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Formal Analysis of Discrete-Time Piecewise Affine Systems

Boyan Yordanov and Calin Belta

Abstract—In this technical note, we study temporal logic properties of
trajectories of discrete-time piecewise affine (PWA) systems. Specifically,
given a PWA system and a linear temporal logic formula over regions in its
state space, we attempt to find the largest region of initial states from which
all trajectories of the system satisfy the formula. Our method is based on the
iterative computation and model checking of finite quotients. We illustrate
our method by analyzing PWA models of two synthetic gene networks.

Index Terms—Abstraction, formal analysis, genetic networks, model
checking, piecewise affine (PWA) systems, uncertain systems.

I. INTRODUCTION

Temporal logics and model checking [3] are customarily used
for specifying and verifying the correctness of digital circuits and
computer programs. However, due to their resemblance to natural
language, expressivity, and existence of off-the-shelf algorithms for
model checking, temporal logics have the potential to impact several
other areas. Examples include analysis of systems with continuous
dynamics [4], control of linear systems from temporal logic specifi-
cations [5], [6], task specification and controller synthesis in mobile
robotics [7], [8] and specification and analysis of qualitative behavior
of genetic circuits [9], [10].

In this technical note, we focus on piecewise affine systems (PWA)
that evolve along different discrete-time affine dynamics in different
polytopic regions of the (continuous) state space. PWA systems
are widely used as models in many areas. They can approximate
nonlinear dynamics with arbitrary accuracy and are equivalent with
other classes of hybrid systems [11]. In addition, there exist tech-
niques for the identification of such models from experimental data,
which include Bayesian methods, bounded-error procedures, clus-
tering-based methods, mixed-integer programming, and algebraic
geometric methods (see [12] for a review). We allow the parameters of
the PWA systems to have polytopic uncertainty ranges, and consider
specifications given as linear temporal logic (LTL) formulas over the
polytopic regions in the state space of the system.

Unlike approaches that attempt to synthesize parameters for the
system from a temporal logic specification [13], [14], in this work we
assume that uncertainty is inherent in the system, and therefore the
parameter ranges cannot be restricted further. We attempt to guarantee
the satisfaction of a property by selecting appropriate initial states
for the system. Specifically, given a PWA system, where parameters
are possibly uncertain but known to belong to polytopic sets, and
an LTL formula over regions in the state space of the system, we
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attempt to find the largest region, from which all trajectories of the
system satisfy the property expressed by the formula, regardless of the
parameter values. Our approach is based on the iterative construction
and model checking of discrete abstractions in the form of finite
transition systems [3].

This work can be seen in the context of literature focused on the
construction of finite quotients of infinite systems (see [15] for an ear-
lier review), and is closely related to [5], [16], [17]. The embedding
of discrete-time systems into transition systems is inspired from [5],
[16]. However, while the focus there is on characterizing the existence
of bisimulation quotients or developing control strategies using such
quotients for linear systems, in this work we focus on the computation
and refinement of simulation quotients of PWA systems and consider
an analysis problem. Unlike counterexample guided refinement [17],
our approach can target the refinement to specific states. The analysis
of PWA systems for properties such as invariance and reachability has
been previously considered in literature focused on controlling PWA
systems [18], [19]. In this technical note, we significantly expand this
class of properties by allowing for arbitrary LTL specifications (invari-
ance and reachability are particular examples of LTL properties).

The method developed in this technical note has been implemented
as the MATLAB software tool Formal Analysis of Piecewise Affine
Systems (FAPAS) [1], [2] and is freely available for download at
http://hyness.bu.edu/software. To illustrate our method, we computed
the basins of attraction for the equilibria of a PWA model of a two-gene
network inspired by the Genetic Toggle Switch system [20]. In addi-
tion, we computed initial regions guaranteeing oscillations for a PWA
model of a three-gene network inspired by the Repressilator system
[21]. From this perspective, this technical note relates to [22], [23],
where temporal logics are used to specify properties of biomolecular
networks. These works aim at checking whether a system satisfies
dynamical properties for given (sets of) initial conditions. In contrast,
we search for the largest set of initial conditions for which the given
properties are satisfied.

II. DEFINITIONS AND PRELIMINARIES

Given a set �, we use ��� and �� to denote its cardinality and pow-
erset, respectively.

Definition 1: A transition system is a tuple � � ����� �� ��,
where � is a (possibly infinite) set of states, �� � � � is a tran-
sition relation, � is a finite set of observations, and � � � � � is an
observation map.

A transition ��� ��� �� is also denoted by � � ��. Transition
system � is finite if its set of states � is finite and infinite otherwise,
deterministic if, for all � � �, there exists at most one �� � � such that
��� ��� ��, and non-blocking if, for every state � � �, there exists
�� � � such that ��� ��� ��. In this technical note only non-blocking
transition systems are considered.

A trajectory of � starting from state �� � � is an infinite sequence
������ � � � with the property that �� � �, and ���� ����� ��, for
all � � �. A trajectory ������ � � � defines a word ������ � � �, where
�� � �����. The set of all words generated by the set of all trajectories
starting at � � � is called the language of � originating at � and
is denoted by �� ���. A subset 	 � � is called a region of � and
the language of � originating at 	 is �� �	� �

���
�� ���. The

language of � is defined as �� ���, which for simplicity is denoted as
�� . For an arbitrary region 	 , we define the set of states 
��� �	�
that reach 	 in one step as


��� �	� � �� � ��	�� � 	� �� �
�

 (1)
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Similarly, we define the set of states ����� ��� that can be reached
from � in one step as

����� ��� � ��� � ���� � �� �� ���	 (2)

The observation map � of a transition system 
 induces an equiva-
lence relation� over the set of states �. We say that states ��, �� � �
are equivalent (written as �� � ��) if and only if ����� � �����.
The equivalence relation naturally induces a quotient transition system

�� � �������� �� ���. ��� is the quotient space (the set of all
equivalence classes). Given an equivalence class 
 � ���, we de-
note the set of all equivalent states in that class by ����
� � � (���
stands for concretization map). If � ��� is a region of 
��, then
���� � � �� ����
� is a region of 
 . Since all states � � � in
an equivalence class 
 � ��� have the same observation, ���
� is
well defined and given by ���
� � ����, � � ����
�. The transition
relation �� is defined as follows: for 
�, 
� � ���, 
� �� 
�
if and only if there exist �� � ����
�� and �� � ����
�� such that
�� � ��. It is easy to see that for all 
 � ���

	� �����
�� � 	�� �
�	 (3)

The quotient transition system 
�� is said to simulate the original
system 
 .

Definition 2: The equivalence relation� induced by the observation
map � is a bisimulation of a transition system 
 � ����� �� �� if, for
all states ��, �� � �, if �� � �� and �� � ���, then there exist
��� � � such that �� � ��� and ��� � ���.

If � is a bisimulation, then the quotient transition system 
�� is
called a bisimulation quotient of 
 , and the transition systems 
 and

�� are called bisimilar. An immediate consequence of bisimulation
is language equivalence, i.e., for all 
 � ���tac-shrt4

	� �����
�� � 	�� �
�	 (4)

Using the ���� �� operator defined in (1), a characterization of
bisimulation can be given as follows: the equivalence relation � is
a bisimulation if and only if for all equivalence classes 
� � ���,
���� �����


��� is either empty or a finite union of equivalence
classes. Equivalently, the bisimulation property (Def. 2) is violated at

 � ��� if there exists a state 
� � ���, such that tac-shrt4


 � ����
� � ���� �����

��� � ����
�	 (5)

This leads to an iterative procedure for the construction of the coarsest
bisimulation �, known as the “bisimulation algorithm” [24].

To specify temporal logic properties for system trajectories, in this
technical note we use LTL formulas [3]. We use the standard notation
for the Boolean operators (i.e., 
 (negation), � (disjunction), � (con-
junction)) and the graphical notation for the temporal operators, e.g.,
� (“next”), � (“until”), (“always”),� (“eventually”). Given a finite
transition system 
 � ����� �� �� and an LTL formula � over �, an
off-the-shelf model checker, such as NuSMV [25], can be used to check
whether the language 	� ��� satisfies �, for all � � �. For a region
� � �, we write 
 ��� �� � if all the words from 	� ��� satisfy
�. In this technical note, we use our in-house implementation of LTL
model checking [6] (denoted by ����	-
��
���) in order to sep-
arate the translation of a formula � to the accepting Büchi automaton
[26] from the rest of the computation involved in model checking. This
allows for a more efficient implementation of the iterative procedure
described in Algorithm 1.

Algorithm 1 Given an infinite transition system 
 and a LTL formula
�, find ��� ��

����
� ��

�

Construct 
��

Initialize 

�� �� 
��

Initialize ��
���

�� ����	-
��
� � 

��� 
���� ��

Initialize ���
���

�� ����	-
��
� � 

��� 
����
��

repeat

� �� 
 � 
����
 �� ����� ������� 
 �� ��
���

� 
 �� ���
���

for each 
 � � do



�� �� ������� 

��� 
�

end if



� �� 
���� ��

���
����

���

��
���

�� ��
���

�����	�
��
� � 

��� 
�� ��

���
���

�� ���
���

�����	-
��
� � 

��� 
��
��

until � � 


return ��� ��
����

Given a region � � �, ����	-
��
� �
��� �� � �� �
��
 ��� �� �� is the subset of � satisfying the formula. Let

��
� � �� � ��
 ��� �� ��	 (6)

Note that ��
� � ����	-
��
��
��� �� and if � �� ��

� , then
there exists a word in 	� ��� that violates �. Therefore, ��

� is the
largest region of 
 satisfying �.

If 
�� is a quotient of 
 , then for any equivalence class 
 � ���
and formula �, we have


���
� �� �� 
 �����
�� �� �	 (7)

In addition, if � is a bisimulation, then


���
� �� ��� 
 �����
�� �� �	 (8)

Properties (7) and (8) (which follow immediately from (3) and (4))
allow one to model check finite quotients and extend the results to the
(possibly infinite) original transition system.

III. PROBLEM FORMULATION AND APPROACH

Let ��, � � � be a set of open polytopes in � , where � is a finite
index set, such that �� � �� � 
 for all ��, �� � �, �� �� �� and
� � ��	 ������ is a closed full-dimensional polytope in � (������
denotes the closure of set ��). A discrete-time PWA system with poly-
topic parameter uncertainty is defined as:

�
�� � ���
 � ��� �
 � ��� � � �� � �  � !� �� " " " (9)

where parameters�� and �� are uncertain, but known to belong to poly-
topic uncertainty sets ��

� � ��� and ��
� � � , respectively.
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We are interested in properties of (9) specified in terms of the poly-
topes from its definition. Informally, the semantics of system (9) can
be understood in the following sense: a trajectory ������ � � � starting
at �� � �� , �� � � can be obtained by arbitrarily selecting param-
eters �� � ��

� , �� � ��
� , applying the affine map of (9) to com-

pute ��, finding �� � � such that �� � �� , and repeating this proce-
dure for each subsequent step. A trajectory produces an infinite word
������ � � �, where �� � � is the index of the polytope visited at step �
(i.e., �� � �� ). An LTL formula over � can then be interpreted over
trajectories of the system (see Section II).

In general, it is possible that trajectories of (9) leave polytope � .
While we are not interested in such trajectories, we capture them by
defining an additional observation ��	, and trivial dynamics ���� �
�� when �� �� � (e.g., a trajectory �������� � � � satisfying ��
 �� �
�� 
 �� � �� for some ��
 �� � � and �� �� � produces a word
��������	 � � �, where ��	 is repeated infinitely). As it will become
clear soon, we will be able to specify and forbid such behavior.

In the following, we formalize the satisfaction of LTL formulas by
trajectories of (9) through an embedding into a transition system.

Definition 3: The embedding transition system
�� � ���
��
 ��
 
�� for the PWA system from (9) is de-
fined as:

• �� � � ;
• ��
 ��� ��� if and only if � �� � and � � ��, or there exist
� � � such that � � �� and there exist �� � �

�
� , �� � ��

� such
that �� � ��� � ��;

• �� � � � ���	�;
• 
���� � � if and only if there exist � � � such that � � �� and

���� � ��	 otherwise.

Note that the embedding �� has an infinite number of states and
is always non-blocking. Furthermore, if the parameters of the PWA
system are fixed, �� is deterministic.

Definition 4: Given a subset � 	 ��, we say that all trajectories
of system (9) originating in � satisfy formula � if and only if �����
satisfies �.

Now, we can formulate the main problem considered in this technical
note:

Problem 1: Given a discrete-time PWA system (9) and an LTL for-
mula � over �, find the largest region of initial states, from which all
trajectories of the system satisfy �, while always remaining within � .

The solution to Problem 1 amounts to the computation of ���
	 (see

(6)), where �� � �
 ���	. This guarantees that all trajectories orig-
inating there satisfy � and always remain within � . In addition, there
exist trajectories originating in all states � �� ��

	 that either violate

� or leave � (i.e., ��
	 is largest satisfying region). Since �� has an

infinite number of states, it cannot be analyzed directly. Our approach
involves the construction, iterative refinement, and model checking of
finite quotients simulating �� (see Section II). Algorithms for iterative
refinement and model checking are proposed in Section IV, where the
results are valid in general for any transition system, while the construc-
tion of the quotients and the implementation of the refinement proce-
dure for �� are discussed in Section V. We consider separately the case
when ��, � � � are fixed (i.e., ��

� are singletons) and the case when
all system parameters are fixed (i.e., ��

� and ��
� are singletons for all

� � �). Those particular cases are important in practice since they cor-
respond to PWA systems subjected to additive uncertainty only or no
uncertainty at all and we show that these additional constraints can be
exploited. As it will become clear later, our approach to Problem 1 is
conservative, in the sense that, we can only “try” to find the satisfying
region ���

	 but, in general, we can only guarantee to obtain subsets of
it.

Remark 1: The two assumptions from the formulation of Problem
1 seem restrictive. First, we capture only the reachability of open full

dimensional polytopes in the semantics of the embedding. Arguably,
this is enough for practical purposes, since only sets of measure zero
are disregarded, and it is unreasonable to assume that equality con-
straints can be detected in real-world applications. There are two situ-
ations in which the boundaries can affect the semantics of the trajecto-
ries non-trivially: 1) when trajectories originate and remain in such sets
for all times, and 2) when trajectories start in open polytopes and then
“vanish” in the boundaries. For both these situations, the system dy-
namics and the polytopes need to satisfy special conditions, which can
be easily derived, but are omitted due to space constraints. Second, the
specification is given over the indexes � � � of the polytopes �� from
the system definition. However, arbitrary linear inequalities can be ac-
commodated simply by refining the polytopic partition–the resulting
PWA will have some polytopes with identical dynamics.

IV. FORMAL ANALYSIS OF INFINITE TRANSITION SYSTEMS

The embedding transition system �� (Def. 3) is infinite and there-
fore ��

	 cannot be computed directly. In this section, we consider the
following problem:

Problem 2: Given an infinite transition system � (Def. 1) and an
LTL formula � over its set of observations �, find ��

	 (6).
We assume that, given the equivalence relation � (see Section II),

the finite quotient ��� is computable (its computation for �� is
discussed in Section V). Then, ��

	
 can be computed by model

checking and from (7) it follows that �
����
	
 � is a satisfying

region in � but, in general, it is not the largest satisfying region (i.e.,
�
����

	
 � 	 ��
	 ). The most intuitive solution to Problem 2 would

then be to apply the bisimulation algorithm (see Section II) and refine
the quotient ��� to make it bisimilar with � . In this case, following
from (8), �
����

	
 � � ��
	 is the solution to Problem 2. However,

an infinite transition system does not always have a finite bisimulation
quotient, so such a procedure would only work for very particular
cases.

A. Iterative Model Checking

Even though the quotient ��� cannot always be refined enough to
be bisimilar with � , region ��

	
 can be computed at each step of a

refinement procedure. Then, �
����
	
 � can provide a conservative

solution to Problem 2, which can be improved by additional refine-
ment. If ���� � � ����
 ���
 �
 �
�� is the quotient after some re-
finement has been performed, we have 
	 	 
�	
 	 
	
 and
�
����

	
 � 	 �
����
�	


� 	 ��
	 . A related idea was used in [27]

for verification from formulas in the universal fragment ACTL of CTL.
Such approaches face computational challenges, due to the possible ex-
plosion in the number of states of ���� as refinement progresses.

Our methods aim at refining and model checking the quotient only
at states where this can improve the solution (i.e., increase ��

�	

). Re-

finement of any state � � ��
�	


, is unnecessary, since all trajectories

originating there satisfy the formula. Similarly, the set ���
�	


can be

computed and refinement of any state � � ���
�	


is also unnecessary,
since only trajectories violating the formula originate there. Refinement
of the quotient at any state does not change the satisfaction of the for-
mula at �, where � � ��

�	

or � � ���

�	

and, therefore, once a

state has been identified as satisfying the formula or its negation it is
no longer considered for refinement or model checking. This leads to
a procedure that iteratively refines the quotient ���� and possibly ex-
pands ��

�	

and ���

�	

at each iteration (Algorithm 1). It is important

to note that, by using our implementation (MODEL-CHECK), a signif-
icant part of the model-checking computation is performed only once
and stored for each iterative step.
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Fig. 1. Application of ��������� � �� to the quotient �� , shown in (b), where ���� ��� � �� � � �. The result for a deterministic � is shown in (a),
while the result for a nondeterministic � is shown in (c).

The set � � ���, computed in Algorithm 1, contains the states
of the quotient, where refinement should be targeted and refinement of
any state � �� � will not expand ��

���
. In addition, � contains only

states that are “large enough” to undergo refinement (see Section V
for a description of such a measure for ��), guaranteeing that the algo-
rithm will terminate if a sufficient number of iterations is performed. In
order to implement Algorithm 1, the finite quotient ��� must be com-

putable, the possibly infinite ��� ��
���

must be represented and

a refinement procedure for ��� that can be applied locally at a state
� � ��� is required.

B. Quotient Refinement

If ��� is a finite bisimulation quotient, then an exact solution to
Problem 2 can be obtained by applying Algorithm 1. Motivated by this,
we formulate a refinement procedure �������� (Algorithm 2) in-
spired by the bisimulation algorithm (see Section II). Unlike the bisim-
ulation algorithm, which refines the equivalence relation � globally,
����������	 ��, refines the quotient ��� locally at a state � �
���. This allows us to target refinement to specific states (as in Al-
gorithm 1), while the quotient is updated instead of recomputed every
time refinement is performed.

Algorithm 2 ���� 	 ��������� �	 ��

Initialize � 
	 ���

while there exist �� � � , �� � 
����� ��� such that
� � ������� 	 

�� ������

��� � ������� do

Construct states ��, �� such that:

������� 
	 ������� 	 

�� ������
���

������� 
	 ������� 
 

�� ������
���

� 
	 � � 
 ��� � ���	 ���

end while

update ��� and ���

return ����

����������	 �� partitions state � in such a way that all re-
sulting subsets of � satisfy the bisimulation property (i.e., for all
subsets of � there does not exist a state �� � ��� such that (5)
is satisfied). It is easy to see that for any states �, �� � ���,
������ 	 

�� ������

��� �	 � if and only if �� � 
����� ��� (i.e.,
�� is reachable from � in ���). Then, all nonempty intersections
������ 	� � 

�� ������

��� 
 �� � 

�� ������
����, where

� � ���	
 ��� and �� 	 
����� ��� 
 �, provide a parti-
tion of � satisfying the bisimulation property. Therefore, applying

����������	 �� results in at most ����	
 ���� subsets. In the
particular case when � is deterministic, one can easily show that
given states �, ��, ��� � ��� such that ��, ��� � 
����� ���,
������ 	 

�� ������

��� 	 

�� ������
���� 	 �. Then,

������ 	 

�� ������
��� of all �� � 
����� ��� provide a

partition of � satisfying the bisimulation property and applying
����������	 �� on the quotient of a deterministic system � results
in at most 

����� ���
 subsets.

When refinement is performed using the 

�� �� operation, out-
going transitions of the newly formed states are implicitly induced.
Given states �, �� � ��� such that �� � 
����� ���, the subset
������ 	 

�� ������

��� always has a transition to state �� (in fact,
this is the only transition possible in the case when � is deterministic).
Additionally, any subset of ������


�� ��������� can never have a
transition to state ��. In the particular case when state � has a self tran-
sition �� �� ��, transitions from subset ������ 	 

�� ��������
to all subsets of � resulting from its refinement are possible and must
be recomputed (the computation of transitions between any two states
is discussed in Section V). Incoming transitions from all states ��� �


��� ��� reaching � to all newly formed states are also updated,
which completes the construction of ���. All subsets of a refined state
inherit the observation of the parent and, therefore, ��� is easily up-
dated.

So far, we have discussed a refinement strategy inspired by the bisim-
ulation algorithm and, therefore, relying on the computation of the


�� �� operation (see Fig. 1 for an example). If 

�� �� is not com-
putable, any refinement strategy can be used for the function ������
in Algorithm 1 with the hope that the smaller regions produced at each
step separate satisfying and violating trajectories. In this case, when
refinement is performed at state �, outgoing transitions from newly
formed states are not implicitly induced and must be recomputed but
only target states in the set 
����� ��� (instead of the entire ���)
need to be considered.

V. FORMAL ANALYSIS OF PWA SYSTEMS

Through the embedding of the PWA system (9) into an infinite tran-
sition system �� (Def. 3), we reduced Problem 1 to Problem 2. Based
on the assumption that finite quotients can be constructed, we proposed
an algorithm to solve Problem 2 in Section IV. In this section, we dis-
cuss the construction of the quotients, and the implementation of the
algorithms from Section IV for ��.

From the definitions of the equivalence relation �, induced by the
observation map � (Section II) and �� (Def. 3), the initial set of states
����, of the finite quotient ����, is simply the set of observations
���� 	 �� 	 � ����� and the observation map is identity. Given
a state � � ����, � �	 ���, ������ 	 �� is a polytope from the
system definition (9). In order to finish the construction of the quotient,
we need to find the set of transitions ����. By the definition of ��

(Section II) and (2), the transition relation ���� can be constructed if
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Fig. 2. Schematic representations of the two genetic networks considered in
this case study.

����� �� is computable. Explicitly, for any two equivalence classes �,
�� � ����� � ��	���, we have:

��
 ��� ����� �� ��� ��	
 �� ����� ���� � �� �� 	� (10)

Similarly, given a state � � ����, � �� �	�, transitions to state �	�
can be assigned as

��
�	�� ����� �� ��� ��	
 �� ����� ���� �
 � (11)

and state �	� only has a transition to itself (i.e., ��	�
�	�� �����).
In the particular case when the matrix component of the parameters

of the PWA system (9) are fixed, (i.e., the sets ��
� � ��, � � 
 are

all singletons), given a polytope ��, � � 
, ����� ���� is convex and
can be computed exactly

����� ���� � ���� � �
�
� (12)

where ���� is the image of the polytope �� through the matrix �� and
“�” stands for Minkowski (set) sum. Therefore, the set of transitions
���� can be computed using polyhedral operations and the finite quo-
tient ���� can be constructed and used in Algorithm 1.

When the matrix component of the parameters is allowed to vary,
given a polytope ��, ����� ���� is not necessarily convex.

Proposition 1: Given a polytope ��, the smallest convex over-ap-
proximation of ����� ���� can be computed as

����� ���� � �	�� ��
� � � ��
� 
 � � ����� � ��

� (13)

where �	���� and ��� denote the convex hull and set of vertices,
respectively.

A proof of Proposition 1 can be found in [2] and a related treat-
ment in [28]. Using the over-approximation ����� ����, an over-ap-
proximation quotient ���� � �����
����
 �
 ��� can be con-
structed. Since ����� ���� 
 ����� ���� for all � � ����, we have
����
 ����, which leads to

�� 
 �� � 
 �
� �

� ��

� �

 ��

� � 
 ��
� (14)

and, therefore, the over-approximation ���� can be used in Algorithm
1 instead of ���� but the results become more conservative.

In order to implement the function �
���
�� (Algorithm 2), given
states ��, �� � ���� such that �� � ����� � ����, we need to be able
to construct a state ��, such that ������� � ������������ ���������or
equivalently ������� � �� ����� ��� �. If the matrix component of
the parameters is fixed and ��, � � 
 are all invertible, this intersection
is computable as

�� � ���� ��� � � �� � ���

� �� � ���
� � (15)

Therefore, �
���
�����
�� can be implemented using polyhedral
operations and applied iteratively. As already discussed in Section IV,
if ��

� , � � 
 are fixed then �� is deterministic and refinement can be
performed more efficiently.

Although a finite over-approximation quotient ���� can be com-
puted when the parameters of the system are uncertain, ���� �� might
be nonconvex, even when applied to a convex set. In this case, we use
a �	 -tree inspired refinement approach, where each state is split along
each dimension and transitions are recomputed using the over-approx-
imation ����� �� in (10).

Finally, in order to implement Algorithm 1, we need to be able to
decide if a state is “large enough” to undergo additional refinement.
Given a state �, we compute the radius of the largest sphere inscribed in
polytope ������ and apply the refinement procedure only if it is larger
than a certain predefined limit �.

VI. CASE STUDY: ANALYSIS OF PWA
MODELS OF GENETIC NETWORKS

In this section, we present results from the analysis of two PWA
models inspired by the synthetic networks of repressor genes known
as the Genetic Toggle Switch [20] [Fig. 2(a)] and the Repressilator
[21] [Fig. 2(b)]. Gene regulation is modeled by ramp functions, which
are PWA functions defined by two threshold values, inducing three re-
gions of different dynamics. At low repressor concentrations (below
threshold 1) the regulated gene is fully expressed, at high repressor
concentrations (above threshold 2) expression is only basal and the
response between the two thresholds is graded. The resulting PWA
models capture the bistability [Fig. 3(a)] and oscillations [Fig. 3(d)]
characteristic of the two systems1.

The first system we consider [Fig. 2(a)] includes two mutually in-
hibiting genes and acts as a switch, allowing only one of the genes to be
expressed depending on initial conditions [see the simulated trajecto-
ries in Fig. 3(a)]. Initially, we construct a fixed parameter PWA model
with two state variables (� � �) representing the concentrations of
the proteins produced by the two genes. Gene regulation is captured
through two ramp functions and, therefore, the model has a total of
nine rectangular regions [denoted ��
 � � � 
�� with 
 � ��
 �
 � � � 
 ��
in Fig. 3(a)]. Dynamics 3 and 7 have unique, asymptotically stable equi-
libria inside rectangles �� and ��, respectively [see Fig. 3(a)]. We at-
tempt to find regions of initial conditions guaranteeing that the system
will settle in a specific equilibrium, thereby identifying the attractor
regions for the two equilibria. By exploiting convexity properties of
affine functions on polytopes, it can be shown that under the fixed pa-
rameters,�� and�� are invariants for dynamics 3 and 7. From this, we
can immediately conclude that �� and �� are regions of attraction for
the two equilibria. Therefore, our problem reduces to finding maximal
regions satisfying LTL formulas �� � � � and �� � � � (note
that the specifications are automatically extended to guarantee that tra-
jectories of the system do not leave � as described in Section III). In
other words, we want to find maximal sets of initial conditions guaran-
teeing that all trajectories of the system eventually reach regions �� or
��, respectively, while always remaining within � . The results of the
analysis of the fixed parameter model are presented in Fig. 3(a).

Hyper-rectangular parameter uncertainty is then introduced in the
model by allowing each component of the fixed parameters to vary in
a small range. Results for an additive noise only model (i.e., where ��

�

are polytopes, while ��
� are singletons for all � � 
) and uncertain

parameters model (i.e, where both ��
� and ��

� are polytopes for all
� � 
) are presented in Fig. 3(b) and (c), respectively. Because of the

1Due to space constraints the explicit PWA dynamics of the two systems are
omitted but they are available at http://hyness.bu.edu/software
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Fig. 3. (a)–(c) Simulated trajectories of the Genetic Toggle Switch PWA model go towards one of the two stable equilibria located inside regions � and � .
Trajectories originating in the dark gray and light gray regions are guaranteed to satisfy specification � � � � and � � � �, respectively. (d) Simulated
trajectories of the Repressilator PWA model oscillate, visiting regions where the concentrations of protein 1 are high. Trajectories originating everywhere, except
the shaded region are guaranteed to satisfy specification � . Initial conditions for all trajectories are marked with circles.

rectangular initial partition of the state space resulting from the defini-
tion of the PWA system, �� -trees are a suitable refinement strategy in
the uncertain parameter case.

The second system we consider [Fig. 2(b)] includes three inhibiting
genes and can be shown to produce oscillations [see simulated trajec-
tories in Fig. 3(d)]. We construct a fixed parameter PWA model with
three state variables �� � �� and use three ramp functions to capture
the effects of gene regulation, which results in a model with a total of
27 hyper-rectangular regions [see Fig. 3(d)]. We are interested in iden-
tifying regions of initial conditions from which all trajectories of the
system oscillate, visiting regions where the concentrations of protein
1 are high. We consider the specification �� � ����� � ������,
where �� is satisfied whenever protein 1 concentrations are high (i.e.,
�� is a disjunction of the labels of the rectangles on the right of the
plane �� � ��). The results of the analysis are presented in Fig. 3(d).

VII. COMPLEXITY AND IMPLEMENTATION

The algorithms presented in this technical note were implemented
as a software tool for FAPAS, which is freely downloadable at http://
hyness.bu.edu/software. The tool is built under MATLAB, and uses
LTL2BA [26] for the conversion of an LTL formula to a Büchi au-
tomaton and the MPT toolbox [29] for polyhedral operations.

Our method involves model checking of the finite quotient ���� at
each step of the iterative procedure. Even though the worst case com-
plexity of LTL model checking is exponential in the size of the for-
mula, this upper limit is rarely reached in practice. In addition, as al-
ready mentioned, we use an in-house model checker, which allows us
to model check ���� from specific states only and perform computa-
tion (such as the construction of Büchi automata) only once instead
of recomputing at each step. The construction and refinement of fi-
nite quotients used in our approach is based on polyhedral operations,
which also have an exponential upper bound. Therefore, the applica-
bility of the method depends on controlling the number of states as
refinement progresses. When applied to a state �, the refinement pro-
cedure �	
��	������ �� can, in general, produce a maximum of ��

subsets, where � � �	
��� � ���� is the number of states reachable
from �. In the particular case when the parameters of the PWA system
are fixed, only � subsets can be produced. To limit the explosion in the
number of states in the quotient, we only refine states when this can im-
prove the solution. Even so, due to its inherent complexity, this method
is not suitable for the analysis of systems in high dimensions or when
many iterations are required to find a solution. As expected, the method
performs best if large portions of the state space can be characterized
as satisfying the formula or its negation during earlier iterations.
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For the Genetic Toggle Switch �� � �� presented in Section VI the
computation required under 20 sec for the fixed parameter model and
under 10 min for all the uncertain parameter ones, where the limit on
refinement was set to � � � and � � �. For the Repressilator �� � ��
the computation required under 20 min where � � �. All computation
was performed on a 3.4 GHz machine with 1 GB of memory.

It is important to note that some specifications (such as �� and �� in
Section VI) can be formulated as invariance and reachability properties
and checked using more efficient tools [18], [19], [29]. However, such
an approach does not apply to general LTL specifications (such as ��
in Section VI).
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