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Abstract— We present a new temporal logic called Distribu-
tion Temporal Logic (DTL) defined over predicates of belief
states and hidden states of partially observable systems. DTL
can express properties involving uncertainty and likelihood that
cannot be described by existing logics. A co-safe formulation
of DTL is defined and algorithmic procedures are given for
monitoring executions of a partially observable Markov decision
process with respect to such formulae. A simulation case study
of a rescue robotics application outlines our approach.

I. INTRODUCTION

Temporal logics (TLs) provide a rigorous framework for
describing complex, temporally ordered tasks for dynamical
systems. Temporal logic formulae can be used to describe
relevant properties such as safety (“Always avoid colli-
sions”), reliability (“Recharge infinitely often”), or achieve-
ment (“eventually reach destination”) [2]. In this work, we
define Distribution Temporal Logic (DTL), a new kind of TL
for specifying tasks for stochastic systems with partial state
information. The logic is well-suited to problems in which
the uncertainty of an on-line state estimate is significant and
unavoidable. Many such systems arise in robotics applica-
tions, where a robot may be uncertain of, for example, its
own position in its environment, the location of objects in
its environment, or the classification of objects.

We represent the system as a Partially Observable Markov
Decision Process (POMDP) [13], whose state is described by
the current probability distribution over the hidden state of
the system (the belief state). We define DTL over properties
of belief states as well as hidden states. With DTL, we can
describe such tasks as “Measure the system state until esti-
mate variance is less than v while minimizing the probability
of entering a failure mode” or “If the most likely card to be
drawn next is an Ace, increase your bet”. DTL is a promising
framework for high-level tasks over POMDPs as it can be
used to describe the value of taking observations as well as
describe complex tasks defined over the hidden states of the
system.

Current research on temporal logic specifications for dy-
namical systems can be broadly divided into three common
problems of increasing difficulty: (i) monitoring whether a
single execution of a system satisfies a TL formula, (ii)
model checking whether some or all executions of a system
satisfy a formula, and (iii) synthesis of control policies to
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ensure formula satisfaction. Solutions for all three of these
problems have been heavily studied for both deterministic
and stochastic systems See the technical report [1] and [2],
[9], [16], [22], [28], [30], [31].

Our focus in this paper is on stochastic systems with a
hidden state. This paper introduces DTL as a means to for-
mally pose these standard problems over such systems, and
provides monitoring results by giving a procedure to verify
ex post facto with what probability a particular execution of
a POMDP satisfies a particular DTL specification. The more
difficult problems of DTL model checking and synthesis will
be investigated in future research.

Recent development of point-based approximation meth-
ods [15], [20], [23], [25] and bisimulation-based reduction
methods [5], [11] have made it possible to maximize the ex-
pected reward defined over hidden states in high-dimensional
POMDPs with low computational overhead. It is well known,
however, that maximizing the actual reward gathered in an
execution of a POMDP is undecidable [18]. Synthesizing
policies over POMDPs to maximize the probability of sat-
isfying a TL formula over hidden states is thus a hard
problem, though some results exist for synthesis over short
time horizons [29] and in systems where TL satisfaction can
be guaranteed [7].

The best action to take in a POMDP to increase the
probability of satisfaction depends intimately on the quality
of knowledge of the system. Information-theoretic measures
defined over belief states can quantify the certainty (i.e.
Shannon entropy) of the current estimate or the expected
informativeness (i.e. mutual information) of future actions
[8], [24]. Considering these two measures in mobile robots
have increased environmental estimation quality [3], [6],
[10], [12]; incorporating them into TL-based planning for
POMDPs will possibly yield similar results.

Our intention in this work is to introduce a new logic to
leverage the richness of information conveyed in the belief
state. Specifically, our contributions in this work are:

• We define syntactically co-safe linear DTL (scLDTL), a
DTL that can be used to prescribe finite-time temporal
logic behaviors of POMDPs.

• We demonstrate that DTL can describe behaviors in
partially observable systems that are not describable by
current TLs

• We provide an algorithmic procedure for evaluating the
probability of satisfaction of an scLDTL formula with
respect to an execution of a POMDP.

We intend to extend these results to synthesis in future work.

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5717-3/13/$31.00 ©2013 IEEE 4719

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 02:38:37 UTC from IEEE Xplore.  Restrictions apply. 



a2

aO

a1a3

s1, sO

s1, s3c s1, s1c s1, s2c

Fig. 1. A representation of the hidden state dynamics of the multiple
hypothesis testing POMDP given that the true source is s1.

II. PRELIMINARIES

In this work, we assume that the reader is familiar with
notions of set theory, probability, and the probability simplex
representation of probability mass functions.

A partially observable Markov decision process
(POMDP) [13], [19], [27] is a tuple POMDP =
(S, p̂0, P,Act,Obs, h) where S is a set of (hidden)
states of the system, Act is a collection of actions, and
P : S × Act × S → R is a probabilistic transition relation
such that taking the action a in state s will drive the system
to state s′ with probability P (s, a, s′). After an action a
drives POMDP to a state s ∈ S, , the system generates an
observation o ∈ Obs with probability h(s, a, o). The system
maintains a belief state p̂t of the current state of POMDP ,
where p̂t(s) = Pr[POMDP in state s|a0:t−1 taken, o1:t

seen], via recursive Bayesian estimation initialized with the
prior distribution p̂0.

In this paper, we use syntactically co-safe linear TL
(scLTL) as a basis for the definition of a new temporal logic.
An scLTL formula is inductively defined as follows [14]:

φ := π|¬π|φ ∨ φ|φ ∧ φ|φUφ| © φ| ♦ φ, (1)

where π is an atomic proposition, ¬ (negation), ∨ (disjunc-
tion), and ∧ (conjunction) are Boolean operators, and ©
(“next”), U (“until”), and ♦ (“eventually”) are temporal
operators.

We will assume that the reader is familiar with systems
modeled as deterministic transition systems [2], a graph-
like abstraction with labeled edges and states, in addition
to scLTL formulae and the use of finite state automata to
perform model checking of deterministic [17] and stochastic
[26] systems.

III. MOTIVATING EXAMPLE: HYPOTHESIS TESTING

In this section, we use a simple multiple hypothesis testing
example to motivate the introduction of the logic scLDTL
described in Section IV. Consider an experiment in which
one of three coins, each with different expected frequency
of heads, is flipped repeatedly. The unknown states of the
system are Sh = {s1, s2, s3}, where si is a coin with heads
frequency pi. The set of observations is Obs = {o1, o2}
where o1 is heads and o2 is tails. At each time step, a
deciding agent can either flip a coin or choose a hypothesis
in Sh. Let S = Sh × Sd, where Sd = {s1c, s2c, s3c, sO} is
the state space of the deciding agent. sO means that coin
flips are still being observed and sic means that the hidden
state si is chosen as the most likely hypothesis. The process
is illustrated in Figure 1. This is described formally by the

POMDP MHT = (S, p̂0, P, {aO, a1, a2, a3}, {o1, o2}, h)
where P and h are given by

P ([si, s0], a0, [si, s0]) = 1,
P ([si, s0], aj , [si, sjc]) = 1 ∀i, j ∈ {1, 2, 3}
P (s, a, s′) = 0, otherwise

(2a)

h([si, sO], aO, o1) = pi, h([si, sO], aO, o2) = 1− pi
h(s, a, o) = 0, otherwise

(2b)
Consider the problem in which we are given an infinite

number of observations from MHT , but must estimate the
state of the system in finite time. One solution method is to
prescribe a threshold on the entropy of the belief state and
terminate observation and select the most likely hypothesis
when it is reached. In plain English, this is “When the
entropy of the belief state is below h, select the most likely
hypothesis.”

This can easily be described by the new Distribution
Temporal Logic (DTL) we define in Section IV. As it will
become clear later, this predicate logic is defined over two
types of predicates: belief predicates and state predicates.
“When the entropy of the belief state is below h” is equiv-
alent to the belief predicate H(p̂) < h where H(·) denotes
entropy “The most likely hypothesis” is equivalent to si
such that p̂([si, sO]) > p̂([s, sO]) ∀s ∈ Sh \ {si}. Each
comparison between components of p̂ is a belief predicate.
The selection of hypothesis si means the state is in the set
{[sj , sic]}j∈{1,2,3}, and such sets will be referred to as state
predicates. As it will become clear in Section IV, the overall
specification translates to the following DTL formula

(H(p̂) < h)⇒
(
∧
si∈Sh

(
∧
sj∈Sh\{si}(p̂([sj , sO]) > p̂([si, sO]))⇒

©{[sj , sic]}j∈{1,2,3}),
(3)

where the temporal and logical operators have roughly the
same semantics as scLTL ( see Section IV, Definition 2).

Neither the threshold on entropy nor the selection of the
most likely hypothesis can be formulated using POCTL*, the
most general existing temporal logic for partially observable
systems [30], [31]. POCTL* can describe some properties
with respect to a belief state, namely whether the probability
under the initial belief state of a collection of sample
paths of hidden states and observations occurring is greater
than or less than some threshold, but this calculation is a
linear function of the belief state. As entropy is a non-
linear function of the belief state, entropy levels cannot be
described in POCTL*. Further, POCTL* cannot compare the
estimated probabilities of hypotheses to each other, meaning
it cannot be used to formulate the selection of the most likely
hypothesis.

Since the problem we consider here is readily addressed
with tools from optimal estimation and information theory
(see e.g. [8], [21]), constructing a new TL to describe the
solution strategy may seem unnecessary. However, even con-
sidering only measures of uncertainty allows the description
of novel behaviors, such as specifying low uncertainty levels
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as temporal goals or using uncertainty thresholds to trigger
behaviors.

IV. SYNTACTICALLY CO-SAFE LINEAR DISTRIBUTION
TEMPORAL LOGIC

In this section, we construct a new logic, syntactically
co-safe linear distribution temporal logic (scLDTL), that
describes co-safe temporal logic properties of probabilistic
systems. scLTL is defined over two types of predicates:
belief predicates of the type f < 0, with f ∈ FS : {f :
Dist(S) → R} (denoted simply by f ) where Dist(S) is
the set of all pmfs that can be defined over state space S
and state predicates s ∈ A, with A ∈ 2S (denoted simply
by A). In the example formulae used in this work, we abuse
notation of belief predicates in order to enhance readability.
Formally, we have:

Definition 1 (scLDTL syntax). An scLDTL formula over
predicates over FS and state sets is inductively defined as
follows:

φ := A|¬A|f |¬f |φ ∨ φ|φ ∧ φ|φUφ| © φ| ♦ φ, (4)

where A ∈ 2S is a set of states, f ∈ FS is a belief predicate,
φ is an scLDTL formula, and ¬, ∨, ∧, ©, U , and ♦ are
as described in Section II.

We construct a basic notion of satisfaction over pairs of
hidden state sample paths and sequences of belief states,
given by Definition 2.

Definition 2 (scLDTL semantics). The semantics of scLDTL
formulae is defined over words w ∈ (S × Dist(S))∞.
Denote the ith letter in w as (si, p̂i) The satisfaction of a
scLDTL formula at position i in w, denoted (si, p̂i) |= φ, is
recursively defined as follows:
• (si, p̂i) |= A if si ∈ A,
• (si, p̂i) |= f if f(p̂i) < 0,
• (si, p̂i) |= ¬A if si 6∈ A,
• (si, p̂i) |= ¬f if f(p̂i) ≥ 0,
• (si, p̂i) |= φ1 ∧ φ2 if (si, p̂i) |= φ1 and (si, p̂i) |= φ2,
• (si, p̂i) |= φ1 ∨ φ2 if (si, p̂i) |= φ1 or (si, p̂i) |= φ2,
• (si, p̂i) |=©φ if (si+1, p̂i+1) |= φ,
• (si, p̂i) |= φ1Uφ2 if there exists j ≥ i such that

(sj , p̂j) |= φ2 and for all i ≤ k < j (sk, p̂k) |= φ1,
• (si, p̂i) |= ♦ φ if there exists j ≥ i such that (sj , p̂j) |=
φ.

The word w |= φ, iff (s0, p̂0) |= φ.

We also define a notion of probabilistic satisfaction with
respect to an execution of a POMDP in Definition 3.

Definition 3 (scLDTL satisfaction with respect to a
POMDP execution). An execution of a POMDP (a
sequence of belief states p̂0:t, the sequence of actions
taken a0:t−1, and the sequence of observations seen o1:t)
probabilistically satisfies the scLDTL formula φ with
probability Pr[{s0:t such that (s0, p̂0) . . . (st, p̂t) |=
φ}|p̂0:t, a0:t−1, o1:t], denoted in shorthand as
Pr[φ|p̂0:t, a0:t−1, o1:t].

V. MONITORING POMDPS

Here we show how to solve the following problem.

Problem 1 (scLDTL monitoring of POMDPs). Evaluate
with what probability a given finite-length execution of
a POMDP POMDP = (S, p̂0, P,Act,Obs, h) satisfies a
given scLDTL formula φ.

The solution to this problem could be used to evaluate the
performance of a single execution of a POMDP or, as we
show in Section VI, can be used to compare the performance
of control policies. More importantly, the tools developed for
this problem are potentially useful for developing synthesis
procedures.

The evaluation proceeds in two stages. In the first stage,
called feasibility checking, we check for the possible exis-
tence of a sample path s0:t such that (s0, p̂0) . . . (st, p̂t) |=
φ and

∏t
i=0 p̂

i(si) > 0, which is a necessary but not
sufficient condition for Pr[φ|a0:t−1, o1:t, p̂0] > 0. The sec-
ond stage is probabilistic satisfaction checking, in which
Pr[φ|p̂0:t, a0:t−1, o1:t] is calculated.

A. Feasibility checking

First, we construct a deterministic transition system FTS
whose labels correspond to the belief predicates involved
in the scLDTL formula φ. We relax all state predicates
by mapping them to belief predicates, e.g., state predicate
A is relaxed to the belief predicate Pr[s ∈ A] > 0. We
also create a mapping ΨF from each belief predicate to an
atomic proposition. Then, for each f appearing in the relaxed
scLDTL formula, we calculate the level set f(p̂) = 0 in
Dist(S) and map it to a set of probability vectors in the
probability simplex. We take the quotient of the partition
given by the level sets to form a transition system and label
each state with ΨF (f) for each f that was satisfied in the
corresponding region. We denote the region of the simplex
corresponding to the state qj in the transition system as
Reg(qj).

More details of constructing this transition system may be
found in technical report [1].

After FTS is constructed, we proceed to feasibility check-
ing. From φ, we create an scLTL formula φ′ by replacing
every predicate in φ with its image in the mapping ΨF . We
then transform the sequence p̂0:t to a run over FTS (a finite
sequence of states of FTS) and perform automata-based
scLTL verification to check whether the word over FTS
satisfies φ′. If verification succeeds, a deterministic transition
system DTS, which is later used in probabilistic acceptance
checking to describe the time evolution of the satisfaction of
belief predicates, is constructed. DTS is a simple,“linear”
transition system whose action set is a singleton and whose
only possible run is q0 . . . qt where the label of state qk is⋃
{f |f(p̂k)>0}ΨF (f).
If verification fails, then we do not proceed to probabilistic

acceptance checking, as Pr[φ|p̂0:t, a0:t−1, o1:t] = 0.
We illustrate this procedure in the following example
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Example 1. Consider the multiple hypothesis testing
POMDP MHT given in Section III with scLDTL specifica-
tion (3) where the entropy level is 0.8 bits. In this example,
we will suppress the second component of the hidden state
(Sd) as it is fully known and evolves deterministically.
Figure 2(a) shows the partitioning of the probability simplex
from the belief predicates in (3). The predicates involving
maximum likelihood (red) and specified entropy level (blue)
partition the simplex into six regions corresponding to dis-
crete states qi, i ∈ {1, . . . , 6}. From this partition, we can
form the transition system FTS shown in Figure 2(b). A
state qi is labeled with proposition πj if sj is the most likely
hypothesis according to the probability vectors in Reg(qi)
and with π4 if the entropy of any probability vector in
Reg(qi) is less than 0.8 bits.

The green curve in Figure 2(a) represents a single random
execution of MHT with parameters p1 = 0.25, p2 = 0.5,
p3 = 0.75 where s1 is the true state. Each point in the curve
is the probability vector representation of the belief state p̂i

resulting from incorporating i observations. The transition
system DTS is shown in Figure 2(c). For the first three
observations seen, the trajectory stays in Reg(q1). Thus the
first three states in DTS are labeled with π1. After the fourth
measurement, the trajectory has gathered enough information
to enter Reg(q4). Thus the fourth (and final) state in DTS
is labeled with both π1 and π4.

B. Probabilistic acceptance checking

We begin the probability calculation by creating a mapping
Ψsp : 2S → Πr that maps state predicates to atomic
propositions. The scLDTL formula φ is mapped to a scLTL
formula φ′′ by applying the mapping ΨF to the belief
predicates and the mapping Ψsp to the state predicates
appearing in φ. An FSA is created from φ′′. Next, we
enumerate all of the sample paths consistent with the given
execution of POMDP . We do this by creating a labeled
Markov chain LMC for each possible initial state s0 such
that p̂0(s0) > 0. A labeled Markov Chain (LMC) is given as
a tuple LMC = (S, s0, P,AP,L) where S is a set of discrete
states, s0 is an initial state, P is a probabilistic transition
relation such that LMC transitions from state s to state s′

with probability P (s, s′), AP is a set of atomic propositions
and L : S → 2AP is a labeling function. The details of the
LMC construction may be found in the technical report [1].
Each state s in the LMC is labeled with Ψsp(A) for all A
such that s ∈ A, i.e. according the state predicates satisfied
by s. States at the ith level of the LMC are also labeled with
the label of state qi from DTS, i.e. according to the belief
predicates satisfied by p̂i. For each LMC, we perform model
checking using Bayesian smoothing [4] to calculate Pr[φ′′

is satisfied|s0 = s0]. The total acceptance probability is than
calculated as Pr[φ|p̂0:t, a0:t−1, o1:t] =

∑
s0|p̂0(s0)>0 Pr[φ

′′

is satisfied|s0 = s0].

VI. CASE STUDY: RESCUE ROBOTS

A proposed use of mobile robots is to perform rescue
operations in areas that are too hazardous for human rescuers.

A robot is deployed to a location such as an office building
or school after a natural disaster and is tasked with finding
all human survivors in the environment and with moving
any immobilized survivors to safe areas. The robot must
learn survivor locations and the safety profile of the building
on-line by processing noisy measurements from its sensors.
The combination of on-line estimation and time-sensitive
decision-making indicates that scLDTL is a good framework
for describing the mission specification at a high level.

A. Model

For simplicity, we consider a rescue robot acting in a
two room environment. We model the robot as a POMDP
Rescue = (S, p̂0, P,Act,Obs, h). The state of the system
is given by a vector [sq, sO, s1,e, s2,e, s1,s, s2,s] in the state
space S = {1, 2} × {0, 1}5. The element sq corresponds
to the room in which the robot currently resides and sO ∈
{0, 1} corresponds to whether (sO = 1) or not (sO = 0)
the robot is carrying an object. The elements si,e ∈ {0, 1}
correspond to safety, i.e. if si,e = 1, then room i is safe to be
occupied by a human. The elements si,s ∈ {0, 1} correspond
to survivor presence, i.e. if si,s = 1, a survivor is in room i.

The robot can stay in its current room and measure its
surroundings, switch to the other room, pick up an object,
or put down an object. Here we assume the motion model
of the robot is deterministic, the safety of the environment
is static, and the survivor locations change only if the robot
moves a survivor. If the robot attempts to move a survivor,
it fails with some probability pfail.

If the robot takes action Stay, its sensors return obser-
vations in the set Obs = {0, 1}2. The elements of Obs
are binary reports of the safety and survivor occupancy
of the current room. The sensor is parameterized by two
independent false alarm and correct detection rates.

B. Problem statement

For convenience we establish the shorthand p̂j(σ) =∑
{s∈S|sj=σ} p̂(s) where sj is a component of an element

of S. We wish to find and move all of the survivors in the
given area to safe regions.

The statement that describes the rescue robotics applica-
tion is “Explore the environment and if the robot is in a state
where it is sure with probability p1 there is a survivor and
with probability p2 the state is unsafe, pick up the survivor,
move to the other room and deposit the survivor. Perform
these actions until the entropy of p̂i,e is less than h1 and the
entropy of p̂i,s is less than h2 for i = 1, 2 and any identified
survivors are in safe regions”. This is encoded in the scLDTL
formula φ1Uφ2 where

φ1 =
({s|sq = j} ∧ (p̂j(s) > p1) ∧ (p̂j,e(0) > p2))
⇒ (©({s|sO = 1}U{s|sq 6= j}) ∧©{s|sO = 0}

φ2 =

∧
i∈{1,2}(H(p̂i,e) < h1) ∧ (H(p̂i,s) < h2)

∧({s|si,e = 1}) ∧ {s|si,s = 1}) ∨ {s|si,s = 0})
(5)

Due to the time sensitive nature of survival, we consider
the following time-constrained optimization problem.
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Fig. 2. (a) The probability simplex for three hypotheses partitioned according to the belief predicates used in (3). The red lines divide the simplex into
three regions corresponding to the most likely hypothesis. The blue curves are the level sets H(p̂) = 0.8 bits. The green curve shows the probability
trajectory corresponding to a sequence of belief states from a randomly generated execution of MHT . (b) The transition system FTS constructed by
taking the quotient of the partition shown in (a). The edges are denoted by virtual actions ai,j which represent an action-observation pair that drives the
belief state from a point in Reg(qi) to a point in Reg(qj) (c) The transition system DTS constructed from the given belief state sequence and FTS.

max
a0:t−1

E{o1:t}[Pr[φ1Uφ2|p̂0:t, a0:t−1, o1:t]] (6)

C. Acceptance checking

We consider two separate strategies to solve (6): time
share, in which the robot switches rooms every d tae ob-
servations, and entropy cutoff in which the robot switches
rooms when the entropy of the estimate of the safety and
survivor presence of the current room dips below h3 and h4,
respectively. In entropy cutoff, the agent must wait ρ time
units before switching if both estimates are at or below the
specified uncertainties. Both strategies include the reactive
behavior of attempting to pick up survivors when they are
found.

The results from 250 Monte Carlo trials of length t = 16
are shown in Figure 3. Simulation parameters are given in
the caption of Figure 3. Here we use Pr[φ] as shorthand for
the statistic formed from samples of Pr[φ|p̂0:t, a0:t−1, o1:t]
collected from the trials. For both methods, there are clusters
of points around the lines Pr[φ] = 1 and Pr[φ] = 0. This is
because by making the entropy of the belief state a temporal
goal in the scLDTL formula, the probability calculation sets
the satisfaction probability to 0 for executions after which
the characterization of the environment is ambiguous.

The statistics resulting from our simulations are shown
in Table I. The statistic r(Pr[φ], H(p̂t)) is the correlation
coefficient between the two variables. The success rate is
given as the number of trials in which all survivors were
moved to safety divided by the total number of trials. Note
that the entropy cutoff method performs better in terms
of acceptance probability, expected terminal entropy, and
success rate. This matches intuition, as this method will drive
the robot to stay in a room longer if it has not made any
strong conclusions or it will move to the other room if it has
already obtained a good estimate. In contrast, the time share
method ignores estimate quality in its decision policy.

Further, note that for both methods, the correlation co-
efficient is weakly negative. This weakness is due to the

clustering of points around Pr[φ] = 0 and Pr[φ] = 1. This
negative correlation and the relative closeness of the average
acceptance probability of the two methods to their respective
success rates suggests that for some appropriately-defined
scLDTL formulae, the probability Pr[φ|p̂0:t, a0:t−1, o1:t] is
an appropriate metric for the dual consideration of estimate
quality and system performance.

VII. CONCLUSIONS

We argued that a new type of temporal logic, generically
denoted as Distribution Temporal Logic (DTL), is needed
to express notions of uncertainty and ambiguity in partially
observed systems. We have formalized a co-safe version of
this logic and shown how to evaluate with what probability
an execution of a POMDP satisfies a DTL formula. Our case
study demonstrates that this probability is a relevant metric
for the performance of control policies. In the future, we will
extend these results to a procedure for synthesizing control
policies that maximize this probability. The application of
DTL to other probabilistic systems and further exploration
of its expressivity are also planned areas of research.
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Fig. 3. Scatter plots showing the results of 250 Monte Carlo trials of the two room rescue robot POMDP under policy (a) time share and (b) entropy
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