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Finite Bisimulations for Switched Linear Systems
Ebru Aydin Gol, Xuchu Ding, Mircea Lazar, and Calin Belta

Abstract—In this paper, we consider the problem of construct-
ing a finite bisimulation quotient for a discrete-time switched
linear system in a bounded subset of its state space. Given a
set of observations over polytopic subsets of the state space and
a switched linear system with stable subsystems, the proposed
algorithm generates the bisimulation quotient in a finite number
of steps with the aid of sublevel sets of a polyhedral Lyapunov
function. Starting from a sublevel set that includes the origin in its
interior, the proposed algorithm iteratively constructs the bisimu-
lation quotient for the region bounded by any larger sublevel set.
We show how this bisimulation quotient can be used for synthesis
of switching laws and verification with respect to specifications
given as syntactically co-safe Linear Temporal Logic formulae
over the observed polytopic subsets.

Index Terms—Abstractions, formal methods, switched systems.

I. INTRODUCTION

IN recent years, there has been a trend to bridge the gap
between control theory and formal methods. Control theory

allows for analysis and control of “complex” dynamical sys-
tems with infinite state spaces, such as systems of controlled
differential equations, against “simple” specifications, such as
stability and reachability. In formal methods, “simple” systems,
such as finite transition systems, are checked against “complex”
(rich and expressive) specification languages, such as temporal
logics. Recent studies show that certain classes of dynamical
systems can be abstracted to finite transition systems. Appli-
cations in robotics [1], multi-agent control systems [2], and
bioinformatics [3] show that model checking and automata
games can be used to analyze and control systems with non-
trivial dynamics from specifications given as temporal logic
formulae.

In this paper, we focus on switched linear systems made
of stable subsystems, and show that a finite bisimulation ab-
straction of the system can be efficiently constructed within
some bounded subset of the state space. Since the bisimula-
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tion quotient preserves all properties that are expressible in
frameworks as rich as μ-calculus, and implicitly Computation
Tree Logic (CTL) and Linear Temporal Logic (LTL) (see
e.g., [4]–[6]), it can be readily used for system verification
and controller synthesis against such specifications. We show
how our method can be used for both controller synthesis and
verification from specifications given as arbitrary formulae of a
fragment of LTL, called syntactically co-safe LTL (scLTL) [7].
For controller synthesis, we find the largest set of initial states
and switching sequences such that all system trajectories satisfy
a given formula. For verification, we find the largest set of initial
states such that all system trajectories satisfy the formula under
arbitrary switching.

The concept of constructing a finite quotient of an infinite
system has been widely studied, e.g., [8]–[12]. It is known that
finite state bisimulation quotients exist only for specific classes
of systems (e.g., timed automata [10] and controllable linear
systems [8]), and the well known bisimulation algorithm [4] in
general does not terminate [13]. For piecewise linear systems,
guided refinement procedures were employed with the goal of
constructing an over-approximating quotient that can be used
for verification of universal properties [9], [13].

We propose to obtain a finite bisimulation quotient of the
system by only considering the system behavior within a rele-
vant state space that does not contain the origin, i.e., in between
two positively invariant compact sets that contain the origin.
Our approach relies upon the existence of a common infinity
norm Lyapunov function, which is a necessary condition for
stability under arbitrary switching [14]. We propose to partition
the state space by using sublevel sets of the Lyapunov function.
Such sublevel sets, which are polytopic, allow us to generate
the bisimulation quotient incrementally as the abstraction al-
gorithm iterates, with no “holes” in the covered state space.
Since we can obtain polytopic sublevel sets of any size from
the Lyapunov function, the balance between the size of the
abstracted state space and the amount of computation can be
easily adjusted and controlled. Starting from the observation
that the existence of the Lyapunov function renders the origin
asymptotically stable for the switched system, its trajectories
can only spend a finite time in the region of interest. As a
result, we restrict our attention to LTL specifications that can
be satisfied in finite time, such as scLTL formulae.

The construction of finite abstractions of dynamical systems
by utilizing stability properties and Lyapunov functions was
studied in [15], [16]. Approximately bisimilar finite abstrac-
tions for continuous-time switched systems were constructed
under incremental stability assumptions in [15], where sublevel
sets of a common Lyapunov function (or multiple Lyapunov
functions with additional assumptions) were used. The ab-
stract model was defined by quantizing the state space of

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 11:47:14 UTC from IEEE Xplore.  Restrictions apply. 



AYDIN GOL et al.: FINITE BISIMULATIONS FOR SWITCHED LINEAR SYSTEMS 3123

the switched system, and sampling the trajectories originating
from the quantized state space. The approximate bisimulation
relation guarantees that the trajectories of the abstract model
and the original system are close to each other [17]. In [15],
the accuracy of the abstraction was defined by the quantization
parameter and the Lyapunov function. The method developed
in [15] is not limited to linear systems, however, the abstraction
is approximate, and the case studies presented in [15] highlight
that a considerable accuracy requires a large abstract model.
On the other hand, our method relies on efficient computation
of one step controllable sets, hence suitable for linear systems.
However, the resulting abstract model is exact in the sense
that it produces the same set of observations as the original
system. The authors of [15] relaxed the incremental stability
assumption in their recent work on construction of approximate
simulations [18]. Another conceptually related work is [16],
where n Lyapunov functions were used for the abstraction
of n-dimensional continuous-time Morse-Smale systems (e.g.,
hyperbolic linear systems) to timed automata. The abstraction
proposed therein is weaker than bisimulation, but it can be
used to verify safety properties. While both [16] and this work
use sublevel sets for abstraction, the main difference between
[16] and this approach comes from the usage of polyhedral
Lyapunov functions, and therefore different classes of systems
for which the methods apply. Our approach removes the need
for multiple orthogonal Lyapunov functions, and we argue
that it allows for a more tractable implementation since the
abstraction of timed automata is expensive by itself [10], and
polytopic sublevel sets ensure that the abstraction algorithm
requires only basic operations with polytopic sets.

Preliminary versions of this work appeared in [19], [20]. In
[19], we used polytopic sublevel sets to generate a bisimulation
quotient for a discrete autonomous linear system, and in [20]
we extended this approach to switched linear systems. Here
we expand these preliminary versions by including analysis
of complexity, more technical details, e.g., the proofs of the
technical results, and illustrative case studies. In addition, we
show how the proposed approach can be extended to piecewise
linear systems and polytopic difference inclusion systems.

The rest of the paper is organized as follows. We intro-
duce preliminaries in Section II and formulate the problem in
Section III. We present the algorithm to generate the bisim-
ulation quotient in Section IV, and analyze the complexity
associated with it in Section V. We show in Section VI how
the resulting bisimulation quotient can be used to synthesize
switching control laws and verify the system behavior against
temporal logic formulae. We illustrate the findings of the paper
with examples in Section VII and summarize conclusions in
Section VIII.

II. PRELIMINARIES

For a set S , int(S), |S|, and 2S stand for its interior, cardi-
nality, and power set, respectively. For λ ∈ R and S ⊆ R

n, let
λS := {λx | x ∈ S}. We use R, R+, Z, and Z+ to denote the
sets of real numbers, non-negative reals, integer numbers, and
non-negative integers. For m,n ∈ Z+, we use Rn and R

m×n to
denote the set of column vectors and matrices with n and m× n

real entries. For a vector v or a matrix A, we denote v� or A�

as its transpose, respectively. For a vector x ∈ R
n, [x]i denotes

the i-th element of x and ‖x‖∞ = maxi=1,...,n |[x]i| denotes
the infinity norm of x, where | · | denotes the absolute value.
For a matrix Z ∈ R

l×n, let ‖Z‖∞ := supx �=0(‖Zx‖∞/‖x‖∞)
denote its induced matrix infinity norm.

A n-dimensional polytope P (see, e.g., [21]) in R
n can

be described as the convex hull of at least n+ 1 affinely
independent points in R

n. Alternatively, P can be described as
the intersection of k, where k ≥ n+ 1, closed half spaces, i.e.,
there exist k ≥ n+ 1 and HP ∈ R

k×n, hP ∈ R
k, such that

P = {x ∈ R
n|HPx ≤ hP}.

We assume polytopes in R
n are n-dimensional unless

noted otherwise. The set of boundaries of a polytope P are
called facets, denoted by f(P), which are themselves (n− 1)-
dimensional polytopes. A semi-linear set (also called a polyhe-
dron in literature) in R

n is defined as finite unions, intersections
and complements of sets {x ∈ R

n | a�x ∼ b,∼∈ {=, <}}, for
some a ∈ R

n and b ∈ R. Note that a convex and bounded semi-
linear set is equivalent to a polytope with some (or none) of its
facets removed.

A. Transition Systems and Bisimulations

Definition 2.1: A transition system (TS) is a tuple T =
(Q,Σ,→,Π, h), where

• Q is a (possibly infinite) set of states;
• Σ is a set of inputs;
• →⊆ Q× Σ×Q is a set of transitions;
• Π is a finite set of observations; and
• h : Q −→ 2Π is an observation map.

We denote x
σ→ x′ if (x, σ, x′) ∈→. We assume T to be non-

blocking, i.e., for each x ∈ Q, there exists x′ ∈ Q and σ ∈ Σ
such that x

σ→ x′. An input word is defined as an infinite
sequence σ = σ0σ1 . . . where σk ∈ Σ for all k ∈ Z+. A tra-
jectory of T produced by an input word σ = σ0σ1 . . . and
originating at state x0 is an infinite sequence x = x0x1 . . .

where xk
σk→ xk+1 for all k ∈ Z+. A trajectory x generates a

word o = o0o1 . . ., where ok ⊆ Π is the set of observations of
state xk and defined as ok := h(xk) for all k ∈ Z+.

The TS T is finite if |Q| < ∞ and |Σ| < ∞, otherwise T
is infinite. Moreover, T is deterministic if x

σ→ x′ implies that
there does not exist x′′ �= x′ such that x

σ→ x′′; otherwise, T is
called non-deterministic. Given a set Q ⊆ Q, we define the set
of states PreT (Q, σ) that reach Q in one step when input σ is
applied as

Preτ (Q, σ) := {x ∈ Q| ∃x′ ∈ Q, x
σ→ x′}. (1)

States of a TS can be related by a relation ∼⊆ Q×Q. For
convenience of notation, we denote x ∼ x′ if (x, x′) ∈∼.

Definition 2.2: We say that a relation ∼ is observation pre-
serving if for any x, x′ ∈ Q, x ∼ x′ implies that h(x) = h(x′).

For an observation preserving relation ∼, the subset Q ⊆
Q is called an equivalence class if x, x′ ∈ Q ⇔ x ∼ x′. We
denote by Q/∼ the set labeling all equivalence classes and
define a map eq : Q/∼ �→ 2Q such that eq(X) is the set of states
in the equivalence class Q ∈ Q/∼ labeled by X .
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Definition 2.3: A finite partition P of a set S is a finite
collection of sets P := {Pi}i∈I , such that ∪i∈IPi = S and Pi ∩
Pj = ∅ if i �= j. A finite refinement of P is a finite partition P ′

of S such that for each Pi ∈ P ′, there exists Pj ∈ P such that
Pi ⊆ Pj .

A partition naturally induces a relation, and an observation
preserving relation induces a quotient TS. One can immediately
verify that a refinement of an observation preserving partition
is also observation preserving.

Definition 2.4: An observation preserving relation ∼ of a
TS T = (Q,Σ,→,Π, h) induces a quotient transition system
T /∼ = (Q/∼,Σ,→∼,Π, h∼), where Q/∼ is the set labeling
all equivalence classes. The transitions of T /∼ are defined as
X

σ→∼ Y if and only if there exists x ∈ eq(X) and x′ ∈ eq(Y )

such that x
σ→ x′. The observation map is defined as h∼(X) :=

h(x), where x ∈ eq(X).
Definition 2.5: Given a TS T =(Q,Σ,→,Π, h), a relation ∼

is a bisimulation relation of T if (1) ∼ is observation preserv-
ing; and (2) for any x1, x2∈Q, σ∈Σ, if x1∼x2 and x1

σ→x′
1,

then there exists x′
2 ∈ Q such that x2

σ→ x′
2 and x′

1 ∼ x′
2.

If ∼ is a bisimulation, then the quotient transition system T/∼
is called a bisimulation quotient of T . In this case, T and T /∼
are said to be bisimilar. Bisimulation is a very strong equiva-
lence relation between systems. In fact, it preserves properties
expressed in temporal logics such as LTL, CTL and μ-calculus
[4]–[6]. As such, it is used as an important tool to reduce the
complexity of system verification or controller synthesis, since
the bisimulation quotient (which may be finite) can be verified
or used for controller synthesis instead of the original system.

B. Polyhedral Lyapunov Functions

Consider an autonomous discrete-time system,

xk+1 = Φ(xk), k ∈ Z+ (2)

where xk ∈ R
n is the state at the discrete-time instant k and

Φ : Rn �→ R
n is an arbitrary map with Φ(0) = 0. Given a state

x ∈ R
n, x′ := Φ(x) is called a successor state of x.

Definition 2.6: Let λ ∈ [0, 1]. We call a set P ⊆ R
n

λ-contractive (shortly, contractive) if for all x ∈ P it holds that
Φ(x) ∈ λP . For λ = 1, we call P a positively invariant set.

A function α : R+ → R+ belongs to class K∞ if it is contin-
uous, strictly increasing, α(0) = 0 and lims→∞ α(s) = ∞.

Theorem 2.1: Let X be a positively invariant set for (2) with
0 ∈ int(X ). Furthermore, let α1, α2 ∈ K∞, ρ ∈ (0, 1) and V :
R

n �→ R+ such that:

α1(‖x‖) ≤ V (x) ≤α2(‖x‖), ∀x ∈ X (3)

V (Φ(x)) ≤ ρV (x), ∀x ∈ X . (4)

Then system (2) is asymptotically stable in X .
The proof of Theorem 2.1 can be found in [22], [23].
Definition 2.7: A function V : Rn �→ R+ is called a

Lyapunov function (LF) in X if it satisfies (3) and (4). If
X = R

n, then V is called a global Lyapunov function.
The parameter ρ is called the contraction rate of V . For any

Γ>0, PΓ :={x ∈ R
n | V (x)≤Γ} is called a sublevel set of V .

For the remainder of this paper we consider LFs defined
using the infinity norm, i.e.,

V (x) = ‖Lx‖∞, L ∈ R
l×n, l ≥ n, l ∈ Z+ (5)

where L has full-column rank. Notice that infinity norm
Lyapunov functions are a particular type of polyhedral
Lyapunov functions. We opted for this type of function to sim-
plify the exposition but in fact, the proposed abstraction method
applies to general polyhedral Lyapunov functions defined by
Minkowski (gauge) functions of polytopes in R

n with the origin
in their interior.

Proposition 2.1: Suppose that L ∈ R
l×n has full-column

rank and V as defined in (5) is a global LF for system (2) with
contraction rate ρ ∈ (0, 1). Then for all Γ > 0 it holds that PΓ is
a polytope and 0 ∈ int(PΓ). Moreover, if Φ(x) = Ax for some
A ∈ R

n×n, then for all Γ > 0 it holds that PΓ is a ρ-contractive
polytope for (2).

The proof of the above result is a straightforward application
of results in [24], [25].

In this paper, we will consider switched systems that are
stable under arbitrary switching. In this case, the dynamics
corresponding to (2) becomes a difference inclusion, i.e., x′ ∈
Φ(x), Φ(x) := {Ax | A ∈ A} for some set A ⊆ R

n×n. It has
been shown in [24], [25], that all the above definitions (invariant
set, Lyapunov function) and results apply directly to difference
inclusions in the absolute sense, i.e., given x, the corresponding
conditions must hold for all x′ ∈ Φ(x).

III. PROBLEM FORMULATION

In this paper, we consider discrete-time switched linear
systems, i.e.,

xk+1 = Aσ(k)xk, σ(k) ∈ Σ, k ∈ Z+ (6)

where σ : Z+ → Σ is a switching sequence that selects the
active subsystem from a finite index set Σ and Ai ∈ R

n×n is
a strictly stable (i.e., Schur) matrix for all i ∈ Σ. We assume
that a common polyhedral Lyapunov function (LF) of the form
(5) with contraction rate ρ ∈ (0, 1) is known for system (6).
The algorithm proposed in [25] is employed to construct such a
function with a desired contraction rate.

Let X be a polytope X := {x | ‖Lx‖∞ ≤ ΓX } and D be
a polytope D := {x | ‖Lx‖∞ ≤ ΓD}, where L corresponds
to the polyhedral LF (5) of system (6) and we assume that
0 < ΓD < ΓX . Note that D ⊂ X and 0 ∈ int(D) ⊂ int(X ). We
call X the working set and D the target set. We are interested
in synthesis of control strategies and verification of the system
behavior within X with respect to polytopic regions in the state
space, until the target set D is reached (since D is positively
invariant, the system trajectory will be confined within D after
D is reached).

We assume that there exists a set R of polytopes indexed by
a finite set R, i.e., R := {Ri}i∈R, where Ri ⊆ X \ D for all
i ∈ R, and Ri ∩Rj = ∅ for any i �= j. The set R represents re-
gions of interest in the relevant state space, and the polytopes in
R are considered as observations of (6). Therefore, a trajectory
of (6) x0x1 . . . produces an infinite sequence of observations
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Fig. 1. An example in R
2 of the working set X , the target set D (in brown),

a set of observational relevant polytopes R = {R1,R2,R3} (in transparent
green), sublevel sets with N = 11 and one slice S6 (in purple).

o0o1 . . ., such that oi is the index of the polytope in R visited
by state xi, or oi = ∅ if xi is in none of the polytopes.

Example 3.1: Consider a system as in (6), Σ = {1, 2},

A1 =

(
−0.65 0.32
−0.42 −0.92

)
and A2 =

(
0.65 0.32
−0.42 −0.92

)
. The

algorithm proposed in [25] is employed to construct a global
polyhedral LF of the form (5), where

L =

(
−0.0625 0.6815 0.9947 0.9947

1 1 −0.6868 −0.0678

)�

and ρ = 0.94. We chose ΓX = 10 and ΓD = 5.063. (see Fig. 1
for polytopes X , D, and a set of polytopes R.) �

The semantics of the system can be formalized through an
embedding of (6) into a transition system, as follows.

Definition 3.1: Let X , D, and R = {Ri}i∈R be given. The
embedding transition system for (6) is a transition system Te =
(Qe,Σ,→e,Π, he) where

• Qe := X ;
• Σ is the same as the index set given in (6);
• 1) If x ∈ X \ D, then x

σ→e x
′ if and only if x′ = Aσx,

i.e., x′ is the state at the next time-step after applying
the dynamics of (6) at x when subsystem σ is active;

2) If x ∈ D, x
σ→e x for all σ ∈ Σ (since the target set D

is already reached, we consider the behavior of the
system thereafter no longer relevant);

• Π = R ∪ {ΠD}, i.e., the set of observations is the set of
labels of regions, plus the label ΠD for D;

• 1) he(x) := {i} if and only if x ∈ Ri;
2) he(x) := ∅ if and only if x ∈ X \ (D ∪

⋃
i∈R Ri);

3) he(x) := {ΠD} if and only if x ∈ D.

Note that Te is deterministic and it has an infinite number
of states. Moreover, Te exactly captures the system dynamics
under (6) in the relevant state space X \ D, since a transition
of Te naturally corresponds to the evolution of the discrete-time
system in one time-step. Indeed, within X \ D, the trajectory
of Te produced by an input word σ from a state x ∈ X \ D is
exactly the same as the trajectory of system (6) from x under
the switching sequence σ.

We now formulate the main problem considered in this paper.

Problem 3.1: Let a system (6) with a polyhedral Lyapunov
function of the form (5), sets X , D, and {Ri}i∈R be given.
Compute a finite observation preserving partition P such
that its induced relation ∼ is a bisimulation of the embedding
transition system Te, and obtain the corresponding bisimulation
quotient Te/∼.

Remark 3.1: The above assumptions on the sets X , D, and
{Ri}i∈R are made for simplicity of presentation. The problem
formulation and the approach described in the rest of the paper
can be easily extended to arbitrary positively invariant sets X
and D with D ⊆ X , i.e., not obtained as the sublevel sets of
(5), by considering the largest sublevel set that is included in
D and the smallest sublevel set that includes X (ΓD and ΓX
can be made arbitrarily small and arbitrary large, respectively,
so as to capture any compact subset of R

n). Also, the set of
polytopes of interest {Ri}i∈R can be relaxed to a finite set of
linear predicates in x as defined in [26].

IV. BISIMULATION QUOTIENT

Starting from a polyhedral Lyapunov functionV (x)=‖Lx‖∞
with a contraction rate ρ∈(0, 1) as described in Section II-B for
system (6), we first generate a sequence of polytopic sublevel
sets of the form PΓ := {x ∈ R

n | ‖Lx‖∞ ≤ Γ} as follows.
Recall that X = PΓX and D = PΓD for some 0 < ΓD < ΓX .
We define a finite sequence Γ̄ := Γ0, . . . ,ΓN , where

Γi+1 = ρ−1Γi, i = 0, . . . , N − 2 (7)

Γ0 := ΓD, ΓN := ΓX , and

N := argmin
N

{ρ−NΓ0|ρ−NΓ0 ≥ ΓX }. (8)

This choice of N guarantees that PΓN−1
is the largest sublevel

set defined via (7) that is a subset of X . Since ΓN is exactly ΓX ,
PΓN

is exactly X .
The sequence Γ̄ generates a sequence of sublevel sets P̄Γ :=

PΓ0
, . . . ,PΓN

. From the definition of the sublevel sets and Γ̄,
we have that

PΓ0
⊂ . . . ⊂ PΓN

. (9)

Next, we define a slice of the state space as follows:

Si := PΓi
\ PΓi−1

, i = 1, . . . , N. (10)

For convenience, we also denote S0 := PΓ0
(although S0 is not

a slice in between two sublevel sets). We immediately see that
the sets {Si}i=0,...,N form a partition of X . Note that the slices
are bounded semi-linear sets (see Section II).

Example 4.1 (Example 3.1 Continued): Consider the system
given in Example 3.1. The sequence Γ̄ is computed from ΓX ,
ΓD, and ρ as described above, which resulted in N = 11.
The polytopic sublevel sets P̄Γ := PΓ0

, . . . ,PΓ11
are shown

in Fig. 1. �
Proposition 4.1: Assume that the set of slices {Si}i=0,...,N

is obtained from a sequence Γ̄ satisfying (7). Given a state x in
the i-th slice, i.e., x ∈ Si, where 1 ≤ i ≤ N , its successor state
(x′ = Aσx, σ ∈ Σ) satisfies x′ ∈ Sj for some j < i.
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Proof: From Proposition 2.1, we have that PΓi
are

ρ-contractive. By the definition of a ρ-contractive set
(Definition 2.6), we have that x′ = Aσx ∈ ρPΓi

= {x ∈
R

n | ‖Lx‖∞ ≤ ρΓi} for all σ ∈ Σ. From (7), we have ρΓi =
Γi−1. Therefore PΓi−1

= {x ∈ R
n | ‖Lx‖∞ ≤ Γi−1} implies

that PΓi−1
= {x ∈ R

n | ‖Lx‖∞ ≤ ρΓi} and hence PΓi−1
=

ρPΓi
and x′ ∈ PΓi−1

. From the definition of slices (10), x′ ∈
Sj for some j < i. �

The state space of Te (which is the working set X ) can be
naturally partitioned as

PX :=

{
{Ri}i∈R,X \

(
D ∪

⋃
i∈R

Ri

)
,D

}
. (11)

The relation induced from partition PX is observation pre-
serving (see Section II-A).

The proposed abstraction algorithm computes the bisimula-
tion quotient by iteratively refining an observation preserving
partition with respect to one step controllable sets. We first ex-
plain two procedures, ComputePre and RefineUpdate, which
are used by the main abstraction algorithm. The procedure
ComputePre(P̃, σ) takes as input P̃ , which is a bounded semi-
linear set (e.g., a slice), and σ ∈ Σ, which is the switching input,
and returns the set PreTe(P̃, σ). In general, if P̃ is a semi-
linear set, then PreTe(P̃, σ) is also a semi-linear set and it can
be computed via quantifier elimination [27]. In particular, the
computation of PreTe for a bounded semi-linear set P̃ falls into
one of the following cases:

(i) If P̃ is a polytope, then PreTe(P̃, σ) is computed as:

Preτe(P̃, σ) = {x ∈ R
n|HP̃Aσx ≤ hP̃} (12)

which is a possibly degenerate polytope in R
n. Note that

(12) applies to a polytope P̃ of any dimension;
(ii) If P̃ is a union of polytopes, one can use a standard

convex decomposition method to decompose P̃ into a
set of polytopes {Pi}i∈I (see, e.g., [21]), and compute
PreTe(P̃, σ) as ∪i∈IPreTe(Pi, σ) using (12);

(iii) If P̃ is a convex and bounded semi-linear set, then
P̃=P\∪i∈IFi for some polytope P and its facet Fi∈
f(P). Since Te is deterministic, we have PreTe(P̃, σ)=
PreTe(P, σ)\PreTe(∪i∈IFi, σ), where the second term
can be computed as described in case (ii);

(iv) If P̃ is a general (non-convex) bounded semi-linear
set, then again it can be decomposed into con-
vex and bounded semi-linear sets P̃ = ∪i∈I P̃i. Then
PreTe(P̃, σ) = ∪i∈IPre(P̃i, σ), and each Pre(P̃i, σ)
can be computed as described in case (iii).

As summarized above, we see that ComputePre(P̃, σ) can
always be implemented by convex decompositions and repeated
applications of (12), and thus ComputePre(P̃, σ) only requires
basic operations with polytopic sets.

The procedure RefineUpdate(P, T , P̃ , σ, q) (outlined in
Algorithm 1) refines a partition P with respect to set P̃ , where
P̃ = ComputePre(eq(q), σ). It then updates T . If P consists
of only bounded semi-linear sets and P̃ is a semi-linear set,
then the resulting refinement P+ consists of only bounded
semi-linear sets. This fact allows us to compute PreTe(P̃, σ)

with ComputePre(P̃ , σ) only taking bounded semi-linear sets
as inputs.

Algorithm 1 [P+, T +] = RefineUpdate(P, T , P̃ , σ, q)

Input: A TS T = (Q,Σ,→,Π, h), a partition P where
eq(q′)∈P for all q′ ∈Q, and P̃=ComputePre(eq(q), σ)
for some q ∈ Q, σ ∈ Σ.

Output: P+ is a finite refinement of P with respect to P̃ ,
T + is a TS updated from T .

1: Set P+ = P and T + = T .
2: for all q′ ∈ Q+ such that eq(q′) ∩ P̃ �= ∅ do
3: Replace q′ in Q+ by {q1, q2} and set eq(q1)=eq(q′)∩

P̃ , eq(q2) = eq(q′) \ P̃ .
4: Replace eq(q′) in P+ by {eq(q1), eq(q2)}.
5: Replace each (q′, σ′, q′′) ∈→+ by {(qi, σ′, q′′)}i=1,2.
6: Add transition (q1, σ, q) to →+.
7: end for

We now present the abstraction algorithm (see Algorithm 2)
that computes the bisimulation quotient. The main idea is
to start with PX (11), refine the partition according to
{Si}i=0,...,N so that it is a refinement to both PX , and
{Si}i=0,...,N , and then iteratively refine using the Pre operator
(1) until the bisimulation quotient is obtained. Starting with
PX is necessary so that the partition is observation preserving.
The second step guarantees that each element in the partition
is included in a slice. The third step allows us to ensure that at
iteration i of the algorithm, the bisimulation quotient for states
within PΓi

is completed.

Algorithm 2 Abstraction algorithm

Input: System dynamics (6), polyhedral LF V (x) = ‖Lx‖∞
with a contractive rate ρ, sets X , D, and {Ri}i∈R.

Output: Bisimulation quotient Te/∼ of the embedding tran-
sition system Te and the corresponding observation pre
serving partition P .

1: Obtain PX as in (11).
2: Generate the sequence of sublevel sets P̄Γ = PΓ0

, . . . ,
PΓN

and slices S0, . . . ,SN as defined in (10).
3: Set P0 = {P̃1 ∩ P̃2 | P̃1 ∈ PX , P̃2 ∈ {Si}i=0,...,N , P̃1 ∩

P̃2 �= ∅}.
4: Initialize Te/∼0

by setting Qe/∼0
as the set labeling P0.

Set transitions only for the state qD ∈ Qe/∼0
where

eq(qD) = S0 = D with qD
σ→∼0

qD for all σ ∈ Σ.
5: for each i = 0, . . . , N − 1 do
6: Set Te/∼i+1

= Te/∼i
and Pi+1 = Pi.

7: for each q ∈ Qe/∼i
where eq(q) ⊆ Si do

8: for each σ ∈ Σ do
9: Find P̃ = ComputePre(eq(q), σ).

10: Set [Pi+1, Te/∼i+1
] = RefineUpdate

(Pi+1, Te/∼i+1
, P̃ , σ, q).

11: end for
12: end for
13: end for
14: Return Te/∼N

and PN .
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Fig. 2. The observed regions are shown in transparent green in (a) and (b). (a) At the end of the third iteration (i = 2), the bisimulation quotient for states
within PΓ3

is completed, which are shown in red PΓ2
) and purple (S3). (b) In the forth iteration, the states within PΓ11

\ PΓ3
are partitioned according to

PreTe (P̃, σ), P̃ ∈ S3. S3 is shown in purple; PreTe (S3, 1) and PreTe (S3, 2) are shown in light and dark blue. (c) At the last iteration where i = 10, the
algorithm is completed. The state space covered by the bisimulation quotient is shown in red, covering all of X .

The correctness of Algorithm 2 will be shown by an inductive
argument. Given a sublevel set PΓi

and a partition Pi as
obtained in Algorithm 2, we define P̃i as

P̃i := {P̃ ∈ Pi|P̃ ⊆ PΓi
}. (13)

From Algorithm 2, we see that P0 partitions all the slices, and
since Pi is a finite refinement of P0, we can directly see that
P̃i is a partition of PΓi

. Let us define an embedding transition
system Te(i) as a subset of Te with set of states {x ∈ Qe | x ∈
PΓi

} and let us state the following result.
Proposition 4.2: At the completion of the i-th iteration (of

the outer loop) of Algorithm 2 (where Pi+1 is obtained), if ∼i

induced by P̃i as defined in (13) is a bisimulation of Te(i), then
∼i+1 induced by P̃i+1 is a bisimulation of Te(i+ 1).

Proof: We show that at the end of i-th iteration, each
transition originating at a state q ∈ Qe/∼i+1

with eq(q)⊆PΓi+1

satisfies the bisimulation requirement (Definition 2.5). By
Proposition 4.1, for each x ∈ Si+1 and σ∈Σ, x′=Aσx must be
in a slice with a lower index and thus x′ ∈Te(i). Let x∈eq(q)∈
Pi. If x′ ∈Si, then we have x∈P̃=ComputePre(eq(q′), σ)
(from step 9 of Algorithm 2) for some q′ ∈Qe/∼i

. The
RefineUpdate procedure replaces eq(q) with eq(q1)=eq(q)∩
P̃ and eq(q2)=eq(q) \ P̃ , and updates Te/∼i+1

. We note from
the definition of Pre operator (1) that for any x ∈ eq(q1), x′=
Aσx∈eq(q′), thus for any x1, x2∈eq(q1), x1∼x2, Aσx1∼
Aσx2. Moreover, the same argument holds for any subset of
eq(q1). Therefore, the transitions given in steps 5 and 6 of
Algorithm 1 satisfy the bisimulation requirement. On the other
hand, if x′ �∈Si, then x′ ∈ Sj for some j<i and x is already
in a set eq(q), where q

σ→∼i+1
q′ for some q′ satisfying the

bisimulation requirement. Therefore, step 9 of Algorithm 2
provides exactly the transitions needed for all states in Si+1 and
thus, ∼i+1 induced by P̃i+1 is a bisimulation of Te(i+1). �

Theorem 4.1: Algorithm 2 returns a solution to Problem 3.1.
Proof: From Algorithm 1, we have that Pi is a refinement

of PX for any i = 0, . . . , N . Therefore, PN and its induced
relation ∼N are observation preserving.

At step 4 of Algorithm 2, we set q
σ→e Q∼0

q, ∀σ ∈ Σ where
eq(q) = D. From the definition of Te, we see that since D is
the only state, ∼0 induced by P̃0 is a bisimulation of Te(0).

Using Proposition 4.2 and induction, at iteration N − 1, we
have that ∼N induced by P̃N is a bisimulation of Te(N). Note
that P̃N is exactly PN , PΓN

is exactly X and Te(N) is exactly
Te. Therefore ∼N induced by PN is a bisimulation of Te. �

At each iteration i, the number of updated sets is finite as the
partition Pi and the set of inputs Σ are finite, and therefore, we
have:

Corollary 4.1: A solution to Problem 3.1 can be generated in
a finite number of steps, which is determined by the contraction
rate of the Lyapunov function.

Example 4.2 (Example 4.1 Continued): Algorithm 2 is ap-
plied on the same setting as in Example 4.1 to compute the
bisimulation quotient. P3 and P11 are shown in Fig. 2.

A. Extensions

Although the focus of the paper is on switched linear systems
with polyhedral Lyapunov functions, the presented approach
can also be applied to other classes of discrete-time systems
with different Lyapunov functions, if

1) the sublevel sets of the Lyapunov function are semi-linear
sets,

2) the pre-image of a bounded semi-linear set is computable
and is also a semi-linear set, and

3) the dynamical system has a finite set of controls.
The first condition guarantees that the slices (see (10)) are

semi-linear sets, and therefore the initial partition is composed
of semi-linear sets. The second condition allows us to compute
pre-images throughout the algorithm. Finally the last condition
is necessary since the pre-images of the partition elements are
computed for each control input (line 8 of Algorithm 2).

For example, consider discrete-time piecewise linear systems
described by

xk+1 = Aσxk, xk ∈ Xσ, σ ∈ Σ, k ∈ Z+ (14)

where Σ is a finite index set of modes (different dynamics),
Ppwl = {Xσ}σ∈Σ is a partition of X and each Xσ is a semi-
linear set. Under certain conditions, a Lyapunov function with
piecewise polytopic sublevel sets for system (14) exists [28].
System (14) with a piecewise polyhedral Lyapunov function
satisfies the properties given above. The extension to such
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systems requires to refine the initial partition P0 according to
Ppwl. Then, the proposed algorithms can be used to construct
a quotient transition system Te/∼. In this case, in step 2 of
Algorithm 1 it is sufficient to refine a state q′ only if eq(q′) ⊂
Xσ since only mode σ can be active in eq(q′). By eliminating
some of the transitions of Te/∼ according to Ppwl, i.e., q

σ→∼ q′

only if eq(q) ⊆ Xσ, we obtain a bisimulation quotient T pwl
e /∼

for the corresponding embedding transition system. This exten-
sion is illustrated by an example in Section VII.

V. COMPLEXITY

Our algorithm involves computations of pre-images of
bounded semi-linear sets through linear dynamics, intersections
and set differences for semi-linear sets at each iteration. The
number of operations performed, and hence the complexity
of the algorithm, scale linearly with the size of the resulting
partition |PN |. Therefore, we derive an upper bound on |PN |
with respect to the number of slices, observations and controls.

Let si be the number of sets in partition PN that are included
in slice Si, i.e.,

si := |{P̃ ∈ PN |P̃ ⊆ Si}|.

Similarly, s0i denotes the number of sets in the initial partition
P0 that are included in slice Si. In the subsequent analysis, r is
used to denote the number of observations within X \ D (r =
|R|+ 1), and e is used to denote the number of input symbols
(e = |Σ|).

Lemma 5.1: The number of sets in the resulting partition PN

that are included in slice i ≥ 1, si, is less than or equal to

si = r

(
i−1∑
k=0

sk

)e

. (15)

Proof: A set P̃ ∈ P0 with P̃ ⊆ Si is partitioned only if
there exists σ ∈ Σ and P̃ ′ ∈ Sj for some j < i such that P̃ ∩
Pre(P̃ ′, σ) �= ∅ and P̃ \ Pre(P̃ ′, σ) �=∅ (step 2 of Algorithm 1).
Therefore,

(a) for any two states q1, q2 ∈ Qe/∼ with eq(q1), eq(q2) ⊂
Si if h(q1) = h(q2), there exists σ ∈ Σ such that q1

σ→∼
q′1, q2

σ→∼ q′2, and q′1 �= q′2.
From Proposition 4.1 and the bisimulation requirement

(Definition 2.5), we have that
(b) for each q ∈ Qe/∼ with eq(q) ⊆ Si and for each σ ∈ Σ,

there exists a state q′ with eq(q′) ⊆ Sj for some j < i

such that q
σ→∼ q′.

Given properties (a) and (b), the number of sets obtained
from partitioning a set P̃ ∈ P0 with P̃ ⊆ Si is bounded by the
number of permutations of size e, with unrestricted repetitions,
taken from a set of size

∑i−1
k=0 sk.

The given bound is obtained by observing that s0i ≤ r for
all i = 1, . . . , N , since the initial partition P0 is obtained by
refining the coarsest observation preserving partition PX (see
(11)) according to slice partition. �

The bound is computed through a combinatorial perspective
by utilizing the contractive property of the system. Even though

Fig. 3. Comparison of the number of elements in a slice, si, and the corre-
sponding bound, si (15).

the bound is attainable, the underlying dynamics is not con-
sidered explicitly. Therefore, in many cases the bound is not
attained, for example see Example 5.1.

Remark 5.1: PN is the coarsest refinement of P0 satis-
fying the bisimulation requirement. This claim follows from
statement-(a) of the proof of Lemma 5.1, and can easily be
proven by an inductive argument on the partitions of the sub-
level sets, i.e., P̃i as defined in (13).

Example 5.1 (Example 4.2 Continued): The number of sets
in partition P11 according to slice numbers and the correspond-
ing bounds computed as in (15) are shown in Fig. 3. �

By using Lemma 5.1, we derive a bound on the number of
sets in PN that are included in sublevel set PΓi

in closed form,
i.e., the new bound depends only on sublevel set number i, the
size of the control set e and the number of observations r.

Theorem 5.1: Let pi = |{P̃ | P̃ ∈ PN , P̃ ⊆ PΓi
}| for all i =

0, . . . , N . Then p0 = 1 and

pi ≤ (r + 1)

∑i−1

j=0
ej
, i = 1, . . . , N. (16)

Proof: As PΓ0
is not partitioned, the claim holds for i =

0, i.e., p0 = 1. We prove the claim for i ≥ 1 by induction. The
definitions of pi, si, and si imply that

pi+1 = pi + si+1 ≤ pi + si+1.

From (15) s1 = r, and hence the claim holds for i = 1 as p1 ≤
1 + r. Assume that inequality (16) holds for pk for some k ≥ 1.
By Lemma 5.1, we have that sk+1 = rpek. Therefore

pk+1 ≤ pk + rpek < (r + 1)pek.

Using the inductive hypothesis on pk, the left hand side can be
rewritten as

pk+1 < (r + 1)

(
(r + 1)

∑k−1

j=0
ej
)e

pk+1 < (r + 1)

(
(r + 1)

∑k

j=1
ej
)

pk+1 < (r + 1)

∑k

j=0
ej
.

Thus, inequality (16) holds for pk+1, and by induction we
conclude that (16) holds for all i = 1, . . . , N . �
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The size, pN , of the resulting partition of the working set X
is double exponential with N when e > 1 (switched systems).
Therefore when e > 1 the number of Pre operations performed,
pN−1, is double exponential with N − 1. It is easy to verify
from (16) that the bound is exponential with N for linear sys-
tems, i.e., e = 1. Note that the derived bound is an upper bound
for the worst case, i.e., when si = si for all i = 0, . . . , N .

Remark 5.2: The computational complexity increases with
the number of sublevel sets, N , which is computed from the
working set X , the target set D, and the contraction rate ρ
of the Lyapunov function (see (8)). Therefore, the amount of
computation can be adjusted by the choice of the working set
X and the target set D for a given Lyapunov function. For
example, the computation time can be decreased by choosing D
as the largest sublevel set that does not intersect with the regions
of observations. In addition, using a Lyapunov function with a
minimal contraction rate can decrease the computation time.
Computation of such Lyapunov functions are out of the scope
of this paper, but for example, minimization of the contraction
rate is possible via the algorithm presented in [28].

VI. TEMPORAL LOGIC SYNTHESIS AND VERIFICATION

After we obtain a bisimulation quotient for system (6), we
can solve verification and controller synthesis problems from
temporal logic specifications such as CTL∗, CTL, and LTL.
The asymptotic stability assumption implies that all trajectories
of (6) sink in D. For this reason, we will focus on the syntacti-
cally co-safe fragment of LTL, which includes all specifications
of LTL where satisfactions of trajectories can be determined by
a finite prefix. Since we are interested in the behavior of (6) until
D is reached, scLTL is a sufficiently rich specification language.

A detailed description of the syntax and semantics of scLTL
is beyond the scope of this paper and can be found in, for
example, [7], [29]. Roughly, an scLTL formula is built up from
a set of atomic propositions Π, standard Boolean operators ¬
(negation), ∨ (disjunction), ∧ (conjunction), ⇒ (implication)
and temporal operators X (next), U (until), and F (eventually).1

The semantics of scLTL formulae is given over infinite words
o = o0o1 . . ., where oi ∈ 2Π for all i. We write o |= φ if the
word o satisfies the scLTL formula φ. We say a trajectory q
of a transition system T satisfies scLTL formula φ, if the word
generated by q (see Definition 2.1) satisfies φ.

Example 6.1: Again, consider the setting in Example 3.1
with R = {Ri}i={1,2,3}. We now consider a specification in
scLTL over {R1,R2,R3,ΠD}. For example, the specification
“A system trajectory never visits R2 and eventually visits R1.
Moreover, if it visits R3 then it must not visit R1 at the next time
step” can be translated to a scLTL formula:

φ := (¬R2 ∪ΠD) ∧ FR1 ∧ ((R3 ⇒ X¬R1) ∪ΠD). (17)

A. Synthesis of Switching Strategies

In this section, we assume that we can choose the dynamics
Aσ , σ ∈ Σ to be applied at each step k. Our goal is to find

1The difference between LTL and scLTL is the lack of globally operator
in scLTL. Moreover, the negation can only be used in conjunction with the
propositions in a scLTL formula.

the largest set of initial states and a switching sequence (i.e.,
a sequence of elements from Σ to be applied at each step) for
each initial state such that all the corresponding trajectories of
system (6) satisfy a temporal logic specification. As a switched
system is deterministic, it produces a unique trajectory for
a given initial state and a switching sequence. Formally, we
consider the following problem:

Problem 6.1: Consider system (6) with a polyhedral
Lyapunov function in the form of (5), sets X , D, and {Ri}i∈R,
and a scLTL formula φ over R ∪ {ΠD}. Find the largest set
XS ⊆ X and a function Ω : XS �→ Σ∗ such that the trajectory
of system (6) initiated from a state x0 ∈ XS under the switch-
ing sequence Ω(x0) satisfies φ.

Our solution to Problem 6.1 proceeds by finding a bisimula-
tion quotient Te/∼ of the embedding transition system Te using
Algorithm 2. Then we translate φ to a Finite State Automaton
(FSA), defined below.

Definition 6.1: A deterministic finite state automaton (FSA)
is a tuple A = (SA, SA0,Σ, δA, FA) where

• SA is a finite set of states;
• SA0 ⊆ SA is a set of initial states;
• Σ is an input alpabet;
• δA : SA × Σ → SA is a transition function;
• FA ⊆ SA is a set of final states.

A word σ = σ0 . . . σd−1 over Σ generates a trajectory s0 . . . sd,
where s0 ∈ SA0 and δ(si, σi) = si+1 for all i = 0, . . . , d− 1.
A accepts word σ if sd ∈ FA.

For any scLTL formula φ over Π, there exists a FSA A with
input alphabet 2Π that accepts the prefixes of all and only the
satisfying words [7], [30].

Definition 6.2: Given a transition system T = (Q,Σ,→,
Π, h) and a FSA A = (SA, SA0, 2

Π, δA, FA), their prod-
uct automaton, denoted by PA = T × A, is a tuple PA =
(SPA, SPA0,Σ,→PA, FPA) where

• SPA = Q× SA;
• SPA0 = Q× SA0;
• →PA⊆ SPA × Σ× SPA is the set of transitions, defined

by: ((q, s), σ, (q′, s′))∈→PA iff q
σ→q′ and δA(s, h(q))=s′;

• FPA = Q× FA.

We denote sPA
σ→PA s′PA if (sPA, σ, s

′
PA) ∈→PA. A trajectory

p = (q0, s0) . . . (qd, sd) of PA produced by input word σ =
σ0 . . . σd−1 is a finite sequence such that (q0, s0) ∈ SPA0 and
(qk, sk)

σk→PA (qk+1, sk+1) for all k = 0, . . . , d− 1. p is called
accepting if (qd, sd) ∈ FPA.

By the construction of PA from T and A, p produced by σ is
accepting if and only if q = γT (p) satisfies the scLTL formula
corresponding to A [29], where γT (p) is the projection of a
trajectory p of PA onto T by simply removing the automaton
part of the state in sPA ∈ SPA.

We construct the product PA between the quotient transition
system Te/∼ obtained from Algorithm 2 and FSA A corre-
sponding to specification formula φ. By performing a graph
search on PA, we can find the largest subset SS

PA of SPA
and a feedback control function ΩPA : SS

PA �→ Σ such that the
trajectories of PA originating in SS

PA in closed loop with ΩPA
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Fig. 4. XS is shown in purple. X , D, {Ri}i∈R and two sample trajectories
are indicated by their labels.

reach FPA. Then, we define the set of satisfying initial states of
system (6) from SS

PA as

XS = {eq(q)|(q, s) ∈ (SPA0 ∩ SS
PA)}. (18)

Since PA is deterministic, ΩPA defines a unique input
word for each (q0, s0) ∈ SS

PA. Moreover, an input word of
PA directly maps to a switching sequence for system (6).
Formally, the switching sequence Ω : XS �→ Σ∗ is obtained by
“projecting” ΩPA from PA to T as follows:

Ω(x) = ΩPA((q0, s0)) . . .ΩPA((qd−1, sd−1)) (19)

where x ∈ eq(q0), s0 ∈ SA0, (qi, si)
ΩPA((qi,si))

−−−−−−−−→PA
(qi+1, si+1), for each i = 0, . . . , d− 1 and (qd, sd) ∈ FPA.

Proposition 6.1: XS as defined in (18) and function Ω as
defined in (19) solve Problem 6.1.

Proof: For each x ∈ XS , there exists (q0, s0) ∈ SS
PA such

that x ∈ eq(q0) and s0 ∈ SA0 by (18). By the construction
of PA and the definition of Ω (19), the trajectory of Te/∼
originating at q0 and generated by input word Ω(x) satisfies
φ. Then by the bisimulation relation the trajectories of (6)
originating in eq(q0) and generated by switching sequence
Ω(x) satisfy φ.

We prove that XS is the largest set of satisfying initial states
by contradiction. Assume that there exists x0 �∈ XS such that
a trajectory x = x0 . . . xd originating at x0 of system (6) pro-
duced by switching sequence σ = σ0 . . . σd−1 satisfies φ, and
x0 ∈ eq(q0) where q0 ∈ Qe/∼. Then by the bisimulation rela-
tion 1) there exists a trajectory q = q0 . . . qd of Te/∼ such that
xi ∈ eq(qi), qi

σi→e /∼qi+1 for all i = 0, . . . , d− 1 and xd ∈
eq(qd), 2) q satisfies φ. However, we know that on the product
PA = Te/∼ × A, FPA is not reachable from {(q0, s) | s ∈
SA0}. Hence, a trajectory p originating in {(q0, s) | s ∈ SA0}
cannot be accepting on PA, and by construction of PA [29]
γTe/∼(p) as a trajectory of Te/∼ cannot satisfy formula φ,
which yields a contradiction. �

Example 6.2 (Example 6.1 Continued): For the example
specification φ (17), we obtained the solution to Problem 6.1.
The FSA has 6 states and the quotient TS obtained from
Algorithm 2 has 9677 states. The set of initial states XS is
shown in Fig. 4.

B. Verification Under Arbitrary Switching

In this section, we consider the problem of verifying system
(6) under arbitrary switching, i.e., at every time-step a subsys-
tem is arbitrarily chosen from the set Σ.

Problem 6.2: Consider system (6) with a polyhedral
Lyapunov function in the form of (5), sets X , D, and {Ri}i∈R,
and a scLTL formula φ over R ∪ {ΠD}. Find the largest set
XAS ⊆ X such that all trajectories of system (6) originating in
XAS satisfy φ under arbitrary switching.

Note that system (6) under arbitrary switching is uncon-
trolled and non-deterministic. Therefore, we define an em-
bedding transition system T A

e = {Qe,Σ
A,→A

e , he} for the
arbitrary switching setup from the embedding transition system
Te = {Qe,Σ,→e, he} (Definition 3.1) by adapting the input set
and the set of transitions as follows:

• ΣA = {ε},
• →A

e = {(q, ε, q′) | ∃σ ∈ Σ, (q, σ, q′) ∈→e}.

We denote q →A
e q′ if (q, ε, q′) ∈→A

e . We use ε as a “dummy”
input because the transitions of T A

e are not controlled. Note
that T A

e is infinite and non-deterministic. Moreover, T A
e exactly

captures dynamics of system (6) under arbitrary switching in
the relevant state space X \ D.

Our solution to Problem 6.2 parallels the solution we
proposed for Problem 6.1. We first convert the bisimulation
quotient Te/∼ = {Qe/∼,Σ,→e /∼, he/∼} of Te obtained from
Algorithm 2 to T A

e /∼={Qe/∼,Σ
A,→A

e /∼, he/∼} as follows:

• ΣA = {ε},
• →A

e /∼ = {(q, ε, q′) | ∃σ ∈ Σ, (q, σ, q′) ∈→e /∼}.

In this case, we have a particular bisimulation relation. The
embedding and the quotient transition systems have a single
input that labels all the transitions.

Proposition 6.2: T A
e /∼ is a bisimulation quotient of T A

e .
Proof: Let q1, q2 ∈ eq(q), q′1 ∈ eq(q′), and q1 →A

e q′1,
where q, q′ ∈ Qe/∼, and q1, q2, q

′
1 ∈ Qe. To prove the bisim-

ulation property we need to show that there exists q′2 ∈ eq(q′)
such that q2 →A

e q′2.
If q1 →A

e q′1, then there exists σ ∈ Σ such that q1
σ→e q

′
1,

i.e., q′1 = Aσq1. Steps 9 and 10 of Algorithm 2 guarantee
that eq(q) ⊆ PreTe(eq(q

′), σ). Therefore, for all qi ∈ eq(q),
Aσqi ∈ eq(q′), and hence for all qi ∈ eq(q), qi →A

e qj for some
qj ∈ eq(q′). �

Parallel to our solution to Problem 6.1, we construct a FSA A
corresponding to specification formula φ, and then we take the
product PAA = (SA

PA, S
A
PA0,Σ

A,→A
PA, F

A
PA) between T A

e /∼
and A as described in Definition 6.2. Note that PAA is non-
deterministic as T A

e /∼ is non-deterministic.
To finally solve Problem 6.2, we employ the approach pro-

posed in [31], [32] to solve reachability problems on non-
deterministic finite systems. We define an operator Ji:

Ji+1(sPA) = min(Ji(sPA), max
sPA→ A

PA s′PA

Ji(s
′
PA) + 1)

initialized with J0(sPA) = ∞ for all sPA ∈ SA
PA \ FA

PA and
J0(sPA) = 0 for all sPA ∈ FA

PA. We iteratively compute Ji+1

from Ji until the fixed point of the operator is reached, i.e.,
Ji(sPA) = Ji+1(sPA) for all sPA ∈ SA

PA. The fixed point of
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Fig. 5. XAS is shown in purple. X , D, {Ri}i∈R and two sample trajectories
are indicated by labeling.

the operator always exists, since the number of states, |SA
PA|,

is finite.
Proposition 6.3: Let SAS

PA = {sPA ∈ SA
PA | J(sPA) < ∞}

and define XAS = {eq(q) | (q, s) ∈ (SA
PA0 ∩ SAS

PA )}. Then
XAS solves Problem 6.2.

Proof: For each x ∈ XAS , there exists (q0, s0) ∈ SAS
PA

such that x ∈ eq(q0) and s0 ∈ SA0. The fixed point compu-
tation guarantees that every trajectory of PAA originating at
(q0, s0) reaches FA

PA. Then, the construction of PAA and the
bisimulation relation guarantee that all of the trajectories of (6)
originating in eq(q0) satisfy φ.

If x0 �∈ XAS , we need to show that there exists a trajec-
tory x = x0 . . . xd of (6) that violates φ. Let x0 ∈ eq(q0). If
x0 �∈ XAS , then for all s0 ∈ SA0 there exists a trajectory p =
(q0, s0) . . . (qd, sd) of PAA that can not reach FA

PA, otherwise
(q0, s0) would be included in SAS

PA . Since p can not reach FA
PA,

q = γT (p) violates φ. By the bisimulation property, there exists
a trajectory x = x0 . . . xd of (6) that produces the same word as
q, and hence x violates φ. �

Example 6.3 (Example 6.1 Continued): For the exam-
ple specification φ as in (17), we obtained the solution to
Problem 6.2. XAS and sample trajectories are shown in Fig. 5.
Note that, by definition, this is a subset of the set of initial states
found for the synthesis problem (see Fig. 4).

C. Verification for Polytopic Difference Inclusions

In this section, we consider switched systems with infinitely
many subsystems. Assume that the active subsystem of system
(6) is chosen from the convex set A = co{Aσ | σ ∈ Σ} rather
than the finite set {Aσ | σ ∈ Σ}, and let T ∞

e be the correspond-
ing embedding transition system with input set Σ∞. In this case
Algorithm 2 cannot be used to construct a finite bisimulation
quotient of the embedding transition system, since the input set
Σ∞ is not finite. The computation of a bisimulation quotient for
this setting requires to compute equivalence classes also in the
control space. Quantifier elimination can be used to compute
pre-images and the corresponding equivalence classes in the
control space. However, such approaches result in intractable
implementations. Moreover, existence of finite bisimulations
for such systems is not guaranteed. Here, we focus on an
arbitrary switching setup and show that we can compute a

Fig. 6. ∪q∈Q∀
e
eq(q) is shown in red.

deterministic bisimulation quotient for a subset of the working
set X . Let T ∀

e = {Q∀
e, {ε},→

∀
e , he} be the embedding transi-

tion system of the switched system under arbitrary switching,
i.e., (x, ε, x′) ∈→∀

e if ∃A ∈ A and x′ = Ax. T ∀
e has a single

input and is non-deterministic. We will construct a bisimulation
quotient of a subset of T ∀

e .
Let Te be the embedding transition system for the finite input

set Σ, and Te/∼ = {Qe/∼,Σ,→e /∼, he/∼} be the bisimula-
tion quotient of Te constructed using Algorithm 2. We define
T ∀
e /∼ = {Q∀

e/∼, {ε},→
∀
e /∼, he/∼} from Te/∼ as follows:

• →∀
e /∼ = {(q, ε, q′) | ∀σ ∈ Σ, (q, σ, q′) ∈→e /∼},

• Q∀
e/∼ = {q0 | q0 ∈ Qe/∼, ∃d∈ Z+,∀ i= 0, . . . , d−1, (qi,

ε, qi+1) ∈→∀
e /∼,D = eq(qd)}.

There is a transition (q, ε, q′) ∈→∀
e /∼, if q has a unique

successor in Te/∼, i.e. |{q′ | ∃σ ∈ Σ, (q, σ, q′) ∈→e /∼}| = 1.
Q∀

e/∼ is a subset of Qe/∼, and for each q0 ∈ Q∀
e/∼, Te/∼

produces the same trajectory q0q1 . . . for any input sequence. In
other words, the behavior of Te/∼ within Q∀

e/∼ is predictable
under arbitrary switching. By construction T ∀

e /∼ is determin-
istic. In addition, each state q ∈ Q∀

e/∼ has a single outgoing
transition (q, ε, q′) satisfying that

eq(q) ⊆
⋃
σ∈Σ

Pre(eq(q′), σ). (20)

Moreover, by using the convexity of set A (A = co{Aσ | σ ∈
Σ}), it can be shown that for a set P:⋂

σ∈Σ
Pre(P, σ) =

⋂
σ∈Σ∞

Pre(P, σ). (21)

Finally, from (20) and (21), we conclude that all the transitions
of T ∀

e /∼ satisfy the bisimulation requirement and T ∀
e /∼ is a

bisimulation quotient of T ∀
e for the states within ∪q∈Q∀

e
eq(q).

Example 6.4: For the setting in Example 3.1, we obtained
T ∀
e /∼ from Te/∼. ∪q∈Q∀

e
eq(q) is shown in Fig. 6.

VII. IMPLEMENTATION AND CASE STUDIES

The methods described in this paper were implemented in
MATLAB as a software package, which is freely downloadable
from hyness.bu.edu/Software.html. The examples presented
above and the following case studies were generated by using
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Fig. 7. The sets X , D, R1, R2, R3, and the sublevel sets {PΓi
}
i=0,...,10

of the Lyapunov function for Case Study 1.

the software package on an iMac with an Intel Core i5 processor
at 2.8 GHz with 8 GB of memory. Algorithm 2 was completed
in 2 hours for Example 3.1. Once the bisimulation quotient
was constructed, controller synthesis and verification were both
completed in 2 minutes.

A complete case study of a switched linear system in R
2 was

presented as a running example throughout the paper. Here, two
additional case studies are presented: a linear system in R

3 and
a piecewise linear system in R

2.

A. Case Study 1

In this case study, we apply the proposed methods to a
3-dimensional discrete-time linear system:

xk+1=A1xk,where A1=

⎡
⎣ 0.384 0.394 0.240

0 0.442 −0.442
−0.100 0 0.780

⎤
⎦. (22)

The system is of the form (6) with Σ = {1}. Note that
the system is autonomous, i.e., there is only one dynamics
and therefore no control input. The system is asymptotically
stable and ‖Lx‖∞ is a Lyapunov function for the system with
contraction rate ρ = 0.91, where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8835 0.1165 0.1165
−0.8835 −0.1165 −0.1165
0.8835 −0.1165 −0.1165
0.8835 0.1165 0.1165

0 −1.0000 −0.1165
0 −1.0000 −0.1165
0 1.0000 0.1165
0 1.0000 0.1165
0 −0.1165 −1.0000
0 −0.1165 −1.0000
0 0.1165 1.0000
0 0.1165 1.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The working set and the target set are X := {x ∈
R

3 | ‖Lx‖∞ ≤ 10.0} and D = {x ∈ R
3 | ‖Lx‖∞ ≤ 3.8942},

respectively. The sublevel sets {PΓi
}i=0,...,10 are computed as

explained in Section IV. These sublevel sets and the sets of
observations, R = {R1,R2,R3}, are shown in Fig. 7.

Algorithm 2 was used to compute a finite bisimulation quo-
tient of the corresponding embedding transition system. The
quotient TS had 14096 states and was computed in 35 minutes.

The following specification was considered: “A system tra-
jectory either visits R1 and then R2, or R3 before visiting D.”
The specification was formally stated as the following scLTL
formula:

φ := (¬ΠD ∪ (R1 ∧R3) ∧ ((¬R1 ∧ FR2) ∪ΠD) . (23)

The largest set of satisfying initial states of system (22)
for formula Φ (23) was computed by following the methods
explained in Section VI. The FSA had 5 states. Note that
both the verification and synthesis problems result in the same
set for this case study, i.e., XS = XAS , since system (22) is
autonomous. The computation of XS took 1.2 seconds. The
volume of XS is 17.4% of the volume of X \ D. The set of
initial states and sample trajectories are shown in Fig. 8.

B. Case Study 2

In this case study, we show how the proposed method to con-
struct a bisimulation quotient can be applied to a piecewise lin-
ear system. The system is adapted from [28], where stabilizing
static feedback control laws for discrete-time piecewise affine
(PWA) systems are synthesized. The synthesis framework in-
volves computation of piecewise linear Lyapunov functions that
admit piecewise polytopic sublevel sets. Here, we consider the
stable closed-loop system which is described by (14) with:

A1 =A5 =

[
0.0546 −0.7764
0.0212 −0.8521

]

A2 =A6 =

[
−0.0700 −0.8150
0.0700 −0.7300

]

A3 =A7 =

[
−0.9200 −0.0200
0.7580 −0.0200

]

A4 =A8 =

[
−0.9200 0.0200
0.7580 −0.0200

]
. (24)

We define the operating regions, {Xσ}σ∈Σ, and the working
set, X = ∪σ∈ΣXσ , with respect to the conic partition of R

2,
{Ωσ}σ∈Σ, used in [28] and the piecewise linear Lyapunov
function of system:

V (x)=‖Lσx‖∞, if x∈Ωσ, Lσ∈R
l×n, l≥n, l∈Z+. (25)

The matrices, {Lσ}σ∈Σ, of the Lyapunov function (25) are
omitted due to space reasons, but can be found in [28]. We set
ΓX = 19.75 (PΓX = {x ∈ R

n | V (x) ≤ ΓX } as before) ΓD =
10, and Xσ = X ∩ Ωσ for all σ ∈ Σ. The operating regions of
the system and the sets {Xσ}σ∈Σ and D are shown in Fig. 9.

The sublevel sets are not polytopic, however, the slices are
still bounded-semi linear sets and can be computed as explained
in Section IV. These slices and the regions of interests R are
shown in Fig. 10. To find a bisimulation quotient for the system,
we first refine partition PX (11) according to partition Ppwl =
{Xσ}σ∈Σ. This additional refinement step guarantees that each
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Fig. 8. Case Study 1: (a) XS is shown in purple. (b) Four sample trajectories. The initial states are marked by circles. (c) The same trajectories as in (b) are
shown under a different view angle (projected on x2 − x3 plane).

Fig. 9. Case Study 2: {Xσ}σ∈Σ and D (shown in brown).

Fig. 10. Case Study 2: Slices {Si}i=0,...,11 and regions of observations R =

{Ri}i=1,...,4. S4 is shown in purple.

P in the refined partition P pwl
X is included in a set Xσ , and

therefore, only one mode can be active in P . As each set in P pwl
X

is a bounded semi-linear set, Algorithm 2 is used to compute a
quotient transition system Te/∼. By eliminating some of the
transitions according to Ppwl, i.e., q

σ→∼ q′ only if eq(q) ⊆ Xσ,
we obtain a bisimulation quotient T pwl

e /∼ for the piecewise
linear system. The computation took 11 minutes. Note that each
state q of T pwl

e /∼ has a single outgoing transition, and the
system is not controlled.

Fig. 11. Case Study 2: Satisfying initial states are shown in purple. Two
sample trajectories are indicated by labeling.

We consider the specification: “A system trajectory never
visits R2 and R4, and eventually visits R1 or R3,” which
translates to the following scLTL formula:

φ := (¬(R2 ∧R4) ∪ΠD) ∧ F(R1 ∧R3). (26)

The set of satisfying initial states of the system is found
by using the bisimulation quotient T pwl

e /∼ as explained in
Section VI. As in the previous case study, both verification and
synthesis problems result in the same set, which is shown in
Fig. 11. The computation took 0.4 seconds.

VIII. CONCLUSION

In this paper, we presented a method to abstract the behavior
of a switched linear system within a positively invariant subset of
R

n to a finite transition system via the construction of a bisim-
ulation quotient. We employed polyhedral Lyapunov functions
to guide the partitioning of the state space and showed that
the construction requires polytopic operations only. We showed
how this method can be used to synthesize switching sequences
and to verify the behavior of the system under arbitrary switch-
ing from specifications given as scLTL formulae over polytopic
sets in the state space of the system. We also describe how this
general approach can be extended to verify piecewise linear
systems and systems with difference inclusion dynamics.
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