
834 Formal Methods for Controlling Dynamical Systems

Formal Methods for
Controlling Dynamical
Systems

Calin Belta
Mechanical Engineering, Boston University,
Boston, MA, USA

Abstract

In control theory, complicated dynamics such
as systems of (nonlinear) differential equa-
tions are mostly controlled to achieve stabil-
ity. This fundamental property, which can be
with respect to a desired operating point or
a prescribed trajectory, is often linked with
optimality, which requires minimization of a
certain cost along the trajectories of a sta-
ble system. In formal methods, rich specifi-
cations, such as formulas of temporal logics,
are checked against simple models of software
programs and digital circuits, such as finite
transition systems. With the development and
integration of cyber physical and safety crit-
ical systems, there is an increasing need for
computational tools for verification and con-
trol of complex systems from rich, temporal
logic specifications. The current approaches to
formal synthesis of (optimal) control strate-
gies for dynamical systems can be roughly
divided in two classes: abstraction-based and
optimization-based methods. In this entry, we
provide a short overview of these techniques.
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Introduction

Temporal logics, such as computation tree logic
(CTL) and linear temporal logic (LTL), have been
customarily used to specify the correctness of
computer programs and digital circuits modeled
as finite-state transition systems. The problem
of analyzing such a model against a temporal

logic formula, known as formal analysis or model
checking, has received a lot of attention during
the past 40 years, and several efficient algorithms
and software tools are available. The formal syn-
thesis problem, in which the goal is to design or
control a system from a temporal logic specifica-
tion, has not been studied extensively until a few
years ago.

Control and optimal control are mature
research areas with many applications. They
cover a large spectrum of systems, including
(weighted) finite deterministic transition systems
(i.e., graphs for which available transitions can
be deterministically chosen at every node), finite
purely nondeterministic systems (where an action
at a state enables several transitions and their
probabilities are not known), finite Markov
decision processes (MDP), and systems with
infinite state and control sets. For the latter,
optimal control problems usually involve costs
penalizing the deviation of the state from a
reference trajectory and the control effort.

The connection between (optimal) control and
formal methods is an intriguing problem with
potentially high impact in several applications.
By combining these two seemingly unrelated
areas, the goal is to control the behavior of a sys-
tem subject to correctness constraints. Consider,
for example, an autonomous vehicle involved in a
persistent surveillance mission in a disaster relief
application, where dynamic service requests can
only be sensed locally in a neighborhood around
the vehicle (see Fig. 1). The goal is to accomplish
the mission while at the same time maximizing
the likelihood of servicing the local requests
and possibly minimizing the energy spent during
the motion. The correctness requirement can be
expressed as a temporal logic formula (see the
caption of Fig. 1), while the resource constraints
translate to minimizing a cost over the feasible
trajectories of the vehicle.

Formal Synthesis of Control
Strategies

Current works on combining control and formal
methods can be roughly divided into two
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Fig. 1 (a) An autonomous air vehicle is deployed from a
high level, temporal logic global specification over a set of
static, known requests (photo and upload) occurring at the
regions of a known environment, e.g., “Keep taking photos
and upload current photo before taking another photo.”
This specification translates to the following LTL formula:
GF photo ∧ G (photo → (photoU(¬photoU upload))),
where G, F, and U are the temporal operators Globally
(Always), Future (Eventually), and Until; ∧, →, ¬ are
Boolean operators for conjunction, implication, and nega-
tion, respectively. While moving in the environment, the
vehicle can locally sense dynamically changing events,
such as survivors, and fires, which generate (local) service

requests, and unsafe areas, which need to be avoided.
The goal is to accomplish the global mission while at
the same time maximizing the likelihood of servicing the
local requests and staying away from unsafe areas. (b)
By using an accurate quad-rotor kinematic model, input-
output linearizations/flat outputs, precise state information
from a motion capture system, and control-to-facet results
for linear and multi-affine systems, this problem can be
(conservatively) mapped to a control problem for a finite
transition system. This can be deterministic or nonde-
terministic if single-facet or multiple-facet controllers in
the output space are used, respectively. (Example adapted
from Ulusoy and Belta 2014)

main classes: automata-based methods and
optimization-based methods.

Automata-Based Methods
Automata-based methods are based on the obser-
vation that a temporal logic formula, such as an
LTL formula, can be mapped to an automaton
in such a way that the language accepted by the
automaton is exactly the language satisfying the
formula. Depending on the desired expressivity
of the specification language, these automata can
be well-known finite state automata (FSA) (the
acceptance condition is reaching a set of final
states), Büchi automata (the acceptance condition
is reaching a set of final states infinitely often),
or, in the most general case, Rabin automata
(the acceptance condition is to visit a set of
“good” states infinitely often and a set of “bad”
states finitely many times). For finite systems,
the control problem reduces to a game on the
product between a system, such as a transition

system or an MDP, and the automaton obtained
from the specification. The winning condition,
which ensures correctness, is the Rabin (Büchi,
FSA) acceptance condition of the automaton. The
cost can be average reward/cost per stage and
adapted objectives that reflect the semantics of
the temporal logic, such as average reward/cost
per cycle.

For infinite systems, automata-based
approaches are, in general, hierarchical, two-
level methods. The bottom level is a continuous-
to-continuous abstraction procedure, in which the
possibly large state space and complex dynamics
are mapped to a low-dimensional output space
with simple dynamics. The most used techniques
are input-output linearization and differential flat-
ness. For a differentially flat system, its state and
control variables can be expressed as a function
of its outputs and its derivatives. The top level is
a partition-based, continuous-to-discrete abstrac-
tion procedure, in which the output and control



836 Formal Methods for Controlling Dynamical Systems

spaces are partitioned. The partition can be driven
by the specification or by a prescribed accuracy of
the approximation. The quotient of the partition
is a finite system that is in some way equivalent
with the original, infinite system. The most
used notion of equivalence is bisimulation. An
example is shown in Fig. 1. The 12-dimensional
quad-rotor dynamics of the quad-rotor shown in
the left are differentially flat with four flat outputs
(position and yaw), and up to four derivatives
of the flat output are necessary to compute the
original state and input. A two-dimensional
section of the partition of the four-dimensional
output space is shown on the right, together with
the assignment of a vector field in two adjacent
cells. Note that the dynamics corresponding to
these vector fields “treat” all the states in a cell
“in the same way”: in the cell on the left, all the
states will leave in finite time through the right
facet; in the cell on the right, all states will stay
inside for all times. Informally, these correspond
to the bisimilarity equivalence mentioned above.
The quotient of the partition is a finite transition
system that is controlled from the temporal logic
specification. The cost can penalize the execution
time, travelled distance, etc.

The method described above is conservative.
If a solution (of the automaton game) is not found
at the top level, this does not mean that a con-
troller does not exist for the original continuous
system. Intuitively, the partition, and therefore
the abstraction, might be too rough. Conserva-
tiveness can be reduced by refining the partition.
Numerous partition techniques that exploit the
connection between the dynamics of the system
and the geometry of the partition have been pro-
posed. An example is shown in Fig. 2. An exam-
ple illustrating the compromise between correct-
ness and optimality is shown in Fig. 3.

The expensive process of constructing the
abstraction can be avoided for both deterministic
and stochastic systems. Specifically, a dynamic
programming problem can be formulated over
the product of the continuous-time, continuous-
state system, and the specification automaton.
Approximate dynamic programming (ADP)
approaches have been shown to work for both

linear and nonlinear systems. Sampling-based
policy iteration has also been used for optimal
planning for a subclass of LTL specifications.

Optimization-Based Methods
There are roughly two classes of optimization-
based methods for formal synthesis: mixed inte-
ger programming (MIP) methods and control
barrier functions (CBF) methods.

Central to the MIP-based methods are
temporal logics with semantics over finite-time
signals, such as signal temporal logic (STL) and
metric temporal logic (MTL). For simplicity,
in this article we focus on STL. The main
difference between STL and LTL (see the caption
of Fig. 1 for an example of an LTL formula) is
that STL temporal operators are explicit (see
Fig. 4 for an example of an STL formula). In
addition to Boolean semantics, in which signals
either satisfy or violate a formula, STL has
quantitative semantics, which allow to assess the
robustness of satisfaction. Specifically, given a
formula φ and a signal x, the robustness ρ(φ, x)
quantifies how well x satisfies φ. The more x

satisfies φ, the larger ρ(φ, x) is (if x satisfies
φ in Boolean semantics, then ρ(φ, x) > 0).
The more x violates φ, the smaller ρ(φ, x)

is (if x violates φ in Boolean semantics, then
ρ(φ, x) < 0).

It can be shown that Boolean satisfaction of
STL (MTL) formulas over linear predicates in
the state x of a system can be mapped to the
feasibility part of a mixed integer linear pro-
gram (MILP) (i.e., a set of linear equalities and
inequalities over the state and an additional set of
integers). This observation implies that control-
ling a linear (or almost linear, such as piecewise
affine, mixed logical, etc.) system, such that a
linear or quadratic cost is optimized while satis-
fying STL formulas over linear predicates over its
state, maps to solving a mixed integer linear pro-
gram (MILP) or mixed integer quadratic program
(MIQP), for which there exist computationally
efficient solvers.

Moreover, it can be shown that the robustness
function ρ is linear in state and the additional
integer variables. Therefore, if robustness is
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Fig. 2 A discrete-time double integrator system x[t +
1] = Ax[t] + Bu[t], with A = [1 1; 0 1], B =
[0.5; 1], and u ∈ [−2, 2], moving in a planar environment
(a) partitioned into X1,X2, . . . ,X13 is required to satisfy
the following specification: “Visit region A = X2 or
region B = X9, and then the target region T = X7,
while always avoiding obstacles O1 = X11 and O2 =
X12, which translates to the syntactically co-safe LTL
(scLTL) formula: ((¬O1 ∧¬O2)UT )∧ (¬TU (A∨B)).
Iterations 50, 80, and 108 of an automata-guided iterative
partitioning procedure for the computation of the maximal

set of satisfying initial states (and corresponding control
strategies) are shown in (b), (c), and (d), respectively
(the sets of satisfying initial states are shown in yellow).
For linear dynamics and a particular choice of polytope-
to-polytope controllers, the procedure is complete (i.e.,
guaranteed to terminate and to find the maximal set). The
yellow region from (d) is the maximal set of satisfying
initial states. Sample trajectories of the closed loop system
are shown in d, where the initial states are marked by
circles. The trajectories coincide in the last six steps before
they reach the target region. (Example adapted from Belta
et al. 2017)
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Fig. 3 For the system described in Fig. 2, in addition
to satisfying the temporal logic specification, the system
is required to minimize a quadratic cost that penalizes
the Euclidean distance from desired state and control
trajectories, which are available to the system over a short
finite-time horizonN . The reference trajectory is shown in
green (satisfying in the left and middle and violating in the
right), and the trajectory of the controlled system is shown

in red. Pairs of points on the reference and controlled
trajectory corresponding to the same time are connected.
The left and middle cases correspond to increasing values
of the horizon N for the same reference trajectory. Note
that, in the situation shown in the right, where the refer-
ence trajectory violates the correctness specification, the
controller “tries to compromise” between correctness and
optimality. (Example adapted from Belta et al. 2017)

added (possibly weighted by a constant) to the
cost defined above, the optimization problem
remains a MILP (MIQP). Adding robustness
in the cost allows to compromise between
correctness and optimality (see Fig. 4 and its
caption.)

The main advantage of MIP-based methods
is the seamless combination of correctness and
optimality, with the added feature of robustness
to satisfaction. Another advantage is scalability.
Such methods produced results for systems with
hundreds of state variables in seconds. The main
limitation of such methods is that they are con-
strained to linear dynamics.

CBF-type methods address some of the lim-
itations of the MIP-based methods. A pictorial
representation of a CBF-based approach is shown
in Fig. 5. In short, such methods work for a par-
ticular class of nonlinear control systems, called
affine control systems, which is large enough to
include many mechanical systems, such as unicy-
cles, cars, etc., costs that are quadratic in controls,
linear control constraints, and safety constraints
expressed as set forward invariance. By dividing
the time interval of interest into smaller time
intervals, a nonlinear optimization problem can

be reduced to a set of quadratic programs (QP).
Richer, temporal logic correctness constraints can
also be incorporated in this framework.

Summary and Future Directions

While provably correct, automata-based appro-
aches to formal synthesis of control strategies are
computationally expensive. Current research that
addresses this limitation is focused on identifying
system properties that facilitate the construction
of the abstraction (e.g., passivity, disipativity)
(Coogan and Arcak 2017) and compositional
synthesis and assume guarantee-type approaches
(Kim et al. 2017).

Optimization-based approaches based on
mixed integer programming scale can quantify
satisfaction and can compromise between
correctness and optimality. However, they are
restricted to linear dynamics. Optimization-based
approaches based on control barrier functions
and control Lyapunov functions can be used with
nonlinear systems that are affine in controls.
One of the main limitations of these types of
approaches is that the optimization problems can
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Fig. 4 A planar discrete-time (integrator) linear system
x[t + 1] = Ax[t] + Bu[t] + w[t] with state x =
(x1, x2), control u, A = [1 0.5; 0 0.8], B =
[0; 1] is affected by noise w. The specification requires
that x1 oscillate between 2 ≤ x1 ≤ 4 and −4 ≤
x1 ≤ −2, with each interval being visited at least once
within any five consecutive time steps. The corresponding
STL formula is G[0,∞)

(
F[0,4]((x1 ≥ 2) ∧ (x1 ≤ 4))

)
∧(

F[0,4]((x1 ≥ −4) ∧ (x1 ≤ −2))
)
. Here, F[t1,t2]ψ requires

thatψ is eventually satisfied within [t1, t2], whileG[t1,t2]ψ

means that ψ is true for all times in [t1, t2]. The control
effort

∑H−1
t=0 |u|2 is minimized in (a) and (b), while in (c)

the “robust” version of the cost
∑H−1

t=0 −M(ρ−|ρ|)+|u|2
is considered (H is a time horizon that is large enough to
be able to decide the truth value of the formula). It can
be seen that, if only the control effort is minimized, the
resulting strategy is not robust to noise. If robustness is
included in the cost, then the produced trajectory satisfies
the specification even if noise is added to the system.
(Example adapted from Sadraddini and Belta 2015)

easily become infeasible, especially when many
constraints (state limitations, control constraints,
CBF and CLF constraints) become active. One
possible approach to this problem is to soften
some constraints that are not critical, such
as those induced by CLFs. Another possible

approach would be to use machine learning
techniques to increase feasibility. For example,
for a robot moving in an environment cluttered
with obstacle, the configuration space can
be sampled close to the obstacles, and the
samples could be classifier depending on whether
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Fig. 5 CBF-based approach to provably correct and opti-
mal control synthesis: An affine control system is required
to minimize a quadratic cost while converging to a desired
final state and satisfying a safety specification expressed
as the forward invariance of a set C and polyhedral
control constraints U . Assuming that a CBF B(x) can
be constructed for C, then safety is guaranteed if the
CBF constraint is satisfied. If a control Lyapunov function

(CLF) V (x) can be constructed, then exponential con-
vergence to the desired state is guaranteed if the CLF
constraint is satisfied. By discretizing the time and keeping
the state constant in each time interval, both constraints
become linear in control, and the problem reduces to a set
of QPs. Lf and Lg denote Lie derivatives along f and
g, respectively. P is a positive definite matrix and c3 and
gamma are positive constants

the corresponding QP is feasible or not. The
(differentiable) classifier could be used as an
extra CBF. Another active area of research is
integrating correctness specifications given in
rich, temporal logic specifications. Very recent
results (Lindemann and Dimarogonas 2019)
show that STL specifications can be enforced
using CBF.
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for finite systems are Baier et al. (2008) and
Clarke et al. (1999). Research monographs
and textbooks that cover abstraction-based
methods include Lee and Seshia (2015), Alur
(2015), Tabuada (2009) and Belta et al. (2017).
The reader interested in the mixed integer
programming approach to the optimization-based
techniques is referred to Karaman et al. (2008),
Raman et al. (2014) and Sadraddini and Belta
(2015). The metrics with quantitative semantics
that enable such techniques were introduced in
Maler and Nickovic (2004) and Koymans (1990).
Optimization-based techniques using control
Lyapunov functions and control barrier functions
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et al. (2014).
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