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Abstract— In this paper, we consider the problem of con-
structing a finite bisimulation quotient for a discrete-time
switched linear system in a bounded subset of its state space.
Given a set of observations over polytopic subsets of the state
space and a switched linear system with stable subsystems,
the proposed algorithm generates the bisimulation quotient
in a finite number of steps with the aid of sublevel sets of
a polyhedral Lyapunov function. Starting from a sublevel set
that includes the origin in its interior, the proposed algorithm
iteratively constructs the bisimulation quotient for any larger
sublevel set. The bisimulation quotient can then be further used
for synthesis of the switching law and system verification with
respect to specifications given as syntactically co-safe Linear
Temporal Logic formulas over the observed polytopic subsets.

I. INTRODUCTION

In recent years, there has been a trend to bridge the gap be-
tween control theory and formal methods. It has been shown
that certain classes of dynamical systems can be abstracted
to finite transition systems. As a result, model checking
and automata games can be used to analyze and control
systems with non-trivial dynamics from specifications given
as temporal logic formulas.

In this paper, we focus on switched linear systems made of
stable subsystems, and show that finite bisimulations can be
efficiently constructed within some relevant, bounded subset
of the state space. Since the bisimulation quotient preserves
all properties that are expressible in frameworks as rich as µ-
calculus, and implicitly Computation Tree Logic (CTL) and
Linear Temporal Logic (LTL) (see e.g., [1], [2]), it can be
readily used for system verification and controller synthesis
against such specifications. We show how our method can
be used for both controller synthesis and verification from
specifications given as arbitrary formulas of a fragment of
LTL, called syntactically co-safe LTL (scLTL). For controller
synthesis, we find the largest set of initial states and switch-
ing sequences such that all system trajectories satisfy a given
formula. For verification, we find the largest set of initial
states such that all system trajectories satisfy the formula
under arbitrary switching.

The concept of constructing a finite quotient of an in-
finite system has been widely studied, e.g., [3]–[5]. It is
known that finite state bisimulation quotients exist only
for specific classes of systems (e.g., timed automata [5]
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and controllable linear systems [3]), and the well known
bisimulation algorithm [1] in general does not terminate [6].
Approximately bisimilar finite abstractions for continuous-
time switched systems were constructed under incremental
stability assumptions in [7]. For piecewise linear systems,
guided refinement procedures were employed with the goal
of constructing the quotient system for verification of certain
properties [4], [6].

We propose to obtain a finite bisimulation quotient of
the system in a computationally feasible manner by only
considering the system behavior within a relevant state
space that does not contain the origin, i.e., in between two
positively invariant compact sets that contain the origin. Our
approach relies upon the existence of a polyhedral Lyapunov
function, which is a necessary condition for stability under
arbitrary switching, see, e.g., [8]. We propose to partition the
state space by using sublevel sets of the Lyapunov function.
Such sublevel sets, which are polytopic, allow us to generate
the bisimulation quotient incrementally as the abstraction
algorithm iterates, with no “holes” in the covered state space.
Since we can obtain polytopic sublevel sets of any size from
the Lyapunov function, the balance between the size of the
abstracted state space and the amount of computation can be
easily adjusted and controlled. Starting from the observation
that the existence of the Lyapunov function renders the origin
asymptotically stable for the switched system, its trajectories
can only spend a finite time in the region of interest. As a
result, we restrict our attention to LTL specifications that can
be satisfied in finite time, such as scLTL formulas.

This paper is an extension of our recent work [9], in
which we used polytopic sublevel sets to generate a bisimu-
lation quotient for a discrete autonomous linear system. An-
other conceptually related work is [10], where n Lyapunov
functions were used for the abstraction of n-dimensional
continuous-time Morse-Smale systems to timed automata.
The abstraction proposed therein is weaker than bisimulation,
but it can be used to verify safety properties. While both
[10] and this work use sublevel sets for abstraction, the
main difference between [10] and this approach comes from
the usage of polyhedral Lyapunov functions, and therefore
different classes of systems for which the methods apply. Our
approach removes the need for multiple orthogonal Lyapunov
functions, and we argue that it allows for a more tractable
implementation since the abstraction of timed automata is
expensive by itself [5], and polytopic sublevel sets ensure that
the abstraction algorithm requires only polytopic operations.

Due to space limitations, the results in this paper are stated
without proofs. The proofs and additional details can be
found in [11].
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II. PRELIMINARIES

Notation: For a set S, int(S), |S|, and 2S stand for its
interior, cardinality, and power set, respectively. For λ ∈ R
and S ⊆ Rn, let λS := {λx | x ∈ S}. We use R, R+, Z, and
Z+ to denote the sets of real numbers, non-negative reals,
integer numbers, and non-negative integers. For m,n ∈ Z+,
we use Rn and Rm×n to denote the set of column vectors
and matrices with n and m×n real entries. For a vector v or a
matrix A, we denote v> or A> as its transpose, respectively.
We use ‖ · ‖∞ for the infinity norm of a vector or matrix. A
semi-linear set in Rn is defined as finite unions, intersections
and complements of sets {x ∈ Rn | a>x ∼ b,∼∈ {=, <}},
for some a ∈ Rn and b ∈ R.

A. Transition systems and bisimulations

Definition 2.1: A transition system (TS) is a tuple T =
(Q,Σ,→,Π, h), where Q is a (possibly infinite) set of states;
Σ is a set of inputs; →⊆ Q×Σ×Q is a set of transitions;
Π is a finite set of observations; and h : Q −→ 2Π is an
observation map. We denote x

σ→x′ if (x, σ, x′) ∈→. We
assume T to be non-blocking, i.e., for each x ∈ Q, there
exists x′ ∈ Q and σ ∈ Σ such that x σ→x′. An input word is
defined as an infinite sequence σ = σ0σ1 . . . where σk ∈ Σ
for all k ∈ Z+. A trajectory of T produced by an input
word σ = σ0σ1 . . . and originating at state x0 is an infinite
sequence x = x0x1... where xk

σk→ xk+1 for all k ∈ Z+. A
trajectory x generates a word o = o0o1..., where ok = h(xk)
for all k ∈ Z+.

The TS T is finite if |Q| < ∞ and |Σ| < ∞, and
deterministic if x σ→x′ implies that there does not exist x′′ 6=
x′ such that x σ→x′′. Given a set X ⊆ Q, we define the set
of states PreT (X,σ) that reach X in one step when input σ
is applied as

PreT (X,σ) := {x ∈ Q | ∃x′ ∈ X,x σ→x′}. (1)

States of a TS can be related by a relation ∼⊆ Q×Q. For
convenience of notation, we denote x ∼ x′ if (x, x′) ∈∼. The
subset X ⊆ Q is called an equivalence class if x, x′ ∈ X ⇔
x ∼ x′. We denote by Q/∼ the set labeling all equivalence
classes and define a map eq : Q/∼ 7→ 2Q such that eq(X) is
the set of states in the equivalence class X ∈ Q/∼. We say
that a relation ∼ is observation preserving if for any x, x′ ∈
Q, x ∼ x′ implies that h(x) = h(x′). A finite partition P of
a set S is a finite collection of sets P := {Pi}i∈I , such that
∪i∈IPi = S and Pi ∩Pj = ∅ if i 6= j. A finite refinement of
P is a finite partition P ′ of S such that for each Pi ∈ P ′,
there exists Pj ∈ P such that Pi ⊆ Pj .

A partition naturally induces a relation, and an observation
preserving relation induces a quotient TS. One can immedi-
ately verify that a refinement of an observation preserving
partition is also observation preserving.

Definition 2.2: An observation preserving relation ∼ of a
TS T = (Q,Σ,→,Π, h) induces a quotient transition system
T /∼ = (Q/∼,Σ,→∼,Π, h∼), where Q/∼ is the set labeling
all equivalence classes. The transitions of T /∼ are defined
as X σ→∼Y if and only if there exists x ∈ eq(X) and x′ ∈

eq(Y ) such that x σ→x′. The observation map is defined as
h∼(X) := h(x), where x ∈ eq(X).

Definition 2.3: Given a TS T = (Q,Σ,→,Π, h), a rela-
tion ∼ is a bisimulation relation of T if (1) ∼ is observation
preserving; (2) for any x1, x2 ∈ Q, σ ∈ Σ, if x1 ∼ x2 and
x1

σ→x′1, there exists x′2 ∈ Q such that x2
σ→x′2 and x′1 ∼ x′2.

If ∼ is a bisimulation, then the quotient transition system
T /∼ is called a bisimulation quotient of T . In this case,
T and T /∼ are said to be bisimilar. Bisimulations preserve
properties expressed in temporal logics such as LTL, CTL
and µ-calculus [1], [2].

B. Polyhedral Lyapunov functions

Consider an autonomous discrete-time system,

xk+1 = Φ(xk), k ∈ Z+, (2)

where xk ∈ Rn is the state at the discrete-time instant k and
Φ : Rn 7→ Rn is an arbitrary map with Φ(0) = 0. Given a
state x ∈ Rn, x′ := Φ(x) is called a successor state of x.

Definition 2.4: Let λ ∈ [0, 1]. We call a set P ⊆ Rn λ-
contractive (shortly, contractive) if for all x ∈ P it holds that
Φ(x) ∈ λP . For λ = 1, we call P a positively invariant set.

Theorem 2.1: Let X be a positively invariant set for (2)
with 0 ∈ int(X ). Furthermore, let α1, α2 ∈ K∞, ρ ∈ (0, 1)
and V : Rn 7→ R+ such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),∀x ∈ X , (3)
V (Φ(x)) ≤ ρV (x),∀x ∈ X . (4)

Then system (2) is asymptotically stable in X .
The proof of Thm. 2.1 can be found in [12], [13].
Definition 2.5: A function V : Rn 7→ R+ is called a

Lyapunov function (LF) in X if it satisfies (3) and (4). If
X = Rn, then V is called a global Lyapunov function.

The parameter ρ is called the contraction rate of V . For
any Γ > 0, PΓ := {x ∈ Rn |V (x) ≤ Γ} is called a sublevel
set of V .

For the remainder of this paper we consider LFs defined
using the infinity norm, i.e.,

V (x) = ‖Lx‖∞, L ∈ Rl×n, l ≥ n, l ∈ Z+, (5)

where L has full-column rank. Notice that infinity norm Lya-
punov functions are a particular type of polyhedral Lyapunov
functions. We opted for this type of function to simplify
the exposition but in fact, the proposed abstraction method
applies to general polyhedral Lyapunov functions defined by
Minkowski (gauge) functions of polytopes in Rn with the
origin in their interior.

Proposition 2.1: Suppose that L ∈ Rl×n has full-column
rank and V as defined in (5) is a global LF for system (2)
with contraction rate ρ ∈ (0, 1). Then for all Γ > 0 it holds
that PΓ is a polytope and 0 ∈ int(PΓ). Moreover, if Φ(x)
takes values arbitrarily from a set {Ax |A ∈ A} for some
polyhedral set A ⊆ Rn×n, then for all Γ > 0 it holds that
PΓ is a ρ-contractive polytope for (2).
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III. PROBLEM FORMULATION

In this paper, we consider discrete-time switched linear
systems, i.e.,

xk+1 = Aσ(k)xk, σ(k) ∈ Σ, k ∈ Z+, (6)

where σ : Z+ → Σ is a switching sequence that selects the
active subsystem from a finite index set Σ and Ai ∈ Rn×n is
a strictly stable (i.e., Schur) matrix for all i ∈ Σ. We assume
that a global polyhedral Lyapunov function (LF) of the form
(5) with contraction rate ρ ∈ (0, 1) is known for system (6).

Let X be a polytope X := {x | ‖Lx‖∞ ≤ ΓX } and D be
a polytope D := {x | ‖Lx‖∞ ≤ ΓD}, where L corresponds
to the polytopic LF (5) of system (6) and we assume that
0 < ΓD < ΓX . Note that D ⊂ X and 0 ∈ int(D) ⊂ int(X ).
We call X the working set and D the target set. We are
interested in synthesis of control strategies and verification
of the system behavior within X with respect to polytopic
regions in the state space, until the target set D is reached
(since D is positively invariant, the system trajectory will be
confined within D after D is reached).

We assume that there exists a set R of polytopes indexed
by a finite set R, i.e., R := {Ri}i∈R, where Ri ⊆ X \ D
for all i ∈ R, and Ri ∩ Rj = ∅ for any i 6= j. The set R
represents regions of interest in the relevant state space, and
the polytopes in R are considered as observations of (6).
Therefore, informally, a trajectory of (6) x0x1 . . . produces
an infinite sequence of observations o0o1 . . ., such that oi is
the index of the polytope in R visited by state xi, or oi = ∅
if xi is in none of the polytopes.

Example 3.1: Consider a system as in (6), Σ = {1, 2},
A1 =

(
−0.65 0.32
−0.42 −0.92

)
and A2 =

(
0.65 0.32
−0.42 −0.92

)
. The

algorithm proposed in [8] is employed to construct a global
polytopic LF of the form (5), where

L =

(
−0.0625 0.6815 0.9947 0.9947

1 1 0.6868 −0.0678

)>
,

and ρ = 0.94. We chose ΓX = 10 and ΓD = 5.063. (see
Fig. 1 for polytopes X , D, and a set of polytopes R.)

The semantics of the system can be formalized through
an embedding of (6) into a transition system, as follows.

Definition 3.1: Let X , D, and R = {Ri}i∈R be given.
The embedding transition system for (6) is a transition
system Te = (Qe,Σ,→e,Π, he) where
• Qe = {x ∈ Rn |x ∈ X};
• Σ is the same as the index set given in Eqn (6);
• 1) If x ∈ X \ D, then x σ→ex

′ if and only if x′ = Aσx,
i.e., x′ is the state at the next time-step after applying
the dynamics of (6) at x when subsystem σ is active;

2) If x ∈ D, x σ→ex for all σ ∈ Σ (since the target set D
is already reached, we consider the behavior of the
system thereafter no longer relevant);

• Π = R ∪ {ΠD}, i.e., the set of observations is the set
of labels of regions, plus the label ΠD for D;

• 1) he(x) := i if and only if x ∈ Ri;
2) he(x) := ∅ if and only if x ∈ X \ (D ∪⋃i∈RRi);

3) he(x) := ΠD if and only if x ∈ D.
Note that Te is deterministic and it has an infinite number of
states. Moreover, Te exactly captures the system dynamics
under (6) in the relevant state space X \D, since a transition
of Te naturally corresponds to the evolution of the discrete-
time system in one time-step. Indeed, within X \ D, the
trajectory of Te produced by an input word σ from a state
x ∈ X \D is exactly the same as the trajectory of system (6)
from x under the switching sequence σ. The state space of Te
(which is the working set X ) can be naturally partitioned as

PX :=

{
{Ri}i∈R,X \ (D ∪

⋃
i∈R
Ri),D

}
. (7)

The relation induced from partition PX is observation
preserving (see Sec. II-A). We now formulate the main
problem considered in this paper.

Problem 3.1: Let a system (6) with a polyhedral Lya-
punov function of the form (5), sets X , D and {Ri}i∈R be
given. Compute a finite observation preserving partition P
such that its induced relation ∼ is a bisimulation of the em-
bedding transition system Te, and obtain the corresponding
bisimulation quotient Te/∼.

IV. GENERATING THE BISIMULATION QUOTIENT

Starting from a polyhedral Lyapunov function V (x) =
‖Lx‖∞ with a contraction rate ρ = (0, 1) as described in
Sec. II-B for system (6), we first generate a sequence of poly-
topic sublevel sets of the form PΓ := {x ∈ Rn | ‖Lx‖∞ ≤
Γ} as follows. Recall that X = PΓX and D = PΓD for some
0 < ΓD < ΓX . We define a finite sequence Γ̄ := Γ0, . . . ,ΓN ,
where

Γi+1 = ρ−1Γi, i = 0, . . . , N − 2, (8)

Γ0 := ΓD, ΓN := ΓX , and N := arg minN{ρ−NΓ0 |
ρ−NΓ0 ≥ ΓX }. This choice of N guarantees that PΓN−1

is the largest sublevel set defined via (8) that is a subset of
X . Since ΓN is exactly ΓX , PΓN

is exactly X .
The sequence Γ̄ generates a sequence of sublevel sets

P̄Γ := PΓ0 , . . . ,PΓN
. From the definition of the sublevel

sets and Γ̄, we have that

PΓ0
⊂ . . . ⊂ PΓN

. (9)

Next, we define a slice of the state space as follows:

Si := PΓi \ PΓi−1 , i = 1, . . . , N. (10)

For convenience, we also denote S0 := PΓ0
(although S0 is

not a slice in between two sublevel sets). We immediately
see that the sets {Si}i=0,...,N form a partition of X . Note
that the slices are bounded semi-linear sets (see Sec. II).

Example 4.1: Consider the system given in Example 3.1
and N = 11 in Eqn. (8). The polytopic sublevel sets P̄Γ :=
PΓ0

, . . . ,PΓ11
are shown in in Fig. 1.

Proposition 4.1: Assume that the set of slices
{Si}i=0,...,N is obtained from a sequence Γ̄ satisfying
(8). Given a state x in the i-th slice, i.e., x ∈ Si, where
1 ≤ i ≤ N , its successor state (x′ = Aσx, σ ∈ Σ) satisfies
x′ ∈ Sj for some j < i.
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R1

R2
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X

D

S6

Fig. 1: An example in
R2 of the working set
X , the target set D (in
brown), a set of obser-
vational relevant polytopes
R = {R1,R2,R3} (in
transparent green), sublevel
sets with N = 11 and one
slice S6 (in purple).

We now present the abstraction algorithm (see Alg. 1) that
computes the bisimulation quotient. In Alg. 1, we make use
of two procedures ComputePre and RefineUpdate, which
will be further explained below. The main idea is to start with
PX (Eqn. (7)), refine the partition according to {Si}i=0,...,N

to guarantee that it is a refinement to both PX as in (7) and
{Si}i=0,...,N , and then iteratively refine according to the Pre
operator (see Eqn. 1). The first step, starting with PX , is
necessary so that the partition is observation preserving. The
second step guarantees that each element in the partition is
included in a slice. The third step allows us to ensure that
at iteration i of the algorithm, the bisimulation quotient for
states within PΓi

is completed.

Algorithm 1 Abstraction algorithm

Input: System dynamics (6), polytopic LF V (x) = ‖Lx‖∞ with
a contractive rate ρ, sets X , D and {Ri}i∈R.

Output: Te/∼ as a bisimulation quotient of the embedding tran-
sition system Te and the corresponding observation preserving
partition P .

1: Obtain PX as in (7).
2: Generate the sequence of sublevel sets P̄Γ = PΓ0 , . . . ,PΓN

and slices S0, . . . ,SN as defined in(10).
3: Set P0 = {∅ ⊂ P̃1 ∩ P̃2 | P̃1 ∈ PX , P̃2 ∈ {Si}i=0,...,N}.
4: Initialize Te/∼0 by setting Qe/∼0 as the set labeling P0. Set

transitions only for the state q ∈ Qe/∼0 where eq(q) = S0 =
D with q σ→∼0q for all σ ∈ Σ.

5: for each i = 0, . . . , N − 1 do
6: Set Te/∼i+1 = Te/∼i and Pi+1 = Pi.
7: for each q ∈ Qe/∼i where eq(q) ⊆ Si do
8: for each σ ∈ Σ do
9: Find P̃ = ComputePre(eq(q), σ).

10: Set [Pi+1, Te/∼i+1 ] = RefineUpdate

(Pi+1, Te/∼i+1 , P̃, σ, q).
11: end for
12: end for
13: end for
14: Return Te/∼N and PN as a solution to Prob. 3.1.

The procedure ComputePre(P̃, σ) takes as input P̃ , which
is a bounded semi-linear set (e.g., a slice), and σ ∈ Σ, which
is the switching input, and returns the set PreTe(P̃, σ). If P̃
is a polytope, then PreTe(P̃, σ) is computed as

PreTe(P̃, σ) = {x ∈ Rn |HP̃Aσx ≤ hP̃}, (11)

where P̃ = {x ∈ Rn |HP̃x ≤ hP̃}. In general, if P̃ is
a semi-linear set, then PreTe(P̃, σ) is also a semi-linear
set and it can be computed via quantifier elimination [14].
In particular, PreTe(P̃, σ) for a bounded semi-linear set P̃
can be computed via a convex decomposition and repeated

applications of (11). This computation is discussed in more
detail in [9]. Note that ComputePre(P̃, σ) only requires
polytopic operations.

The procedure RefineUpdate(P, T , P̃, σ, q) (outlined in
Alg. 2) refines a partition P with respect to set P̃ , where
P̃ = ComputePre(eq(q), σ). It then updates T . If P con-
sists of only bounded semi-linear sets and P̃ is a semi-
linear set, then the resulting refinement P+ consists of only
bounded semi-linear sets. This fact allows us to always use
ComputePre(P̃, σ).

Algorithm 2 [P+, T +] = RefineUpdate(P, T , P̃, σ, q)
Input: A TS T = (Q,Σ,→,Π, h), a partition P where eq(q′) ∈

P for all q′ ∈ Q, and P̃ = ComputePre(eq(q), σ) for some
q ∈ Q, σ ∈ Σ.

Output: P+ is a finite refinement of P with respect to P̃ , T + is
a TS updated from T .

1: Set P+ = P and T + = T .
2: for all q′ ∈ Q+ such that eq(q′) ∩ P̃ 6= ∅ do
3: Replace q′ in Q+ by {q1, q2} and set eq(q1) = eq(q′)∩P̃ ,

eq(q2) = eq(q′) \ P̃ .
4: Replace eq(q′) in P+ by {eq(q1), eq(q2)}.
5: Replace each (q′, σ′, q′′) ∈→+ by {(qi, σ′, q′′)}i=1,2.
6: Add transition (q1, σ, q) to →+.
7: end for

The correctness of Alg. 1 will be shown by an inductive
argument. Given a sublevel set PΓi

and a partition Pi as
obtained in Alg. 1, we define P̃i as

P̃i := {P̃ ∈ Pi | P̃ ⊆ PΓi
}. (12)

From Alg. 1, we see that P0 partitions all the slices, and
since Pi is a finite refinement of P0, we can directly see
that P̃i is a partition of PΓi . Let us define an embedding
transition system Te(i) as a subset of Te with set of states
{x ∈ Qe |x ∈ PΓi

} and let us state the following result.
Proposition 4.2: At the completion of the i-th iteration

(of the outer loop) of Alg. 1 (where Pi+1 is obtained), if ∼i
induced by P̃i as defined in (12) is a bisimulation of Te(i),
then ∼i+1 induced by P̃i+1 is a bisimulation of Te(i+ 1).

Theorem 4.1: Alg. 1 returns a solution to Prob. 3.1 in
finite time.

Example 4.2: Alg. 1 is applied on the same setting as in
Example 4.1 to compute the bisimulation quotient. P3 and
P11 are shown in Fig. 2.

V. TEMPORAL LOGIC SYNTHESIS AND
VERIFICATION

After we obtain a bisimulation quotient for system (6),
we can solve verification and controller synthesis problems
from temporal logic specifications such as CTL*, CTL and
LTL. The asymptotic stability assumption implies that all
trajectories of (6) sink in D. For this reason, we will focus
on syntactically co-safe fragment of LTL, which includes all
specifications of LTL where satisfactions of trajectories can
be determined by a finite prefix. Since we are interested in
the behavior of (6) until D is reached, scLTL is sufficiently
rich as the specification language.
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Fig. 2: The observed regions are shown in transparent green in (a) and (b). (a) At the end of the third iteration (i = 2),
the bisimulation quotient for states within PΓ3

is completed, which are shown in red and purple. In the forth iteration, the
states within PΓ11 \ PΓ3 will be partitioned according to PreTe(P̃, σ), P̃ ∈ S3. (b) S3 is shown in purple, and PreTe(S3, 1)
and PreTe(S3, 2) are shown in light and dark blue. (c) At the last iteration where i = 10, the algorithm is completed. The
state space covered by the bisimulation quotient is shown in red, covering all of X .

A detailed description of the syntax and semantics of
scLTL is beyond the scope of this paper and can be found
in, for example, [15], [16]. Roughly, an scLTL formula
is built up from a set of atomic propositions Π, Boolean
operators ¬ (negation), ∨ (disjunction), ∧ (conjunction), ⇒
(implication) and temporal operators X (next), U (until) and
F (eventually). The semantics of scLTL formulas is given
over infinite words o = o0o1 . . ., where oi ∈ 2Π for all i.
We write o � φ if the word o satisfies the scLTL formula
φ. We say a trajectory q of a transition system T satisfies
scLTL formula φ, if the word generated by q satisfies φ.

Example 5.1: Again, consider the setting in Example 3.1
with R = {Ri}i={1,2,3}. We now consider a specification
in scLTL over {R1,R2,R3,ΠD}. For example, the specifi-
cation “A system trajectory never visits R2 and eventually
visits R1. Moreover, if it visits R3 then it must not visit R1

at the next time step” can be translated to a scLTL formula:

φ := (¬R2 UΠD) ∧ FR1 ∧ ((R3 ⇒ X¬R1)UΠD) (13)

A. Synthesis of switching strategies

In this section, we assume that we can choose the dynam-
ics Aσ , σ ∈ Σ to be applied at each step k.

Problem 5.1: Consider system (6) with a polyhedral Lya-
punov function in the form of (5), sets X , D and {Ri}i∈R,
and a scLTL formula φ over R ∪ {ΠD}. Find the largest
set XS ⊆ X and a function Ω : XS 7→ Σ∗ such that the
trajectory of system (6) initiated from a state x0 ∈ XS under
the switching sequence Ω(x0) satisfies φ.

As a switched system is deterministic, it produces a unique
trajectory for a given initial state and switching sequence.
This fact allows us to provide a solution to Problem 5.1 as
an assignment of a switching sequence to each initial state.
Our solution to Prob. 5.1 proceeds by finding a bisimulation
quotient Te/∼ of the embedding transition system Te using
Alg. 1. Then we translate φ to a Finite State Automaton
(FSA), defined below.

Definition 5.1: A deterministic finite state automaton
(FSA) is a tuple A = (SA, SA0,Σ, δA, FA) where SA is
a finite set of states; SA0 ⊆ SA is a set of initial states; Σ is
an input alpabet; δA : SA×Σ→ SA is a transition function;
and FA ⊆ SA is a set of final states.
A word σ = σ0 . . . σd−1 over Σ generates a trajectory
s0 . . . sd, where s0 ∈ SA0 and δ(si, σi) = si+1 for all

i = 0, . . . , d− 1. A accepts word σ if sd ∈ FA.
For any scLTL formula φ over Π, there exists a FSA A

with input alphabet 2Π that accepts the prefixes of all and
only the satisfying words [15], [17].

Definition 5.2: Given a transition system T = (Q,Σ,→
,Π, h) and a FSA A = (SA, SA0, 2

Π, δA, FA) , their
product automaton, denoted by PA = T × A, is a tuple
PA = (SPA, SPA0,Σ,→PA, FPA) where SPA = Q×SA;
SPA0 = Q × SA0; →PA⊆ SPA × Σ × SPA is the set of
transitions, defined by: ((q, s), σ, (q′, s′)) ∈→PA iff q σ→q′
and δA(s, h(q)) = s′; and FPA = Q × FA. We denote
sPA

σ→PAs′PA if (sPA, σ, s
′
PA) ∈→PA. A trajectory p =

(q0, s0) . . . (qd, sd) of PA produced by input word σ =
σ0 . . . σd−1 is a finite sequence such that (q0, s0) ∈ SPA0

and (qk, sk)
σk→PA (qk+1, sk+1) for all k = 0, . . . , d − 1. p

is called accepting if (qd, sd) ∈ FPA.
By the construction of PA from T and A, p produced

by σ is accepting if and only if q = γT (p) satisfies the
scLTL formula corresponding to A [16], where γT (p) is
the projection of a trajectory p of PA onto T by simply
removing the automaton part of the state in sPA ∈ SPA.

We construct the product PA between the quotient tran-
sition system Te/∼ obtained from Alg. 1 and FSA A
corresponding to specification formula φ. By performing a
graph search on PA, we can find the largest subset SSPA of
SPA and a feedback control function ΩPA : SSPA 7→ Σ such
that the trajectories of PA originating in SSPA in closed loop
with ΩPA reach FPA. Then, we define the set of satisfying
initial states of system (6) from SSPA as

XS = {eq(q) | (q, s) ∈ (SPA0 ∩ SSPA)}. (14)

Since PA is deterministic, ΩPA defines a unique input
word for each (q0, s0) ∈ SSPA. Moreover, an input word of
PA directly maps to a switching sequence for system (6).
Formally, the switching sequence Ω : XS 7→ Σ∗ is obtained
by “projecting” ΩPA from PA to T as follows:

Ω(x) = ΩPA((q0, s0)) . . .ΩPA((qd−1, sd−1)), (15)

where x ∈ eq(q0), s0 ∈ SA0, (qi, si)
ΩPA((qi,si))

−−−−−−−−−→PA
(qi+1, si+1), for each i = 0, . . . , d− 1 and (qd, sd) ∈ FPA.

Proposition 5.1: XS as defined in Eqn. (14) and function
Ω as defined in Eqn. (15) solve Prob. 5.1.
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Fig. 3: XS is shown in
purple. X , D, {Ri}i∈R and
two sample trajectories are
indicated by their labels.

Example 5.2: For specification φ in (13), we obtained the
solution to Prob. 5.1. The FSA has 6 states and the quotient
TS obtained from Alg. 1 has 9677 states. The set of initial
states XS is shown in Fig. 3.

B. Verification under arbitrary switching
Problem 5.2: Consider system (6) with a polyhedral Lya-

punov function in the form of (5), sets X , D and {Ri}i∈R,
and a scLTL formula φ over R∪ {ΠD}. Find the largest set
XAS ⊆ X such that all trajectories of system (6) originating
in XAS satisfy φ under arbitrary switching.

Note that system (6) under arbitrary switching is un-
controlled and non-deterministic, i .e., at every time-step a
subsystem is arbitrarily chosen from the set Σ. Therefore, we
define an embedding transition system T Ae = {Qe,ΣA,→A

e

, he} for the arbitrary switching setup from the embedding
transition system Te = {Qe,Σ,→e, he} (Def. 3.1) by adapt-
ing the input set and the set of transitions as follows:
• ΣA = {ε},
• →A

e = {(q, ε, q′) | ∃σ ∈ Σ, (q, σ, q′) ∈→e}.
We denote q →A

e q′ if (q, ε, q′) ∈→A
e . We use ε as

a “dummy” input because the transitions of T Ae are not
controlled. Note that T Ae is infinite and non-deterministic.
Moreover, T Ae exactly captures dynamics of system (6) under
arbitrary switching in the relevant state space X \ D.

Our solution to Prob 5.2 parallels the solution we proposed
for Prob. 5.1. We first convert the bisimulation quotient Te/
∼ = {Qe/∼,Σ,→e /∼, he/∼} of Te obtained from Alg. 1
to T Ae /∼ = {Qe/∼,ΣA,→A

e /∼, he/∼} as follows:
• ΣA = {ε},
• →A

e /∼ = {(q, ε, q′) | ∃σ ∈ Σ, (q, σ, q′) ∈→e /∼}.
Proposition 5.2: T Ae /∼ is a bisimulation quotient of T Ae .
Parallel to our solution to Prob. 5.1, we construct a FSA A

corresponding to specification formula φ, and then we take
the product PAA = (SAPA, S

A
PA0,Σ

A,→A
PA, F

A
PA) between

T Ae /∼ and A as described in Def. 5.2. Note that PAA is
non-deterministic as T Ae /∼ is non-deterministic.

We formulate the fixed point problem:

J(sPA) = min(J(sPA), max
sPA→A

PAs
′
PA

J(s′PA) + 1), (16)

initialized with J(sPA) =∞ for all sPA ∈ SAPA \FAPA and
J(sPA) = 0 for all sPA ∈ FAPA.

Proposition 5.3: Let SASPA = {sPA ∈ SAPA | J(sPA) <
∞} and define XAS = {eq(q) | (q, s) ∈ (SAPA0 ∩ SASPA)}.
Then XAS solves Prob. 5.2.

Example 5.3: For specification φ as in (13), we obtained
the solution to Prob. 5.2. XAS and sample trajectories are
shown in Fig. 4. Note that this is a subset of the set of initial
states found for the synthesis problem (see Fig.3).
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VI. CONCLUSIONS

We presented a method to abstract the behavior of a
switched linear system within a positively invariant subset
of Rn to a finite transition system via the construction of
a bisimulation quotient. We employed polyhedral Lyapunov
functions to guide the partitioning of the state space and
showed that the construction requires polytopic operations
only. We showed how this method can be used to synthesize
switching sequences and to verify the behavior of the system
under arbitrary switching from specifications given as scLTL
formulas over polytopic subsets of the state space.

REFERENCES

[1] R. Milner, Communication and Concurrency. Prentice-Hall, 1989.
[2] M. C. Browne, E. M. Clarke, and O. Grumberg, “Characterizing

finite kripke structures in propositional temporal logic,” Theoretical
Computer Science, vol. 59, no. 1-2, pp. 115–131, 1988.

[3] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-
time linear systems,” IEEE Transactions on Automatic Control, vol. 51,
no. 12, pp. 1862–1877, 2006.

[4] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic
systems using approximate quotient transition systems,” Automatic
Control, IEEE Transactions on, vol. 46, no. 9, pp. 1401 –1410, 2001.

[5] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[6] B. Yordanov and C. Belta, “Formal analysis of discrete-time piecewise
affine systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 12, pp. 2834 –2840, 2010.

[7] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 116 –126, 2010.

[8] M. Lazar, “On infinity norms as Lyapunov functions: Alternative
necessary and sufficient conditions,” in IEEE Conference on Decision
and Control, Atlanta, GA, 2010, pp. 5936–5942.

[9] X. C. Ding, M. Lazar, and C. Belta, “Formal abstraction of linear
systems via polyhedral Lyapunov functions,” in IFAC Conference on
Analysis and Design of Hybrid Systems, Eindhoven, The Netherlands,
June 2012, to appear.

[10] C. Sloth and R. Wisniewski, “Verification of continuous dynamical
systems by timed automata,” Formal Methods in System Design,
vol. 39, pp. 47–82, 2011.

[11] E. Aydin Gol, D. Xuchu, M. Lazar, and C. Belta, “Finite bisimulations
for switched linear systems,” 2012, available at http://arxiv.org/abs/
1208.5471.

[12] Z. P. Jiang and Y. Wang, “A converse Lyapunov theorem for discrete-
time systems with disturbances,” Systems & control letters, vol. 45,
no. 1, pp. 49–58, 2002.

[13] M. Lazar, “Model predictive control of hybrid systems: Stability and
robustness,” Ph.D. dissertation, Eindhoven University of Technology,
2006.

[14] J. Bochnak, M. Coste, and M. F. Roy, Real algebraic geometry.
Springer Verlag, 1998, vol. 36.

[15] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal Methods in System Design, vol. 19, pp. 291–314, 2001.

[16] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[17] T. Latvala, “Efficient model checking of safety properties,” in In Model
Checking Software. 10th International SPIN Workshop. Springer,
2003, pp. 74–88.

7637

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:40:18 UTC from IEEE Xplore.  Restrictions apply. 


