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Abstract— This paper considers the combination of temporal
logic (TL) specifications and local objective functions to create
online, multiagent, motion plans. These plans are guaranteed
to satisfy a persistent mission TL specification and locally
optimize an objective function (e.g. in this paper, a cost based
on information entropy). The presented approach decouples
the two tasks by assigning sub-teams of agents to fulfill
the TL specification, while unassigned agents optimize the
objective function locally. This paper also presents a novel
decoupling of the classic product automaton based approach
while maintaining satisfaction guarantees. We also qualitatively
show that optimality loss in the local greedy minimization due to
the TL constraints can be approximated based on specification
complexity. This approach is evaluated with a set of simulations
and an experiment of 6 robots with real sensors.

I. INTRODUCTION

In this work, we consider a team of agents concurrently
tasked with a persistent mission given as a temporal logic
(TL) formula over regions in their workspace and an objective
function to optimize locally. Objective functions, such as
information gathering, often dictate local behaviors that are
difficult to optimize in the formal framework of TL planning.
This problem arises in scenarios ranging from autonomous
crop monitoring to disaster zone situational awareness. In a
disaster zone, for example, a team of drones can be tasked
with a persistent mission of “Take pictures of hospital A and
home B infinitely often, do not visit hospital A until hospital
C has been visited, and estimate flood water levels throughout
the area.” The first sections of this task are well suited for
TL specifications but, it is not clear how estimating flood
water levels can be stated as a TL specification. When posed
as an information gathering task however, estimating flood
water levels becomes straightforward.

This work builds upon both [1] and [2], where [1] creates
a framework for subteams satisfying TL specifications and
[2] considers a single agent combining temporal logic and
objective function based tasks in a receding horizon approach.
In [1], subteams are determined a priori, meaning agents
tasked with satisfying the TL specification may be sub-
optimally positioned (i.e. they must waste considerable
resources to reach desired regions). One goal of this work is to
allocate subteams online to satisfy parts of a TL specification
in a way that minimizes the total distance traveled by the
subteam. [2] integrates both sensing and TL specifications
in a receding horizon manner for a single agent; however, it
does not consider multiple agents or more general objectives.
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Prior approaches have leveraged knowledge from the TL
specification (specifically the specification automaton that
encodes the TL constraint) to reduce the computational and
memory complexities of classic (product automaton based)
approaches. Both [3] and [4] use sampling-based methods
to generate an abstracted workspace with paths that satisfy
the TL specification. This is done by guiding the sampling
process, using a search heuristic based on regions from the
specification, to choose samples that satisfy the specification.
These approaches are computationally efficient, but do not
consider known environment abstractions, multiple agents, or
secondary objectives.

Much of the distributed sensing problem can be solved
using approaches from decentralized partially observable
Markov decision process (DEC-POMDP) literature [5], [6],
but these approaches can be extremely computationally
complex, and known to be NEXP-complete (and therefore
intractable to calculate) in the worst cases [7]. Recently,
progress was made in splitting DEC-POMDPs into manage-
able, local, actions [5]; however, they still do not provide
guarantees over mission plans like TL specifications. Beyond
DEC-POMDPs, many approaches have been proposed for
similar local objective function optimizations, including
receding horizon control [1], [2], [8], gradient ascent/decent
[9], single-step horizon planning [10], and sampling based
methods [11], [12]. The distributed sensing approach used in
this work is inspired from [9], where information entropy is
minimized in a distributed and locally optimal way.

In our formulation, we assume all agents in the workspace
are not required at all times to satisfy the TL specification.
This allows agents to distribute the TL task in real-time, while
preforming a locally optimal objective function optimization
if a more specific task is not required. We assume agents
maintain connectivity; which is realistic for many current
robotic systems, such as the previously mentioned disaster re-
lief scenario or in ADS-B systems for UAVs [13]. Combined,
these assumptions allow us to change the approach taken in
previous TL planning literature, such as [1], [2], [14], [15],
[16]. In these and similar works, TL planning is performed
top down, in a computationally intense manner, and includes
planning for information gathering. Here, our assumptions
allow us to relax the computation required for TL planning,
allowing for more flexible information gathering strategies.
Thus, we can employ existing distributed information gather-
ing algorithms while satisfying TL constraints.

The primary contributions of this work are: First, we present
an approach for efficiently distributing a TL specification,
defined over regions in the workspace, among a team of
robots such that, when employing a secondary goal of local
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Fig. 1. (a) Finite environment Q and agent positions xi[0]∀i ∈ I. Vertices labeled from Π are shown as white circles and agent position vertices are
shown as red circles. Vertices in `−1(ε) are the small black nodes. (b) Time-invariant scalar function F (v)∀v ∈ V (c) Sensor array and corresponding
probabilities for a single agent. The red circle is again the agent position.

optimization of an objective function, global optimality loss
is predictable and approximately proportional to the TL
specification complexity. Second, a strategy is presented
for replacing the classic product automaton in TL planning
with planning on a simpler automaton (in this case a
Büchi automaton) that then uses the A* planning algorithm
to generate motion plans in the workspace that maintain
satisfiability guarantees of classic approaches.

This paper is organized into three sections. In Sec. II, we
formulate the problem of deploying a multi-agent team to
both satisfy a TL specification and optimize a local objective
function. Our solution is presented in Sec. III where we
formalize how the TL specification is satisfied, sub-team
agents are chosen, and agents minimize information entropy
locally. In Sec. IV, we present simulations that verify our
approach’s impact on the optimality of the sensing algorithm
based on specification complexity and a full scale experiment
with 6 ground robots estimating the RGB values of a projected
image.

II. PROBLEM FORMULATION

In this section, we formulate the general case for combining
TL specifications with a local objective function optimization.
We first consider a general formulation of the problem and
then detail one variant in Sec. III.
Notation: For a set Ω, |Ω| and 2Ω are its cardinality and
power set, respectively. For a set of symbols Σ, a word is
a sequence w = σ1, σ2, . . . of symbols σj ∈ Σ and Σω is
the set of all infinite words over Σ. The Cartesian product
of two sets, A and B, is A × B, and the product taken n
times is An = A × A . . . × A. The set difference between
sets A and B is denoted A \ B, and the union is A ∪ B.
For an undirected graph C = (V, EC), V is a set of vertices,
EC ⊆ V × V is the set of edges (which is symmetric), and
N (v) = {u ∈ V : uv ∈ EC} is the neighborhood of adjacent
vertices to a vertex v. For an observation yi[k] or position
xi[k], [k] denotes the time step index, and subscript i denotes
the agent index.

A. Environment

We model agent motion in its workspace as a finite graph.
Such abstractions, although conservative, exist for realistic
robot motion dynamics [17]. This is a common technique for
simplifying complex, realistic, robot dynamics [18]. Under
this assumption, the workspace is an undirected graph Q =

(V, EQ). We define a set of labels Π = {Π, ε}, where Π =
{π1, π2, . . . , πn} is a set of properties and ε is an empty
property, that are mapped to the vertices in V with a labeling
function ` : V → Π. In other words, `(v) = πi means v is
labeled with (and therefore satisfies when visited) property
πi, while `(v) = ε means visiting v does not satisfy any
property in Π. The inverses of this function, `−1(·), returns
the set of vertices in V that satisfy the specified property.
In this paper, the symbols in Π are simply numeric labels;
however, Π can be expanded to include semantic labels (e.g.
“charge,” “obstacle,” or “take a picture”). We make two key
assumptions for the graph Q.

Assumption 1: All vertices in `−1(ε) are connected.
Assumption 2: All vertices in `−1(Π) are reachable from

`−1(ε).
These assumptions are illustrated in Fig. 1, where any vertices
with labels from Π (shown in red) can be reached from
vertices with no labels (shown as black dots).

B. Agents

We consider a team of m agents labeled from a set
I = {1, 2, . . . ,m} moving on the undirected graph Q. The
location of each agent i at time k is xi[k] ∈ V and the
position of all agents at a given time is x[k] ∈ V m. We
assume each agent can move to any adjacent node N (xi[k])
in one time step and all agents move synchronously. Each
agent is initialized to xi[0] ∈ `−1(ε)∀i ∈ I. The trajectory
of agent i : xi[0]xi[1] . . . ∈ V ω generates a word over Π :
`(xi[0])`(xi[1]) . . . ∈ Π

ω
.

Assumption 3: Agents communicate in an undirected man-
ner and remain connected to all other agents in I, through
at least one other agent, at all times.

Assumption 4: All agents can satisfying any property in Π
and only one agent is required to visit `−1(πi) for property
πi to be satisfied.

C. Specifications

Temporal logic constraints guarantee specific agent behav-
iors (e.g. visiting multiple vertices simultaneously or avoiding
a set of vertices). The motion of the agents is constrained
by a mission specified using linear temporal logic (LTL)
formulas over Π. Given the set Π, an LTL formula is defined
inductively as

φ ::= π|¬π|φ1 ∧ φ2|φ1 ∨ φ2|φ1Uφ2|�φ1|♦φ1|©φ1 ,
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where π ∈ Π is an atomic proposition, φ1 and φ2 are LTL
formulas, and ∧ (conjunction), ∨ (disjunction), U (until),
� (always), ♦ (eventually), and © (next) [15], [19]. The
semantics of LTL is defined over infinite words, w ∈ (2Π)ω .
A complete description of the semantics of LTL is outside
the scope of this work, but can be found in [19].

D. Sensing

Agents collectively perform a secondary distributed sensing
task that does not involve properties from Π, but is focused
on estimating an a priori unknown, time-invariant, scalar
function F : V → R that returns values in a finite set Y ⊆ R.
At each time k, each agent measures F (xi[k]) with a noisy
sensor, generating an observation yi[k] ∈ Y , based on the
sensing probability P (yi[k]|F (xi[k]), which is intrinsic to
each sensor. We denote all sensor observations at a given
time step as y[k] and the estimate of F (v)∀v ∈ V based on
all past measurements y[0 : k − 1] as Fe[k] (see Sec. III-E).
If an agent has a sensor array covering multiple vertices, as
shown in Fig. 1-C, an observation is generated at each vertex
based on the corresponding sensing probabilities. The agents
locally optimize a sensing function

h (V, y[0 : k − 1]) , (1)

where h (·) is an objective function, such as mutual informa-
tion or Shannon entropy, that depends on past measurements.
In (1), h is a function of the teams’ discrete observations.
This paper focuses on a distributed sensing task, however
h can be generalized to other objective functions, such as
potential functions.

Example 1: Consider six robots operating in a rectangular,
undirected, and 8-way connected, lattice graph (see Fig. 1-a),
with five labeled “regions” or vertices. In this case, I =
{1, ..., 6}, Π = {1, ..., 5}, and the agents are initialized to
xi[0] ∈ `−1(ε)∀i ∈ I as shown. Fig. 1-b shows the true
F (v)∀v ∈ V scalar function that is initially unknown by the
agents. Finally, Fig. 1-c shows P (yi[k]|F (xi[k]) for a single
agent. Agents are tasked with the LTL formula

φ = ♦π1 ∧ (¬π2U(π1 ∧ π5)) ∧�♦π3 ∧�¬π4, (2)

which states “eventually visit 1, do not visit 2 until you have
visited 1 and 5, visit 3 infinitely often, and never visit 4.”

Agents sample F (xi[k])∀i ∈ I , and receive measurements,
y[k], between {0, . . . , 255} (i.e. Y = {0, . . . , 255}). The
probability of yi[k] being correct is shown in Fig. 1-c and
represents a binary “sensed correctly” outcome. �

E. Problem Statement

Problem 1: Given a team of agents I with the capabilities
described in Sec. II-A – II-D that operate in an environment
graph Q, solve

min
x[0]:x[k−1]

h (V, y[0 : k − 1]) , (3)

at each time k, such that LTL formula φ over Π is also
satisfied.

III. SOLUTION

This solution consists of two components: satisfying the
LTL specification φ and greedy optimization of h. We propose
locally decoupling these components by allowing agents to
follow information gathering strategies when not actively
making progress towards satisfying φ.

To accomplish this, agents located nearest to `−1(πi) for
an i that makes progress in φ are assigned to a sub-team.
Agents use an online, distributed, election algorithm, similar
to FloodMax [20] and the Hungarian algorithm [21], to
determine the best set of agents to make progress toward
satisfying φ (see Sec. III-C). The distance to acceptance metric
from [8] (see Sec. III-A) is used to determine how to make
progress toward satisfying φ. The remaining agents locally
minimize h and, to prevent visiting unintended regions, avoid
all vertices in `−1(Π). Here, agents minimize information
entropy, as in [9], to gather information about the environment
in a locally optimal way. All agents take sensor measurements
at every time step regardless of objective. Once progress
towards satisfaction has been made, the election algorithm
begins again, and the process is repeated infinitely.

A. Satisfying LTL constraints

The LTL specification φ is translated to a non-deterministic
Büchi automaton1(NBA) that accepts the language satisfying
φ. A Büchi automaton is a tuple B = (S, S0,Π, δ,F), where
S is a finite set of states, S0 is the finite set of initial states,
Π is an input alphabet, δ : S × 2Π → 2S is a transition
relation, and F ⊆ S is the set of accepting states. The NBA
takes as input a word w = σ1, σ2, σ3, . . ., with σ ∈ 2Π,
inducing a run of states s1, s2, s3, . . . from S starting in S0,
and δ (sj , σj) = sj+1, where j is the index of output state
sequence. Such a sequence of symbols is accepted by B if
F is visited infinitely often.

Agents tasked with making progress in φ form a temporary
sub-team of agents τ ⊆ I. Agents in τ move to generate a
single symbol σj ∈ 2Π. If multiple propositions form a single
symbol (i.e. σj = {π1, π2}) then σj is generated when all
specified vertices are visited (or not) simultaneously); more
formally, when

⋃
i∈τ

`(xi[k]) = σj .

Remark 1: Classically, a product automaton is created
from the Cartesian product of some transition system for
the workspace and the above Büchi automaton [1], [15].
Planning is done on this product automaton, which can
become intractably large in systems with multiple agents or
large environments. We attempt to avoid this intractability by
splitting the specification and workspace planning. This split
is possible by Assumptions 1 – 4, which form the basis for
Proposition 1. The costs of these assumptions are restrictions
on both agent heterogeneity (Assumption 4), and the graph
Q (Assumptions 1-2).
Example 1 (cont.): Below, in Fig. 2, is the Büchi automaton
corresponding to (2), generated from an off-the-shelf conver-
sion tool [22]. Starting in s0, the symbol enabling a transition
to s2, σ1, would be represented as σ1 = {π1, π5} = {1, 5}

1There exist off-the-shelf tools to perform this translation, see [22], [23].
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and the corresponding agents designated to service σ1 could
be τ = {1, 4} (see Fig. 1-A). Symbol σ1 would be generated
when

⋃
i∈τ

`(xi[k]) = σ1. �

s0start s1

s2

s3

π5 ∧ ¬π2 ∧ ¬π4

π1 ∧ ¬π4π1 ∧ π5 ∧ ¬π4

¬π4

π3 ∧ ¬π4

π3 ∧ ¬π4 ¬π4

¬π2 ∧ ¬π4

Fig. 2. Büchi Automaton for (2)
At each state in B, transitions exist that are enabled by

the generation of symbols. The choice of which symbols to
generate is decided using the distance to acceptance (DTA)
metric employed in [2], [8]. The DTA represents the minimum
number of states required to reach an accepting state sa ∈ F
from a given state sj and is a local minimum at states in
F . It is shown in [8] that this potential-like function, if
minimized over transitions, will drive B to visit a satisfying
state infinitely often (thus satisfying φ). The distance in B
between any two states is defined as

d(s, s′) =

 min
p∈D(s,s′)

L(p), if D(s, s′) 6= ∅

∞, if D(s, s′) = ∅
, (4)

where D is the set of states between states s and s′, p is
a single path through D ({p = s1s2s3 . . . sn|s1 = s, sn =
s′, sj

σ−→ sj+1,∀n ≥ 0,∀j ∈ 0, n− 1}), and L(p) is the
number of states in p. DTA is then found, offline, for each
state in B, by

da(sj) = min
sa∈F

d(sj , sa). (5)

When agents must decide which state to transition to, they
choose the next state with the lowest DTA. More formally,

sj+1 = arg min
s

da(s) ∀s ∈ N (sj). (6)

Once sj+1 is determined, the corresponding σj dictates the
next generated symbol (where δ(sj , σj) = sj+1). If two
possible states have the same DTA, the state with the lower
transition cost is selected. This cost depends on the agents
assigned to τ and is detailed in Sec. III-C.

B. Motion Planning

The importance of a travel cost for our solution is two-fold.
Agents require both a path through graph Q to a desired vertex,
and a reliable estimate of the cost of traveling there. This
is a mature area of research, and there exist many planning
tools to accomplish this task [24], [18]. A brief overview of
the employed cost estimate is provided below.

Given graph Q, we assume an agent can move to a vertex
subject to cost

Di,n := L(xi, n), (7)

where Di,n is the cost for agent i to move to n, the nearest
vertex in `−1(πn), and L is the shortest path length between
two vertices in graph Q. In this work, L is computed using
the A* algorithm [24] with a heuristic f(v) given as

f(v) = g(xi, v) + j(v, n), (8)

where v ∈ V , g(xi, v) is the path length from the position
of agent i to vertex v, and j(v, n) is the Euclidean distance
between v and the nearest node in `−1(πn). When computed
for a specific agent-region pair, the algorithm considers all
other regions as obstacles. The cost Di,n of |I| agents to |Π|
“regions” is denoted as D.

This section assumes that multiple agents can occupy the
same node in graph Q, which is unrealistic in most situations.
This problem is addressed later in the Sec. IV.

C. Sub-team Election

Once the next state sj+1 and transition σj are determined
using (6), agents must elect (online) the nearest sub-team
τ to service regions in σj to minimize cost J subject to⋃
i∈τ

`(xi[k]) = σj . To do this, all agents in I must first

distribute the updated cost information D.
To distribute D, agents individually determine local costs J

and share them with neighboring agents in a manner similar
to the FloodMax algorithm [20]. Agents share both their
calculated D, and all information they have received from
other agents. This approach, given Assumption 3, guarantees
agents will receive a fully updated D matrix in maximum
|I| rounds of information sharing [20].

Once σj and D have been updated, each agent uses the
Hungarian algorithm [21] to elect the nearest agents to regions
of interest in σj to τ (i.e. if σj = {π1, π2} then π1 and π2

are the regions of interest to be serviced). The cost of a
transition for a given σ and τ pair is

C(σ, τ) =

|τ |∑
i=1

Jτ i,σi , (9)

where τ i and σi are the ith element in the sets. If the costs
are identical, the lower state index is chosen. Agents use the
same algorithms and data in their calculations, so they arrive
at the same result in a distributed manner. Each agent checks
if its index appears in τ , and if so, uses A* to determine
the exact path sequence to its assigned region. Each agent in
τ evaluates the path length for all agents in τ and, if they
are not equivalent, waits for D(xi, n)−min(D(τ, σj)) time
steps.

D. Satisfiability

Proposition 1: Generation of a satisfying run in B is
guaranteed if |I|≥ max |σj |∀j, DTA is used to choose σj ,
and the A* algorithm plans agent trajectories in a graph Q
with Assumptions 1-2.

Proof: φ is satisfied if a run of states in B visits an accepting
state infinitely often. Using DTA (6) to guide the generation
of symbols is guaranteed to induce such a run. To generate
each symbol, all agents in τ must reach their assigned vertices
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simultaneously (
⋃
i∈τ

`(xi[k]) = σj). This can only be possible

for all σj if |I|≥ max |σj |∀j and Assumptions 1-2 hold for
graph Q. This implies that any τ can reach any vertices in
`−1(Π) without generating unintended symbols if each agent
is able to find a path through graph Q. A* is guaranteed to
find such a path, if one exists, since j(v, n) ≤ g(xi, v)∀v
then j(v, n) [24]. φ is therefore guaranteed to be satisfied. �

E. Information gathering

When agents are not part of τ , they minimize h locally.
As posed in Sec. II, h is plagued with “the curse of history.”
[9] This means as k → ∞, so does the size of y[0 : k],
making the problem computationally intractable. To solve
this known problem, we employ an approach adapted from [9]
to minimize conditional entropy H using the Markovianity of
the process. For this paper, h = 1−H(Fe[k]), where Fe[k]
is the estimate of scalar function F (v)∀v ∈ V at time k and
Fe(xi)[k] is the estimate of the scalar function at vertex xi.
Below is a brief overview of [9], using the above notation,
which has been shown to be locally optimal at gathering
information. To compute the entire system’s entropy field,
agents must share their P (yi[k]|F (xi)[k]), positions xi[k],
and yi[k] values at each time k. This is done in the same way
the D matrix is shared (see Sec. III-C). From Bayes’ Rule, the
joint observation and the system’s prior distribution, P (Fe[k]),
can be used to compute the system’s posterior distribution
P (F (xi)[k]|y[k]). We assume the robot positions are known
and therefore the prior distribution prediction step is denoted
P (Fe[k + 1]|y[k]). These steps constitute a classic recursive
Bayesian estimator of F (v)∀v ∈ V [18]. The probability that
the sensor estimate is equal to some E ∈ Y is therefore

P (Fe(xi)[k + 1] = E) =

P (Fe(xi)[k + 1]|yi[k])P (Fe(xi)[k]|y(xi)[k]). (10)

The information entropy is then defined as

H(Fe(xi)[k]) =

−
∑
E∈Y

P (Fe(xi)[k] = E) log2 P (Fe(xi)[k] = E). (11)

The resulting entropy field is then used locally to plan for
each sensing agent to move in the direction of highest entropy
(or lowest information), meaning

h = 1−H(Fe(xi)[k]), (12)

because the goal is maximizing entropy using a minimization.
The motion plan is then,

xi[k + 1] = arg min
x∈N (xi[k])

h(x), (13)

where ties are broken by picking one of the lowest valued
neighbors randomly.

F. Qualitative Loss of Optimality Approximation

To compare the impact of various LTL specifications on the
distributed sensing task, we find a qualitative approximation
of the optimality loss based on LTL specification complexity.
We begin by defining the change in h per time step k as

ζ[k + 1] =
∑
x∈V

h[k + 1]− h[k]

=

m∑
i=1

h(xi[k + 1])[k + 1]− h(xi[k + 1])[k], (14)

where ζ[k + 1] is the sum of changes in h based on only
agent measurements. We denote ζ?[k+ 1] the greedy optimal
policy (for one time step, holding h constant, and where all
agents follow (13)). The optimality loss, (ζ?− ζ), arises from
the LTL constraints forcing agents to behave sub-optimally
and can be approximated by

ζR[k] = ζ?[k]− ζ[k] ' ζ?[k]
max|inf(w)|

m
, (15)

where ζR[k] is the optimality loss, or regret, and inf(w)
refers to the set of infinitely repeated symbols in a word
that satisfies φ. We assume each agent can make the same
contribution to the decrease in the total uncertainty. As k →
∞, max|inf(w)| is the maximum number of agents removed
from the optimal policy. Equation (15) does not strictly bound
ζR due to sensor measurement uncertainty, causing ζ and
ζ? to chatter around zero as Fe[k] approaches F (v)∀V . As
k →∞, F (v)∀v ∈ V will be measured infinitely many times,
meaning ζR will fluctuate, from sensor noise, around zero.
Therefore, to compare different LTL specifications’ impacts
on sensing, we evaluate the average change in h per time
step per agent over a finite time window, given by

ζ =

K∑
k=0

ζ[k]

Km
, (16)

where K is some finite time. From (15) and (16), ζ can be
approximated, based on LTL specification complexity, as

ζ ≈ ζ?m−max|inf(w)|
m

, (17)

where ζ? is (16) evaluated for ζ?. Fig. 4 plots both this
proposed approximation and the actual simulation data for
K = 1000. This approximation is conservative as it assumes
agents that are satisfying LTL constraints are not making
sensor measurements (which is not the case). While our
current analysis is qualitative, we plan to investigate more
rigorous bounds in the future.

IV. SIMULATIONS AND EXPERIMENTS

The above algorithms are implemented in both simulation
and in an experimental team of robots. Above, agents are
allowed to occupy the same position, however this is not
possible in practice. For agents in τ to avoid collision, each
looks one time step ahead for possible collisions with other
agents in τ . If a collision is imminent, the agent with the
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Fig. 3. Mean entropy change per action based on algorithm and specification
choice. The x-axis represents changes in LTL specification complexity,
starting with requiring all agents for the LTL task on the left (max|inf(w)|=
m) and going to all agents are following information entropy minimization
on the right (max|inf(w)|= 0). The estimate from (17) is also shown.

lower label index in I replans its route with the higher index
agent as an obstacle. The higher indexed agent then waits
until the lower indexed agent is more than one node away
before continuing. τ agents must compensate for longer paths
accordingly. Agents not in τ use their knowledge of all agent
positions to inflate their estimate field. The vertex position of
each agent, and all of its neighboring vertices are artificially
set to a value greater than one before (13) is calculated. This
turns agents into obstacles and they are avoided. The agents
then reset the inflated values and proceed. Taken together,
these approaches guarantee there are no collisions.

A. Simulations

The test case (Example 1) is a 5 region and 6 agent case
with an LTL formula as shown in (2). The initial agent
positions are shown in Fig. 1-A, and the unknown scalar
function F (v) is shown in Fig. 1-B. Five hundred trials were
conducted for the above algorithms with variations of (2), such
that max|inf(w)|= {1, 2, 3, 4, 5}, the LTL algorithms without
distributed sensing, and the distributed sensing algorithms
without LTL constraints. The information-gathering-only
algorithm treats the regions from the prior LTL specification
as obstacles and the LTL constraints only algorithm hold
unused agents stationary. For each trial, ζ , in (bits/action), is
recorded with K = 1000 and the average, upper, and lower
values from these trials are shown in Fig. 3. Each trial is
run for a thousand time steps and the initial agent locations
and region locations remain stationary between trials. The
approximation from (17) is also shown in Fig. 3.

The information gathering algorithm, which has been
shown to be optimal in distributively minimizing information
entropy [9], has the most efficient reduction in entropy per
action. Satisfying the LTL constraints without minimizing
information entropy, as expected, had a near zero reduction
in information entropy. The increase in max|inf(w)| reduces
ζ, and the approximation from (17) allows for different LTL
specifications to be compared for their impacts on ζ.

B. Experiments

We further verified our approach with a full-scale exper-
iment using a 6 robot team of identical, modified, iRobot
Create2 R© ground robots (see Fig. 4-B). These robots are
each controlled with a Raspberry Pi 3 Model B with a 64-
bit, 1.2GHz, processor running Ubuntu 16.04 MATE and
ROS Kinetic. They each have a five RGB color sensor array
mounted on their top plate aligned in a pattern identical to
the simulation sensor configuration in Fig. 1-C (see Fig. 4-B).

Each robot is tracked using an OptiTrack Motion Capture
System in a 6 by 9 meter arena (shown in Fig. 4-A) that
provides perfect position and heading information. The agents
communicate over a wifi network and move via waypoint
following (using a PD controller). The arena is surrounded
by a set of 6 projectors that project images over the arena
floor. This area (3 by 6 meters) is shown in Fig. 4 and Fig.
5-A and contains blue marked tiles in the same locations as
the regions in Fig. 5-B. In this experiment, the graph Q is a
60 by 120 node lattice graph (identical in configuration to
Fig. 1-A but much denser).

The projectors create a light field (an RGB image) that is
sensed as the robots move. Using the above algorithms, the
robots satisfy (2) while minimizing information entropy. The
projected image is shown in Fig. 5-A, and the experimental
sensor result after 1000 time steps (approximately 3 hours)
is shown in Fig. 5-B.

The estimated sensor values in Fig. 5-B are estimated using
five TCS34725 RGBC sensors mounted on the top of each
robot. These sensors have an IR filter, measure levels of red
(R), green (G), blue (B), and white (C) light, and have the
approximate sensor accuracies shown in Fig. 1-C. The limiting
factor for run-time in this experiment was the time required
for each sensor to gather photons and return measurements
(∼ 0.75 seconds per sensor). The sensor locations at any time
were determined using nearest neighbor approximation onto
graph Q meaning each sensor value is accurate to within 2.5

(a)

(b)

Fig. 4. (a) The experimental arena with 6 robots, the projected light field,
and OptiTrack motion capture system. (b) Modified iRobot Create2 R© robot
with array of five TCS34725 RGBC light sensors and motion capture tracking
markers.
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Fig. 5. Experimental results after 1000 time steps. (a) The experimental
arena with projected light field (RGB image). (b) The experimental sensor
estimates of the projected light field at k = 1000.

centimeters. To determine the appropriate RGB value shown
in Fig. 5-B, the RGB values are corrected for saturation by
dividing by the (C) value from the sensor. A noticeable band
of darker color at the edges of each projector appears in Fig.
5-B because the angle of incidence on the sensors is large
there. This effect is further accentuated because the sensors
are slightly raised above the robot, meaning they leave the
projection envelope where two projectors meet. The projected
field estimate is shown in Fig. 5-B, and correlates well with
the projected image (Fig. 5-A).

V. CONCLUSION

In this paper we consider a multiagent persistent planning
problem coupled with an optimization problem. The presented
approach guarantees the mission satisfaction; while also
providing a qualitative approximation of the distributed
sensing optimality loss based on temporal logic specification
complexity. This is primarily done by assigning agents to
generate the necessary NBA state transitions based on minimal
travel cost J and the distance to acceptance metric. This
frees temporarily unused agents to accomplish a secondary
objective function optimization constraint, which in this case
is locally minimizing information entropy. The qualitative
approximation of optimality loss in sensing based on temporal
logic constraint complexity is shown to be conservative
but reasonable based on simulation results. The approach
is experimentally tested with six robots and a simple LTL
specification that requires at most two robots to produce
a given state transition. Overall, this approach explores a
novel approach to enforcing temporal logic constraints, by
splitting specification automaton and workspace planning,
while also allowing for a secondary greedy objective function
minimization.
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