically performed on feature descriptors
(such as SIFT, ORB, and SURF by Lowe (2004),
Rublee (2011), and Bay (2008) respectively) which extract
discriminative characteristics from high dimensional data
(i.e. an image). At a fundamental level, these features are
used to associated unique objects in the universe to their
appearance in multiple views. These different views might
be acquired by a geographically dispersed camera or robotic
network, which can produce large amounts of data. It is
therefore important to have the ability to consistent match
features across multiple images (i.e, perform multi-image
matching) efficiently, consistently, accurately, and, ideally,
in a distributed manner. For instance, match quality is key
in settings such as SfM and SLAM, because the quality
of the reconstruction is a direct result of how well the
features across images match. The speed of image matching
is extremely critical in application such as real-time object
detection, since the algorithm must handle many images
a second. Cross image consistency — matching the same
object feature across many images consistently — is also
critical for SfM and SLAM since feature points must be
tracked not just between images, but across multi-image
sequences for the best results. The pervasiveness of graphical
processing units (GPUs), networked systems, distributed
robotics, cloud computing, and multi-core processors, has
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made the distributability of computer vision solutions
important to their wide applicability. These tools have also
shown great advantages in speed and bandwidth for other
classic algorithms (Garcia (2010); Warn (2009)). To this end,
we also introduce a distributed version of our solution to
distribute the computational load of the feature matching
problem over multiple agents; this allows the algorithm
to manage considerably more features, with only a slight
performance loss, by spreading the required computations
across the network of agents while minimizing the amount
of communication.

Problem overview and contributions

We propose a solution to the following problem: given
a set of images taken from a team of robots (or camera
network), match unique object features in a distributed
manner, as they enter and exit the images from multiple
perspectives. This problem arises often in object detection,
localization, and tracking (Bradski (2000); Cunningham
(2012); Zhou (2015)), homography estimation (Szeliski
(2010)), structure from motion (Hartley (2017)), and
formation control (Montijano (2016)). Solutions to this
problem are traditionally computationally complex, and
often mismatch features when considering more than two
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images (Bradski (2000); Lowe (2004)), by either missing
matches between two or more views of the same entity in
the universe, or by introducing associations between separate
universe entities. Multi-image correspondences allow for
greater match reliability, and a more accurate representation
of objects in the universe. The proposed solution leverages
a relatively recent algorithm, QuickMatch (Tron (2017)),
to quickly and reliably discover correspondences across
multiple images. The experiments presented in this paper
benchmark QuickMatch’s performance by implementing an
object matching framework under realistic conditions (i.e.
images with clutter, repeated structures, and poor image
quality); a target object is matched across a network of
cameras, and then these matches are used to generate
the target’s trajectory. The solution presented also extends
QuickMatch to a distributed computation setting that largely
preserves match quality while minimizing communication
across agents where possible.

Related Work

Feature matching is a basic process in many computer vision
algorithms. Pairwise matching is the classical approach to
this task, where feature descriptors between two images
are compared based on a distance metric (e.g. Euclidean
or Manhattan distance), and declared a match if this
distance is below some threshold (Lowe (2004); Vedaldi
and Fulkerson (2008)). Pairwise matching is often posed as
a nearest neighbor search problem (Garcia (2010); Dollar
and Zitnick (2013)). This method is used in two standard
algorithms, Brute Force (BF) matching (Bradski (2000)),
and Fast Library for Approximate Nearest Neighbors
(FLANN) matching (Muja (2014)). Pairwise matching has
difficulties consistently matching entities with repetitive
structure or similar appearance (e.g. windows) because the
distance metric alone does not consider the distinctiveness
(smallest distance between features from the same image)
of the features. Including distinctiveness of features during
matching has been shown to be beneficial (Lowe (2004)).
For multi-image matching, pairwise matches scale poorly
with the number of images and across multiple images,
match correspondences often do not belong to the same
ground truth object (and hence link together correspondences
between different entities). Graph matching has also been
used for pairwise matching. This approach attempts to match
vertices (features) and edges (matches) simultaneously to
determine better pairwise matches shown by Yan and Cho
(2015) and Yan and Wang (2015), but it cannot handle the
multi-image setting for the same reasons as above.

Pairwise matching can also be approached as an
unsupervised learning problem, and therefore there are a
number of distributed approaches to the classic algorithms,
especially for the k-nearest neighbor problem. The k-
nearest neighbor problem has been extensively explored
in settings such as friend suggestion on Facebook, image
classification, and recommendation systems. For this reason,
many parallelized approaches have been introduced by
Johnson (2019), Andre (2017), and Gieseke (2014). In
a feature matching setting, a CUDA based distributed
approach to the BF algorithm has been proposed that is
approximately 100x faster than its centralized counterpart.
Beyond matching, parallel computing has also been applied
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to feature extraction algorithms such as SIFT (Warn
(2009)), offering speed increases along the entire feature
matching pipeline. These approaches still do not consider
the multi-image matching problem, however they offer
a strong motivation for distributing existing multi-image
matching techniques. Machine learning techniques have also
been used to extract more meaningful features that are
characteristic of objects in general, which adds a layer
of semantic understanding to the multi-image matching
problem (Hariharan (2015); Wang (2018); Novotny (2017)).

Beyond pairwise matching, a number of other approaches
exist for multi-image matching (where multiple images are
directly considered) that are based on optimization, graphs,
and clustering. Optimization based approaches are based
upon non-convex problems where optimization constraints
must often be relaxed to reliably obtain solutions (Oliveira
(2005); Yan and Cho (2015); Chen (2014); Leonardos
(2017); Pachauri (2013)). Moreover, these approaches
typically require a priori the number of objects, which is
often not available, and they do not consider distinctiveness
of the features. Cycles in graphs are early predecessors to
the QuickMatch algorithm and have largely been used to
remove inconsistent matches as shown by Huang (2013).
Cycle consistency has also recently been used in a distributed
manner to perform matching by Hu (2018) and Aragues
(2011). Clustering can be cast as finding clusters of similar
features. Algorithms such as k-means (Mackay (2003)) and
spectral clustering (Ng (2002)) have been explored to this
end, but also often require a predefined number of objects,
and do not consider that a unique feature only occurs once
in an image, meaning repeat structures are also often called
a match.

QuickMatch is grounded in density-based clustering
algorithms (see work by Fukunaga (1975); Vedaldi and
Soatto (2008); Ester (1996); Hu (2017) for examples),
which find clusters by estimating a non-parametric density
distribution of data (Parzen (1962); Rosenblatt (1956)).
These approaches do not require prior knowledge of the
number or shape of clusters, and can be modified to include
feature distinctiveness by construction.

This article is an extension of previous work presented
at the International Symposium of Experimental Robotics
Serlin (2018) and the International Conference on Computer
Vision Tron (2017). The primary extensions from this prior
work are:

e We introduce a method for distributing the matching
problem across multiple agents based on a feature space
partition.

e We demonstrate the distributed solution is nearly
equivalent to the centralized feature matching solution and
minimizes inter-agent communication.

The primary contributions of this paper are firstly the
testing and experimental validation of the QuickMatch
algorithm under more realistic conditions, as opposed
to previous evaluations using standard data sets. This
experiment tests the algorithm for computational efficiency
and match accuracy by employing a distributed camera
network to localize a moving target. Secondly, this paper
introduces the Distributed QuickMatch (DQM) algorithm.
This algorithm extends the QuickMatch framework to handle
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distributed computation with minimal loss to match quality,
and minimal inter-agent communication.

Outline

The remainder of this paper is structured as follows. We
begin by introducing preliminary concepts for features,
feature space partitions, and multi-image matching. We then
present the multi-image matching problem. Next, we present
first the centralized, and then decentralize solutions to the
presented problem, and we detail the theory of the approach
preformed in the experiment. We then present simulations to
compare the centralized and distributed solutions. Finally we
present the experiment preformed and its results.

Preliminaries
Images and Features

We start by considering a set of images Z =
{1,2,...,4,...,N} where i € Z denotes a single image.
From each image ¢, we extract a set of features K; with
a single feature vector denoted x;; € R, where F is the
dimension of the feature space (eg. for SIFT, F' = 128), 7 is
the image index, and k is the feature index in that image. We
denote the set of all features as K7 and the cardinality of a
setas |Kz|.

Agents and Feature Space Partitions

In the distributed computational setting, we consider a set
of computational units, or agents, A = {1,2,...,a,...,m}
where a € A denotes a single agent. The feature space
is denoted as YV = R¥, and is partitioned into m convex
Voronoi tessellation subspaces, where each space is assigned

to a single agent as ), € Y with |J Y, = Y. The Voronoi
acA

partition seed of each ), is given as P, € RF. We define
a labeling function £ : z;;, — a that maps a feature z; to a
given agent depending on which )/, it exists in. This labeling
function also has a set-valued inverse, £~! : a — z;, Which
returns the set of features contained in any given agent
partition.

Multi-Image Matching

The multi-image matching problem presented here is
summarized from Tron (2017) and is posed in the light of
both cycle consistency in a graph of features, and clustering
of features. We refer the reader to the original paper for
detailed proofs regarding the equivalence between the two
views of the problem.

We begin by assuming that R* has a distance metric in the
feature space defined as d(z;x, z;/k) — R > 0 between two
features. We denote the set of all features X = {xik}}fgl N-
When two features are a match, i.e., i, — Tiyky, 01 7 i2,
we mean that the two features represent the same entity.
Based on this type of correspondence, we define a directed
graph of the matches as G = (V,€) with V = {z;;} and
€ C V x Vis the set of matches x;, 5, — Zi i, € E.

We define multi-image matches as subsets of the features
in X. We therefore define, given a subset of features C C
V), a subgraph of G restricted to C as G|¢c = (C,&’) with
& = {$i1k1 — Tisky € E: TirkysLigks € C} A graph g=
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(V, &) is connected if for any x;,,,x; 1, € V there exist
a SeqUENCe T;, k, s Tigkys - - - s Li, k,,» called a path, such that
Ti; k= Tijo ke €EVG€{1,...,n —1} and a cycle is
a path where the start and end features are then same, or
ik, = Ti,k, . We define a clique as a graph G with z;,, —
Lisko € Sinlkl,xinkn e .

A set of multi-image matches is a set M = {C.}
of clusters C. = {%ik,,---+Ti k,}>» Where each one
corresponds to a single entity in the universe, such that

(C1) M is a partition of X (i.e., each feature x;; appears
exactly in one set C.);

(C2) Each set C, has at most one feature per image;

(C3) There is an induced directed graph G = (X, Em)
of pairwise mathces such that, for any C. € M, the
subgraph G(|C. is a clique (i.e., Goq is a union of
cliques).

Conditions (C1) and (C2) ensure that the same entity
cannot appear in multiple clusters, and an entity cannot
appear more than once per image. Condition (C3) requires
that features from the same cluster always match.

Given the above statements, three properties are implied
about G,

(P1) Symmetry: x;,5, — Tiyk, € Er implies 5, —
Tik, € EM;

(P2) Cycle Constraint: Given a path x;,,,...,%i k, In
G, having i1 = i, implies k1 = k,, meaning the path
is a cycle;

(P3) Single match: A feature cannot correspond to two
different features in another image meaning, if
Tiyky = Tiyk, and Xj g, — T,y belong to Gaq then
ko = K.

Problem Statement

Given a set of images Z = {1,2,...,4,..., N} and a set of
K, feature vectors, x;i, extracted from each image, deter-
mine matches (z;,5, > Ti,k, : {1 7 i2) between features
from separate images, such that matched features represent
the same point in the scene and build a set of multi-image
matches M.

Solution

We present both a centralized and decentralized solution
to this problem. It is important to note that this problem
cannot be solved with only pairwise matches as they are
not capable of considering cliques directly; specifically, they
cannot prevent the violation of (C3). The centralized solution
introduces the QuickMatch algorithm and demonstrates
its effectiveness with a two-stage, offline, centralized
implementation on a system of distributed ground robots
and a central computer. Features are first extracted using
off-the-shelf feature extraction methods (SIFT), and the
features are then matched using the QuickMatch algorithm
to find a given reference object. These matches are used
to perform homography estimation between the reference
object and the camera network to generate target trajectories.
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The decentralized solution then builds on the QuickMatch
algorithm with a framework for distributing the features
across multiple computational units while maintaining match
consistency. This framework can be used for other matching
algorithms as well, however we compare its results with the
centralized solution to demonstrate near equivalence to the
centralized solution.

Feature Extraction

Feature extraction aims to find and describe representative
points from high dimensional data, such as an image (Bay
(2008); Rublee (2011); Lowe (2004); Zhou (2015)). Features
themselves are also high dimensional vectors but typically
of much lower dimension then the original data. In this
experiment, the scale invariant feature transform (SIFT)
feature is used, which extracts K; 128-dimensional vectors
that represent the appearance of each feature point. See Lowe
(2004), and Vedaldi and Fulkerson (2008) for more details
on this standard feature extraction algorithm. Other feature
types can be used and we also tested with Oriented FAST
and Rotated BRIEF (ORB) features and Speeded-Up Robust
Features (SURF), however SIFT was qualitatively the most
reliable.

QuickMatch

The QuickMatch algorithm begins by calculating the
distance between all features (we use Euclidean distance).
For each image, the minimum distance, o;, between any
two features is used as the distinctiveness of features for
that image. Recall, from above, x;; is a point in the high
dimensional feature space. The feature density D(z;;) is
then calculated for each point using the formula

| K|
D(J?) :Zzh(xwxzkvaz)a (1
i=1 k=1
s 23:0,) = exp(— 122 @
9
o; = min d(@, i), 3)

Vk,i=1

with kernel function h, and distinctiveness o;. With this
feature density, the features are organized into a tree
structure, with parent nodes being the nearest neighbor with
a higher density,

T : parent(z;;) = v/r]rclliélj A(Xig, Tirgr ), 4)
J = {i/k/ :k 75 k/,D(.”L'Z‘/kI) > D(acik)}. (®))

Edges are directed to parents along the gradient of feature
density, and ultimately toward the center of the parent
cluster or to another distant cluster. Once the tree has been
constructed, edges are broken based on (C1)-(C3) above if
either of two criteria are met;

1. If parent and child groups have nodes from the same
image (i.e. i1 = 12).

defined
(.e.

2. If the edge is larger than a user
threshold (p) times the distinctiveness o;
d(zk, parent(z;)) > poy).
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This method results in a forest of trees (M), where each tree
is a cluster (C,) representing a unique entity in the universe.
In practice, each tree represents a point that is common
among images, meaning the algorithm discovers common
features among very similar objects. Feature discovery will
be explored further in the results section, where groups
of matching points are employed for object detection and
homography transformations.

Algorithm 1 QuickMatch

Input: K, p
Output: Clusters C,. (M)

for all z;;, x5 do
Compute h(z;, Ty, 0)
for all z;; do
Compute D(z;1)
for all z;; do
Compute parent(x;y) to build T
for edges in 7" do > From shortest to longest
xik, € Ce, Ty € Cor are ends of edge
if {Z} S Cc N {Z} c Cc/ = Q] and d(l‘lk’ xi’k’) S
parg min(Ce, C./) then
Merge C.,Cos
else

Remove edge
return M

Distributed QuickMatch

At a high level, the distributed version of QuickMatch
follows two rounds:

1. Each node sends each feature to a different node
depending on its location (i.e., each node receives all
the features belonging to its own element of a partition
of the feature space); each node performs QuickMatch
independently.

2. Nodes identify clusters falling near the edges of the
partition; if necessary, these clusters are transferred to
other nodes for re-processing.

At a high level, each node needs to process only a
subset of the entire dataset, and, more importantly, each
point is typically transferred only once, without having to
flood the entire network with the entire dataset (additional
transmissions are required only for edge cases, which
are typically much rarer). Details of each operation in
Distributed QuickMatch are presented below.

Feature Space Partitioning The goal of partitioning the
feature space is to split the computation load of QuickMatch
among m agents, ultimately allowing for more features to
be matched, while maintaining multi-image match quality.
To do this, instead of naively partitioning the space with an
algorithm like k-means and sending features to their nearest
Voronoi partition, we build trees of features that can later be
broken according to the QuickMatch rules.

We modify the labeling function presented in the
preliminary section to denote round being considered as
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l(zik, ) — aand £~ (a,r) — {x;}. In practice this round
is r = {0, 1}, where 0 is the initial partitioning, and 1 is the
labeling after partition reassignment. The algorithm begins
with a naive partitioning of the features

0(zk,0) = arg mind(x;y, Po)Va, € Kz, (6)
acA

where the P, Voronoi seeds are found using the k-means
algorithm MacQueen (1967). More explicitly, we choose

random points in the feature space Péo),Va € A and build
an initial partition as
VO = {wi : e — PP < e — Pl
Va' € A,d #a, (7)

with each x;; assigned to only one agent and ¢ is the iteration
index. The points are then iteratively updated until ¢ = 100
iterations according to first equation 7, and then

1
t+1 ]
P =1 > T
¢ 2y

®)

We denote the set of all Voronoi seeds as Py4. In larger data
sets, and in a more distributed setting, the choice of Py
can be done at random. By agreeing on a random seed to
generate these values from, the agents need to communicate
only a single integer. Qualitatively, we ran the random seed
procedure on the data sets below and they showed similar
matching performance, but with a larger variance in the
number of features in each partition.

Tree Building Once P, is determined with k-means, we
send features to their respective agents based on £(x;1,0),
and at each agent, in parallel, we calculate the density of each
feature as in Equation 1. Unlike QuickMatch however, the
density kernel is finite in order to limit interaction of density
across the partition boundaries. The density kernel here is
now defined as

2
lz1 —22f| <o —M 11,

else 0,

h(z1,22;0) = { ©)
which is a finite quadratic kernel.

Once the density is calculated with the kernel above,
we build a tree from the features in each agent’s partition
according to

T, : parent(z;) = _I]?in] (T, T ), (10)
,L/ /er
J={i'K k#K ,D(@y) > D(xi), v € Va}. (11)

Similarly to the distinctiveness in QuickMatch, we now
introduce a distinctiveness metric that is agent specific and
given as

0, = max (0,)Vi € £ (a,0), (12)

where
0p = A(Tika, parent(Tika)), (13)
where z;1, represents feature x;; € V,.

With the feature space partitioned by the above seeds
P4, we now determine if individual features may belong
to clusters split by these artificial boundaries. To do this,
we must determine the distances between the features and
these boundaries before we can reason about split cluster
membership.
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Partition Boundary Distance To find the minimum distance
between a feature and the boundaries that are generated
by the Voronoi partition, we formulate the following
problem: Consider a set of root nodes { Py, ..., P,,, } and their
corresponding regions {, ..., Vim }, given a test node x; €
YV; and evaluation node P, € Y., where V. C Y\ V;, find
the minimum distance d,,;,, and the corresponding hyper-
plane, to z;. A graphical illustration of this problem can be
found below in Figure 1.

\\ P2
N
N Y
N
N
M . Va2
A
Ay
N
N
N
P1 ‘I """"""""""
° |
1 Po
1
1 yO
! o
dmin :
*r—
Tmin
Lt

Figure 1. lllustration of Voronoi boundary distance problem.

Given the test feature node x;, its current root node P; and
the root node that we want to evaluate P., we formulate a
Quadratic Program (QP) as the following:

. _ T _
min (2 —2)" (2 —2) )
14)
P.-P d(P,, P.) (
st (T (g —p)— 220t >,
(HPe_PtH) ( t) 9 =

where d(P;, P.) is the pairwise distance between P, and P;.
We obtain the closet point x,,;, on the Voronoi boundary
that has the minimum distance to x;. By iterating through all
possible root nodes P., Ve # ¢, we find the global minimum
distance and its corresponding root node and its partition
index

(15)

Contested Feature Re-assignment Once we are able to
determine the distance between a feature and the partition
boundary, we can then determine the contested features in
each region. These features are the ones that may require
reassignment to another partition’s tree. These are the
features in danger of being mismatched due to the feature
space partitioning splitting their cluster. This contested set of
features S, is defined as

dika = d(xika; xmzn)

S, ={d € A\ a: (dika + daa) < 0p}
Vi € 0 a,r)Va € A, (16)

where
daar = min digar (17
z;k€L-1(a’,0)
dikar = d(Tikar s
ka ( k ya) (18)

a' # (x4, 0)
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where d;, is the distance between each feature x;, and
the boundary of the partition of a’, and d, is the minimum
distance between the feature in o’ and the ), boundary.

If the inequality in Equation 16 is true, there could be a
feature in o’ that could belong to the same cluster as x;x
in the worst case. This test is overly conservative because
it considers the worst case, but it also requires a single value
dqq be communicated between each agent to perform the
entire check. Figure 2 illustrates a case of this check. In this
case, T, is not contested with a’ because the in inequality
in Equation 16 is false (i.e. (dixq + daa’) > 0p).

parent(x;xq)

daa’

Tika'

dika

Tika

Figure 2. Example of comparison to determine if a point is
contested.

Once the contested features are determined, we break the
agent tree into a forest of trees (clusters) in the same manner
as QuickMatch;

1. If parent and child groups have nodes from the same
image (i.e. i1 = 12).

2. If the edge is larger than a user defined threshold (p)
times o; (i.e. d(x;k, parent(x;k)) > po;).

Except here, the distinctiveness o; is calculated for only the
features in the agent partition.

With the clusters formed, each agent then determines
which clusters have contested points. Formally, we check
SeNC.# D (i.e. the intersection between a cluster and
then contested points is not empty). For each cluster with
a contested point we determine the minimum partition index
among the contested points, and then send the cluster to that
agent now denoted a’.

Upon arrival at a’, that agent checks if

(arg min d(x;, Tirg )V € C) € Co

zik€a’

19)

where C. is the newly acquired cluster. If the nearest
point to C. € Y, is also contested, both C,. and the
cluster containing that nearest point from Equation 19
(Co) are sent to the lowest partition index if that
index is lower than that agent’s index (i.e. clusters
are only transferred to agents with lower contested
partition index. This lower index requirement prevents
switching incomplete clusters repeatedly between agents.
This process is performed by decreasing agent index,
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Algorithm 2 Distributed QuickMatch

Input: K, p, |A]
Output: Clusters C,.

Compute P4 given K > Eq. 7 and 8
Compute ¢(x;1,0) >Eq. 6
for alla € A do
for all z;1q, ;1o do
Compute h(Zika, Tirk'a, Ti) >Eq. 9
for all x;;, do
Compute D(z;xq) > Eq. 1
for all x;;, do
Compute parent(z;i,) to build T, > Eq. 10
for all x;;, do
Compute d;1, >Eq. 15
foralla € A do
foralla’ € A,a’ #ado
Compute d o > Eq. 17
for all x;;, do
if diji, + dow < 0p then
Tika € Sa > Eq. 16

for all edges in 7, do
if {i} € C.N{i} € Co =0 and d(zika; Tirkra) <
parg min(Ce, C./) then

Merge C,,Cr
else
Remove edge from 7,

forall C. € ), do
if C. NS, # 0 then
Compute min indexz(a’) of C. NS,
if index(a’) < index(a) then
Send C,. to a’
foralla € Ado > From high to low index
if C,. received from any o’ then
if (argmin d(z;, 1 Vi € Ce) € S, then
Tika€Q
Compute min index(a’) of C. NS,
if index(a’) < index(a) then
Send C. to a’
foralla € Ado
for all z;5., x5 do

Compute h(Zika, Tirkra, 0i) >Eq. 9
for all z;;, do

Compute D(z;q) >Eq. 1
for all z;;. do

Compute parent(x;,) to build T, > Eq. 10

for all edges in 7, do
if {i} € C.N{i} € Co =0 and d(zika; Tirkra) <
parg min(Ce, C./) then
Merge C.,Cs
else

Remove edge from 7,
return All C,(M)

reducing communication requirements, and the transfer of
clusters to at most once per agent.
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The final step in reassignment is to rerun the tree building
and breaking routines from above to reform all of the
clusters. Although this is computationally intensive, it does
not require any further inter-agent communication. It was
also found to perform better than only reassigning the
contested points to the appropriate tree and breaking it
accordingly.

Homography and Localization

Homography is a projective transformation between two
perspective images of a planar scene that can also be used
to determine the relative pose of an object with respect
to a given reference image. The study of homography and
localization of images and objects is textbook material;
however, a brief overview is provided below as this
process is used to experimentally test QuickMatch’s
performance. More information on both homography and
object localization can be found in Hartley (2017) and
Sankaranarayanan (2008).

Given a the image coordinates = (expressed in homoge-
neous coordinates) of a point belonging to a planar surface
as seen in a reference view, the image of the same point in a
novel view can be found given the homography matrix H as
HZ (again, expressed using homogeneous coordinates). The
H matrix can be estimated with a set of known relative points
(or matched features) between two views. To improve the
estimate of H, random sample consensus (RANSAC) is used
to remove match outliers by randomly sampling the matches,

400 400

finding a fit of the data, and then removing any matches that
fall outside of a user defined region (see Szeliski (2010)).

Given H, it is also possible to recover the relative
pose between the two views; this can then be used to
indirectly localize (recover the translation and rotation) of an
approximately planar object in a relative coordinate system
up to a distance scale factor, as shown in Figure 4 (a). Given
some known size of the target object (e.g., height), the scale
ambiguity can be resolved, recovering the full object relative
position. In our applications, where each image is taken
together with images from other cameras in the network,
and where the pose of each camera is known, the target
object can be accurately positioned in the global reference
frame, allowing for the generation of a target’s trajectory
(e.g., Figure 7).

Since localization using homography is limited to
approximately planar surfaces, multiple reference images
(as used here) are required to indentify different sides of
an object. Secondly, despite the use of robust estimation
(RANSAC) inaccurate matchings are still possible, resulting
in outlier measurements in distance and bearing. These
inaccuracies are amplified by the sensitivity to object height
estimate errors when calculating target distance. To account
for these errors in practice, multiple measurements can be
used to estimate each position, and then a filter can be used
to smooth the target’s trajectory (e.g. a Kalman Filter).
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Figure 3. (a) Synthetic data set features with naive k-means partition assignments. (b) Synthetic data set with z.,,:» boundary
points plotted to highlight partition. (c) QuickMatch solution for each agent with k-means partition. (d) Initial proposed feature
switches of contested clusters. Note the values on the highlighted features denote the proposed a’ partition index. (e) Final
proposed switch assignments after partitioning section of Distributed QuickMatch is complete.
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Simulations

This paper looks to compare primarily QuickMatch with
the Distributed QuickMatch algorithm in simulation, and
the QuickMatch algorithm with off the shelf matching
tools in an experimental setting. For a detailed comparison
of the performance of QuickMatch to other state-of-the-
art matching methods (particularly multi-image matching
methods), see Tron (2017).

We begin with an illustrative example of Distributed
QuickMatch on a synthetic 2 dimensional data set shown
in Figures 3 and 8. Figures 3 and 8 show a test case with
4 agents, and 250 feature points. There are 25 underlying
clusters, generated with random Gaussian distributions
around 25 evenly spaced points, each with 10 sample
features. Figure 3 illustrates many of the steps in Algorithm
2. Figure 3 (a) shows the ¢7'(a,0) labels for all of the
agents. This mapping is created using Equations 7 and 8,
and the Voronoi partition seeds for the partition are shown
as triangles. Note that the clusters along the boundaries have
features of different colors, meaning these clusters would be
split and improperly matched with just the naive partitioning
approach.

The partition generated by the Voronoi seeds can be seen
in Figure 3 (b). Here, the z,,;, point is plotted for each
feature. It can be seen that at least three of the clusters are
split by this partition. This is further shown in Figure 3 (c),
which shows the result of QuickMatch being run on each
agent partition individually. Most notably, the central cluster
is split into three clusters. Each marker style represents
a different cluster membership (i.e. points with the same
marker belong to the same cluster).

Figure 3 (d) shows the clusters staged for initial agent
switching. Each feature that is switched has a label of where
it is being sent. Note that the central cluster has multiple
labels, meaning even after the switch, the cluster will be
segmented. Also, note that whole clusters are staged for
transfer, and that the contested region is very conservative,
since clusters even somewhat far from the boundary are
being swapped. After the agents are switched, the agents
check if the switched clusters are nearest to other contested
points. Figure 3 (e) shows the reassignment of the clusters

@

Robot 3 Robot 1

“Robot 4

()

Robot 2

after this check is performed. Note that after the first swap,
the points in the central cluster are all moving toward ag. This
highlights one drawback to this approach, if the boundaries
are draw so that higher index agents have many contested
clusters, the lower index clusters end up getting assigned to
more features.

Experiment

The experiment consists of a team of five iRobot Create2
ground robots, each with a forward facing camera,
distributed throughout the experimental area shown in Figure
4. Each camera has a 62° x 48° field of view, and takes
a 640 x 480 px image at 2 Hz. Through the center of the
area, the target object is driven along the trajectory shown in
Figure 4 (a) over approximately thirty seconds. All cameras
are triggered simultaneously and the images are sent to a
central computer for feature extraction and matching. The
central computer has an Intel 17-7800x 3.5GHz processor,
and runs Ubuntu 16.04 LTS and ROS Kinetic. Features are
extracted using SIFT with an octave layer of 6, a contrast
threshold of 0.10, an edge threshold of 15, and sigma of
1.0. The matches from QuickMatch (using p = 1.1) are used
to determine which cameras observe the target object at
each time step, based on the number of matches with a
target image (in this experiment 10 matches are required).
The matches between each reference images and the current
images are used to determine the homography between them,
using RANSAC with a threshold of 10.0. The homography
is used to generate a bounding box around the target object
using a perspective transformation on the target image
corners. The relationship between pixel height of this box
and distance from the camera is calibrated beforehand using
an object of known size (in this experience a checkerboard
pattern of know dimension). The localization points are
recorded to build a target trajectory, which is then compared
to ground truth measurements from an OptiTrack motion
capture system (Figure 4 (b)).

(b)

Figure 4. (a) Overhead view of experimental area with trajectory of the target object, position of the robots, and the approximate
field of view for the camera network (shown in yellow). (b) Prospective view of experimental area with modified iRobot Create2
platform, target object, and overhead OptiTrack® motion capture system.
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(b)

Figure 5. (a) Example image matches between the reference
object image (left) and an experimental image (right): Circles
represent features, and lines indicate matches. (b) Homography
and localization of car with prospective transform of bounding
box.

Results

QuickMatch is evaluated in two ways: pure matching
performance, and in the context of a target localization
application. The QuickMatch algorithm is first compared
to standard matching algorithms in the OpenCV Software
Package (Bradski (2000)), Brute Force (BF), and FLANN.
Both algorithms use the Euclidean distance metric and
a threshold match distance of 0.75 (Bradski (2000);
Lowe (2004)). Unlike QuickMatch, both algorithms cannot
consider matches across more than two images but do have
very low execution times.

QuickMatch is implemented in Python and takes 5.6
seconds to find matches between 6254 SIFT features (from
115 images), while BF and FLANN are both implemented
in C++, and both take approximately 0.05 seconds to find
the matches between the reference image features, and the
same 6254 features. This time difference arises from two
factors: the inherently slower run time of Python compared
to C++ (Fourment and Gillings (2008)), and the extra
comparisons done by QuickMatch to solve the entire Multi-
match problem. If BF and FLANN compared all images
with all other images combinatorially (as QuickMatch
implicitly does) their computation times would be ~ 5.75s
seconds, which is comparable to QuickMatch’s slower
Python implementation. This time also does not account for
the post processing time necessary to reconcile inconsistent
matches from both BF and FLANN, is not required in
QuickMatch.
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Figure 6. (a) Precision vs. recall curves for the QuickMatch,
Brute Force, and FLANN algorithms. All algorithms are run on
the same feature vectors. A match is considered to exist if the
number of matched features is above a threshold.

Precision Versus Recall

Although QuickMatch is slower, it outperforms both BF
and FLANN in the number of matches correctly found,
and generally in terms of precision vs. recall (PR) and
precision-recall area under the curve (PR AUC), which are
common metrics for evaluating matching algorithms Ting
(2011). Figure 6 (a) shows the precision (fraction of correctly
matched images) versus recall (fraction of possible matches
found) curves for QuickMatch, BF, and FLANN. For any
recall level, QuickMatch maintains a higher precision level
than either BF or FLANN. Both BF and FLANN have
terminations before a recall of 0.9 because at that level of
discrimination, they are unable to find any matches in the
data. QuickMatch on the other hand is still able to find
some matches. These curves are non-monotonic because
mismatched features appear at a higher rate than correctly
matched features at higher thresholds. PR AUC is a threshold
agnostic metric used for comparing overall performance of
matching algorithms (Ting (2011)). In terms of PR AUC,
QuickMatch achieves 0.64, while BF and FLANN reach
0.49 and 0.45 respectively. The overall increase in precision
stems for QuickMatch’s ability to consider more instances of
the reference object, by matching cycles of features across
multiple images. It is therefore able to find the reference
object not only more consistently, but with many more
matched features. An example of these matches is shown in
Figure 5.

Homography and Localization

In order to further demonstrate the utility of the QuickMatch
algorithm, matches were used to localize a target object
in relation to the camera network, and then estimate its
global trajectory. This was done using all three above
algorithms with again an identical set of SIFT features.
QuickMatch considers multi-image matches between the set
of target images and the set of five robot images at each
time step, while BF and FLANN consider matches between
each target image and the robot image individually. Once
feature matches are generated, RANSAC is used to estimate
the homography matrix H for each pair of images while



10 The International Journal of Robotics Research XX(X)
350 350
® Camera ® Camera
. @® Estimated Pose . @® Estimated Pose
300 . B Location Error 300 . B Location Error
—— Actual Trajectory —— Actual Trajectory
250 1 250 1
200 A ] 200 A
£ E
£ 1501 S 1504
x x
100 100 4
50 501
0 [ 01
[ J
=50 - T T T T T T =50 - T T T T T T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Y (cm) Y (cm)
(a) (b)
350
. ® Camera N QuickMatch
@® Estimated Pose 0.030 A EEE Brute Force
300 - [ ] W Location Error N FLANN
. —— Actual Trajectory
250 1 0.025 1
200 . 0.020 1
= 2
S 150 a
< & 0.015 A
100
0.010 4
50 A
o4 0.005
=50 T T T T T T 0.000 T T - l.
0 100 200 300 400 500 600 -400 -200 0 200
Y (cm) Localization Error (cm)

(c)

(d)

Figure 7. (a) QuickMatch trajectory estimate. (b) BruteForce trajectory estimate. (c) FLANN trajectory estimate. (d) Histogram of

estimate error for each algorithm.

also removing outliers from the matches. The homography
between the reference image and each robot image is used to
generate a bounding box around the target in the robot image
as shown in Figure 5 (b). This bounding box, given a known
camera calibration, provides bearing and height information
for the target. The target height is known and is used to find
the relate distance to the target with the bounding box height.
With these two values, a distance and a bearing, the object
can be localized with respect to each robot.

The above steps are performed using the match data from
each of the three above algorithms. Figures 7 (a-c) show
the results of the localization estimation for each algorithm.
Red points are estimate target poses for each time step,
blue points denote the ground truth measurements, black
octagons are the camera network positions, and the green
regions are the one standard deviation error between all
localization estimates at each time step. The localization
error was found by taking the absolute distance between
the estimated and ground truth position at each time step.
QuickMatch had an error of 0.2118 + 0.4254 meters, BF
had an error of 0.2349 4 0.4027 meters, and FLANN had an
error of 0.6232 £ 1.1722 meters. QuickMatch outperforms
both BF and FLANN in terms of accuracy, which is
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indicative of its higher match quality. BF matcher also
performs well and maintains a low variance, however it is not
as accurate. FLANN is the worst performing of the three, and
has a number of extremely erroneous estimates. Generally,
monocular camera distance measurements are very sensitive
to match errors, meaning target localization error is an
indirect method for testing the overall accuracy of each
method. Figure 7 (d) shows a histogram of the localization
error, which is found by comparing the localization estimate
to the ground truth pose at each time step. The histogram
makes it clear that QuickMatch maintains a higher number of
accurate matches and has a small number of highly erroneous
estimates. In practical applications, a Kalman filter would
be employed to smooth the estimates, but the values are left
unaltered here to demonstrate the algorithm’s output.

Centralized vs Distributed Comparison

To test the difference between the distributed and centralized
approaches, we look at how many clusters are split
by naive partitions in the feature space to determine if
the distribution scheme above is even warranted. This
test is performed on images from the Graffiti data set
(http://www.robots.ox.ac.uk/vgg/data/data-aff.htm), in order
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to simulate realistic conditions where the ground truth is
unknown. Given the clusters of features determined by
QuickMatch, C. € M, we define the count of each agent
membership in the cluster as

4a(Ce) = |Ccn €™ a)], (20)

where g, is the number of features in C, with label a. With
this we can define the split quality @) of a cluster C., as

rgleag(qa)

2

With this quality metric, we can quantify the number of
contested clusters in a given partition as C.. : Q(C.) < 1 and
the percent of contested clusters as

[Cc € M Q(C) <1
|Ce| '

Pcontested = (22)
With this metric pcoptested, W€ €valuate both two methods
for creating the initial seeds for the Voronoi partition, as
well as the ability for Distributed QuickMatch to find and
appropriately reassign contested clusters. For the synthetic
data set, the ground truth is known, however for the graffiti
data set, we assume that the QuickMatch clusters are the
ground truth.

To determine how many contested features, and hence split
clusters, are missed by Distributed QuickMatch, we calculate
the following precision

1S4

-~ (23)
ZCC:Q(CC)<1 |C|

DPsplit =

where S, is the set of all contested features in K7. In
other words, we can consider Distributed QuickMatch to be
in part as a classifier that needs to detect which features
are contested; then, pyyy represents the precision of such
classifier (number of features that are declared as contested
over the number of features that ought to be declared).

The results of these tests are shown in Table 1. The
first column in Table 1 shows the results of the centralized
QuickMatch algorithm. Row five shows that as the number
of agents increases, intuitively, the percentage of contested
clusters also increases. At the same time however, the post-
QP computation time decreases as agent number decreases,
because each agent has to work on considerably fewer
features. The largest computational requirement in the
Distributed QuickMatch algorithm is finding the boundary
distances with the QP. The time reported for this is per-
agent, however it is worth noting the implementation of this
QP is sub-optimal. In the QP formulation, we consider each
partition individually, meaning we solve m QPs for each

Table 1. Comparison of QuickMatch to Distributed QuickMatch by agent number on graffiti data set.

Number of Agents 1 2 3 4 5 6 7 8 9 10 15 20 25
Compute Time 137 | 21.53 | 24.62 | 25.64 | 27.72 | 27.93 | 29.40 | 29.06 | 29.29 | 30.00 | 31.21 | 30.59 | 30.68
Per Agent (s)
Post-QP Compute Time |} 5| 514 | 381 | 205 | 253 | 195 | 185 | 105 | 112 | 1.18 | 077 | 072 | 0.67
Per Agent (s)
QP Time
NA | 16.39 | 20.81 | 23.39 | 25.18 | 25.98 | 27.53 | 27.46 | 27.76 | 28.59 | 30.08 | 29.82 | 30.00
Per Agent (s)
Perceé‘ltuft(:r’zemd 0 | 1821 | 28.62 | 27.51 | 21.43 | 29.24 | 3542 | 46.34 | 40.13 | 39.78 | 42.87 | 4871 | 52.16
Number of 1320 | 1313 | 1314 | 1278 | 1265 | 1264 | 1281 | 1258 | 1269 | 1264 | 1246 | 1259 | 1309
Clusters Found
% Con‘;ﬁi?amms NA | 99.80 | 99.87 | 99.87 | 99.83 | 99.64 | 99.90 | 99.77 | 99.91 | 99.63 | 99.57 | 98.24 | 99.1
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Figure 8. (a) Clustering result from the centralized QuickMatch algorithm on the synthetic data set. Feature color denotes cluster
membership. (b) Clustering result from the Distributed QuickMatch algorithm on the synthetic data set. Feature color denotes agent

membership.
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(b)

Figure 9. (a) Landmark feature cluster. (b) Target feature cluster.

feature. In the future, we plan to reduce this to combining
all of the constraints to solve a single QP and this is a focus
of future work. One key aspect of Distributed QuickMatch
to note is that is finds around 99 percent of all contested
points, meaning it is very good at finding split clusters. One
interesting result of the Distributed QuickMatch algorithm is
that it matches the features into fewer, larger clusters due to
the use of its finite density kernel. This is a counter-intuitive
result and will be a subject of future study for this algorithm.

The final clustering results from the synthetic data set in
the Simulation section are shown in Figure 8. Figure 8(a)
shows the result of the centralized QuickMatch algorithm
run on the synthetic data, while Figure 8(b) shows the final
result from Distributed QuickMatch. Note that many of the
features from the higher index agents have been shifted to the
lower index agents, but ultimately each cluster has features
belonging to only one agent. Ultimately both algorithms are
able to cluster all of the features correctly.

Feature Discovery

The QuickMatch algorithm implicitly discovers common
features among images by creating clusters of similar
features. These clusters correspond to specific locations
in the universe, and therefore can be used to find both
targets and landmarks across images. Landmarks, although
not used in this paper, are points that occur commonly
across all images (except when occluded), and are useful for
multi-agent localization tasks. In the experimental images
collected, landmarks were the clusters with the largest
number of features, because many of this images did not
contain the target object. An example landmark cluster is
shown in Figure 9 (a). Features belonging to the target object
are generally smaller than the landmark clusters, but can still
be extracted, and show key features of the target. Figure 9
(b) shows one such cluster, which is the front hood of the car
model. Feature discovery is one attribute of QuickMatch that
does not exist in either BF or FLANN and can be useful for
discerning what features are most descriptive of images from
the network.

Conclusion

This paper highlights the utility of QuickMatch multi-
image matching for object matching and presents the
Distributed QuickMatch algorithm. QuickMatch is able
to find many more object feature matches than standard
methods by considering matches across all images, not
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just pairwise matches. The presented experiment tests the
QuickMatch algorithm in an experimental setting with
realistic conditions, and shows that multi-image matching
is superior to standard methods at matching the reference
object (even as it enters and exits images across the
entire camera network). QuickMatch is also tested with a
target object localization and again outperforms both the
BF and FLANN algorithms. Beyond testing QuickMatch,
we demonstrate the Distributed QuickMatch algorithm
on both the graffiti and synthetic data sets. We also
demonstrate QuickMatch’s feature discovery ability by
showing a characteristic landmark and target feature cluster
from the test images. This approach is the precursor to
an online and decentralized approach. Our future work
will focus on the online version of object discovery and
localization and multi-camera homography. We also plan to
decrease the Distributed QuickMatch’s QP implementation
computation time. Overall, QuickMatch is shown to be a
versatile multi-feature matching algorithm that outperforms
standard pairwise matching algorithms, and Distributed
QuickMatch offers an avenue for the QuickMatch framework
to handle a large volume of features with minimal inter-agent
communication.
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