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Abstract—We present a computational framework for automatic
synthesis of control and communication strategies for a robotic
team from task specifications that are given as regular expressions
about servicing requests in an environment. We assume that the
location of the requests in the environment and the robot capacities
and cooperation requirements to service the requests are known.
Our approach is based on two main ideas. First, we extend re-
cent results from formal synthesis of distributed systems to check
for the distributability of the task specification and to generate
local specifications, while accounting for the service and commu-
nication capabilities of the robots. Second, by using a technique
that is inspired by linear temporal logic model checking, we gener-
ate individual control and communication strategies. We illustrate
the method with experimental results in our robotic urban-like
environment.

Index Terms—Cooperative systems formal synthesis, robot
control.

I. INTRODUCTION

THE GOAL in robot motion planning and control is to be
able to specify a motion task in a rich, high-level language

and have the robot(s) automatically convert this specification
into a set of low-level primitives, such as feedback controllers
and communication protocols, to accomplish the task [2], [3].
In most existing works, the motion-planning problem is simply
specified as “go from A to B, while avoiding obstacles” [3].
However, there are situations in which this is not enough to
capture the nature of the task. Consider, e.g., the miniature
robotic urban-like environment (RULE) shown in Fig. 1, where
a robot might be required to “visit road R1 or road R2 without
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Fig. 1. Robotic urban-like environment. (Left) Khepera III car-like robots
move autonomously on streets, while staying in their lanes, obeying traffic
rules, and avoiding collisions. (Right) Car waiting at a traffic light.

crossing intersection I3 and then park in an available parking
space,” while at the same time obeying the traffic rules. Such a
“rich” specification cannot be trivially converted to a sequence
of “go from A to B” primitives.

When several robots are available, the problem becomes even
more interesting and challenging. Assume that several service
requests occur at different locations in the city, and they need
to be serviced subject to some temporal and logical constraints.
Some of these requests can be serviced by one (possibly specific)
robot, while others require the collaboration of two or more
(possibly specific) robots. For example, assume that the task
is to first gather two pieces of data, one of which is available
at P3 only, and the other at either P4 or P5 and then fuse and
transmit the data at one of the transmission locations P1 or P2 .
Assume that two robotic cars A1 and A2 are available; only A1
can read the data at P4 , and both cars are necessary to fuse and
transmit the data. Can we generate provably correct individual
control and communication strategies from such rich, global
specifications? This is the problem that we address in this paper.

It has been advocated in [4]–[6] that temporal logics, such
as linear temporal logic (LTL) and computation tree logic
(CTL) [7], can be used as “rich” specification languages in mo-
bile robotics. All of the aforementioned works suggest that the
corresponding formal verification (model-checking) algorithms
can be adapted for motion planning and controller synthesis
from such specifications. A fundamental challenge in this area
is to construct finite models that accurately capture the robot mo-
tion and control capabilities. Most current approaches are based
on the notion of abstraction [8] and equivalence relations, such
as simulation and bisimulation [9]. Enabled by recent develop-
ments in hierarchical abstractions of dynamical systems, it is
now possible to model systems with linear dynamics [10], [11],
polynomial dynamics [12], and nonholonomic (unicycle) dy-
namics [13] as finite transition systems (TS). Some related
works show that such techniques can be extended to multia-
gent systems through the use of parallel composition [14]–[16]
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or reactive games [17]. However, such bottom-up approaches
are expensive and can lead to state-space explosion, even for
relatively simple problems.

As a result, one of the main challenges in the area of mo-
tion planning and control of distributed teams that are based
on formal methods is to create provably correct, top-down ap-
proaches in which a global, “rich” specification can be decom-
posed into local (individual) specifications, which can then be
used to automatically synthesize robot control and communica-
tion strategies. In this paper, we draw inspiration from the area
of distributed formal synthesis [18] to develop such a top-down
approach. We consider a team of robots that can move among
the regions of a partitioned environment and have known ca-
pabilities of servicing a set of requests that can occur in the
regions of the partition. Some of these requests can be serviced
by a robot individually, while some require the cooperation of
groups of robots. We present a framework that allows for the
fully automatic synthesis of robot control and communication
strategies from a task specification that is given as a regular
expression (RE) over the set of requests. The problem that we
consider is purely discrete, where the (partitioned) environment
is modeled as a discrete graph and the robots as agents that can
move between adjacent vertices. Our solution is quite general
and can be used in conjunction with abstraction techniques to
control and deploy multiple agents with continuous dynamics.

The contribution of this study is threefold. First, we develop a
top-down computational framework for automatic deployment
of mobile agents from global specifications that are given as REs
over environmental requests. This is a significant improvement
of our recent work [19] by enlarging the class of specifica-
tions for which a solution exists. Specifically, we show how a
satisfying distributed execution can be found when the global
specification is a traced-closed language, rather than the more
restrictive product language as in [19]. Second, we provide a re-
laxation to the standard approach of distributed synthesis mod-
ulo synchronous products (SPs) and language equivalence [18].
To this end, this paper extends upon our previous work [20], in
which we provided two heuristics for the case of asynchronous
automata. Third, we implement and illustrate the computational
framework in our Khepera-based RULE (see Fig. 1). In this ex-
perimental setup, the robots can be automatically deployed from
specifications that are given as REs over requests occurring at
regions in a miniature city.

Our framework is significantly less expensive than the
bottom-up approaches [14]–[16] in terms of computational com-
plexity, since the construction of the parallel composition of the
individual motions is not necessary, and the state-space explo-
sion problem is avoided. Arguably, the closest related work
is [21], where the global specifications that are given as lan-
guages over a set of events were checked for distributabil-
ity modulo bisimulation, which is more restrictive than dis-
tributability modulo language equivalence. Moreover, the ex-
pressivity of the specifications in [21] was restricted to a subset
of regular languages (i.e., languages that are accepted by TS). In
addition, the robot motion capabilities and possible deadlocks
that are caused by parallel executions of the robots were not
taken into consideration.

Some of the results in this paper were presented without
proofs in [1]. In this paper, we include all technical details that
are omitted, relax some of the assumptions in [1], and include a
complexity analysis of the overall approach. The remainder of
the paper is organized as follows. Some preliminaries are intro-
duced in Section II. The problem is formulated in Section III.
An outline of our approach is described in Section IV. An algo-
rithm for the distribution of the task specification over a robotic
team and synthesis of individual control and communication
strategies is presented in Section V. In Section VI, we discuss
the computational complexity of our approach. In Section VII,
we show that some of the assumptions that we made to keep the
notation and computational complexity to a minimum can be
relaxed to accommodate more realistic scenarios. Experimental
case studies are presented in Section VIII. We conclude with
final remarks and directions for future work in Section IX.

II. PRELIMINARIES

For a set Σ, we use |Σ| and 2Σ to denote its cardinality and
power set, respectively. A word, i.e., w = w(0)w(1) · · ·w(n),
over a set Σ is a sequence of symbols from Σ. We use Σ∗ to
denote the set of all finite words over Σ. The length of a word
w ∈ Σ∗ is denoted by |w|. A language is a set of words.

Definition 2.1 (Transition System): A TS is a tuple, i.e., T =
(S, s0 ,→,Π, |=), where S is the finite set of states, s0 ∈ S is
the initial state, →⊆ S × S is the transition relation, Π is the
finite set of atomic propositions (observations), and |=⊆ S × Π
is the satisfaction relation.

A transition (s, s′) ∈→ is also denoted by s → s′. For
an arbitrary state s ∈ S, we define Πs ={π ∈ Π | (s, π) ∈|=}
∈ 2Π as the set of all atomic propositions that are satis-
fied at s. A trajectory of T is a sequence s(0)s(1) · · · s(n)
with the property that s(0) = s0 , s(i) ∈ S, and s(i) →
s(i + 1), for all i = 0, . . . , n − 1. We say that a trajectory,
i.e., s = s(0)s(1) · · · s(n), of T satisfies a word, i.e., w =
w(0)w(1) · · ·w(n), if w(i) ∈ Πs(i) , for all i = 0, . . . , n.

Definition 2.2 (Finite-State Automaton): A finite-state au-
tomaton (FSA) is a tuple, i.e, A = (Q, q0 ,Σ,→A , F ), where Q
is the set of states, q0 ∈ Q is the initial state, Σ is the set (alpha-
bet) of actions, →A∈ Q × Σ × Q is the transition relation, and
F ⊆ Q is the set of final (accepting, marked) states. An FSA
A is a weighted FSA if there is a nonnegative-valued weight
function that is defined on the transitions of A.

We also write q
σ→Aq′ to denote (q, σ, q′) ∈→A . A run of

an FSA on a finite word, i.e., w = σ0σ1 . . . σm ∈ Σ∗, is a
sequence of states q0q1 . . . qm+1 , such that qi

σi→qi+1 , for all
i = 0, 1, . . . ,m. A finite word w is accepted by an FSA if there
exists a run on it: q0q1 . . . qm+1 satisfying qm+1 ∈ F . The lan-
guage accepted by an FSA A (the language of A), which is
denoted by L(A), is the set of all finite words that are accepted
by A. Two FSAs over the same set of actions are called language
equivalent if they accept the same language.

A deterministic FSA (DFA) is an FSA, where for each q ∈ Q
and σ ∈ Σ, there exists at most one q′ ∈ Q, such that q

σ→Aq′.
Otherwise, the FSA is called nondeterministic FSA (NFA). An-
other extension of the FSA, which is denoted as ε-NFA, is an
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NFA with ε, i.e., the empty string, as a possible input. Note
that given any ε-NFA, one can construct an equivalent DFA that
accepts the same language as the ε-NFA. The construction of
a DFA, given a ε-NFA, is based on a well-known subset con-
struction algorithm, which incorporates ε-transitions through
the mechanism of ε-closure. Furthermore, given a DFA, there
exists a unique (up to isomorphism) minimal DFA that is lan-
guage equivalent with the initial DFA, and well-known, efficient
minimization algorithms are available. See [22] for more details
about the algorithm of construction of a minimal DFA given a
ε-NFA.

The language that is accepted by an FSA is called a reg-
ular language. An RE is a concise representation of a regu-
lar language. We use Lφ to denote the language that satisfies
an RE φ. Informally, an RE over a set Σ is defined recur-
sively by using three standard operators: union (denoted by
+), concatenation, and iteration (denoted by ∗). For example,
with Σ = {σ1 , σ2 , σ3}, the RE (σ1 + σ2 + σ3)∗σ1(σ1 + σ2 +
σ3)∗σ1(σ1 + σ2 + σ3)∗ specifies that action σ1 should be ex-
ecuted at least twice, while the RE (σ1 + σ2)∗σ1(σ1 + σ2)∗

requires that action σ1 should be executed at least once and that
action σ3 is forbidden. Finally, σ1σ2 + σ2σ1 specifies that ac-
tions σ1 and σ2 need to be executed exactly once in an arbitrary
order.

Given an RE, a DFA that accepts all and only the words that
satisfy the RE can be constructed by using an off-the-shelf tool,
such as Java Formal Languages & Automata Package (JFLAP)
[23]. Given a regular language L(A) over Σ, which is accepted
by a DFA A, the complement of L(A) is defined as L(A) :=
Σ∗\L(A). Note that a DFA ¬A, which is defined as a DFA that
accepts the language L(A), can be constructed by swapping the
accepting states of A with its nonaccepting states.

Definition 2.3 (Distribution): Given a set Σ, a collection of
subsets, i.e., Δ = {Σi ⊆ Σ, i ∈ I}, where I is an index set, is
called a distribution of Σ if ∪i∈I Σi = Σ. For σ ∈ Σ, we denote
Iσ = {i ∈ I | σ ∈ Σi}.

For a word w ∈ Σ∗ and a subset S ⊆ Σ, let w�S denote the
projection of w onto S, which is obtained by erasing all actions
σ in w that do not belong to S. For a language L ⊆ Σ∗ and a
subset S ⊆ Σ, let L�S denote the projection of L onto S, which is
given by L�S := {w�S | w ∈ L}. Starting from the observation
that the projection of a regular language is a regular language,
the projection of an FSA A on a subset S ⊆ Σ is another FSA
(which is denoted by A�S ) that accepts the language L(A)�S .
The projection of an FSA can be constructed through the process
of ε-closure, determinization, and minimization (see [24]).

Definition 2.4 (Product Language): Given a distribution, i.e.,
Δ = {Σi ⊆ Σ, i ∈ I}, of Σ, the product of a set of languages
Li over Σi is denoted by ‖i∈I Li and defined as ‖i∈I Li :=
{w ∈ Σ∗ | w�Σ i

∈ Li for all i ∈ I}. A product language over a
distribution Δ of Σ is a language L such that L =‖i∈I Li , where
Li = L�Σ i

for all i ∈ I .
Definition 2.5 (Trace-Closed Language): Given a distribution,

i.e., Δ = {Σi ⊆ Σ, i ∈ I}, of Σ and w,w′ ∈ Σ∗, we say that w
is trace equivalent to w′ (w ∼Δ w′) iff w�Σ i

= w′�Σ i
,∀i ∈ I .

Let [w]Δ denote the trace-equivalence class of w ∈ Σ∗. A trace-
closed language over a distribution Δ of Σ is a language L such
that for all w ∈ L, [w]Δ ⊆ L. For an arbitrary language L, we

denote LΔ := {w ∈ L|[w]Δ ⊆ L} as the largest trace-closed
subset of L.

The class of trace-closed languages is closed under the opera-
tions of union, intersection, and complementation. Obviously, if
L is trace closed with respect to a distribution Δ, then L = LΔ .
Note that a product language is trace closed but the converse
is not true. See [24]–[26] for more details on trace-closed and
product languages.

III. PROBLEM FORMULATION

Let

E = (V,→E) (1)

be an environment graph, where V is the set of vertices, and
→E⊆ V × V is a relation that models the set of edges, e.g., E
can be the quotient graph of a partitioned environment, where
V is a set of labels for the regions in the partition, and →E is
the corresponding adjacency relation. Assume that we have a
team of robots (moving agents) Ai , i ∈ I , whose motions are
restricted by E , where I is a set of robot labels. Let Σ be a
set of service requests, or actions that are to be performed at
the vertices of E . To keep notation to a minimum, we assume
for now that the locations of the service requests are defined
as a function a : Σ → V (i.e., different requests can occur at
the same vertex but vertices do not share requests; there may
be no request at some vertices of E). Later in this paper (see
Section VII), we discuss how this assumption can be relaxed.

We model the capacity of the robots to service requests and
the cooperation requirements among the robots as a distribution,
i.e., Δ = {Σi ⊆ Σ, i ∈ I} of Σ (see Definition 2.3). Σi repre-
sents the set of requests that can be serviced by the robot Ai .
For a given request σ ∈ Σ, Iσ = {i ∈ I |σ ∈ Σi} is the set of
labels of all the agents that can service it. The semantics of this
distribution is defined as follows. For an arbitrary request σ, if
|Iσ | = 1 (i.e., there is only one agent that owns it), the agent
can (and should) service the request by itself, independent of
the other agents. This kind of request is called an independent
request. If |Iσ | > 1, all the agents Ai with i ∈ Iσ must service
the request simultaneously (i.e., they need to communicate to
service σ together). This kind of request is called a shared re-
quest. An agent is said to service a request σ if it visits the vertex
a(σ). For the simplicity of presentation, we assume for now that
two or more robots sharing a request σ can communicate at the
(only) vertex a(σ), where σ occurs. In Section VII, we discuss
how we can accommodate arbitrary communication graphs.

Remark 3.1: The distribution uniquely defines the cooperation
requirements among the robots, e.g., if a request is in both Σ1
and Σ2 , it requires the cooperation between robots A1 and A2 .
Imagine a scenario, where multiple robots are able to service a
request that only requires one robot. In this case, the distribution
that describes the capability of robots servicing the requests
is not unique. In this paper, we only consider a fixed given
distribution. We will address the removal of this limitation in
future work.

We model the motion capabilities of each agent Ai , i ∈ I,
on the environment graph E using a TS Ti (see Definition 2.1),
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which is defined as follows:

Ti = (V, v0i
,→i ,Π, |=i), i ∈ I (2)

where v0i
∈ V is the initial position of Ai ; →i is a reflexive

transition relation that satisfies →i⊆→E ∪v∈V {(v, v)}; Π =
Σ ∪ {ε} (ε is the empty request); and |=i⊆ V × Π is a relation,
where (v, ε) ∈|=i for all v ∈ V and (v, σ) ∈|=i , σ ∈ Σi , if and
only if v = a(σ). In other words, the motion of robot Ai is
restricted by the transition relation →i , which captures motion
(actuation) constraints in addition to →E . The locations of the
requests in the environment are captured by the relation |=i . As
will become clear later, each vertex that satisfies ε captures that
a robot can pass through a vertex without servicing any request.

Definition 3.1 (Motion and Service Plan): A motion and ser-
vice (MS) plan for robot Ai , i ∈ I is a word msi ∈ (V ∪ Σi)∗

that satisfies the following conditions.
1) msi(0) = v0i

.
2) If msi(j) ∈ Σi , then msi(j − 1) ∈ V , and (msi(j −

1),msi(j)) ∈|=i , for all j > 1.
3) msi�V is a trajectory of Ti .
An MS plan for robot Ai uniquely defines a motion plan

mi = msi�V and a service plan si = msi�Σ i
. We say that a

service plan si can be implemented by robot Ai if there exists
an MS plan msi such that msi�Σ i

= si . The semantics of an MS
plan is as follows. A vertex entry msi(j) ∈ V means that the
vertex msi(j) should be visited. A request entry msi(j) ∈ Σi

means that robot Ai should service the request msi(j) at the
vertex msi(j − 1). A shared request msi(j) (i.e., |Imsi (j ) | > 1)
triggers a wait-and-leave protocol: At vertex msi(j − 1), robot
Ai broadcasts the request msi(j) and listens for the broadcasts
of msi(j) from all other agents Aj , j ∈ Imsi (j ) \ {i}. When
they all are received, the request msi(j) is serviced, and then,
Ai moves to the next vertex.

Remark 3.2: We assume that interrobot communication is
always possible. Note that one robot only needs to synchro-
nize (using the wait-and-leave protocol introduced earlier) with
other robots that share a request σ, before servicing this shared
request. The loose synchronization enables parallel executions
of individual agents.

Given a set of MS plans {msi, i ∈ I} for the robot team,
there may exist many possible sequences of requests that are
serviced by the team because of parallel executions. (We do not
assume that we know the time it takes for each agent to service
requests.)

Definition 3.2 (Global Behavior of the Team): Given a set of
MS plans {msi, i ∈ I}, we denote

Lteam
MS ({msi, i ∈ I}) :=‖i∈I {si} (3)

as the set of all possible sequences of requests that are serviced
by the team of robots, while they follow their individual MS
plans.

For simplicity of notation, we use Lteam
MS for Lteam

MS ({msi, i ∈
I}) when there is no ambiguity.

Definition 3.3 (Satisfying set of MS Plans): A set of MS plans
{msi, i ∈ I} satisfies a specification given as an RE φ over Σ
if and only if Lteam

MS �= ∅ and Lteam
MS ⊆ Lφ .

Fig. 2. City for the case study. The topology of the city, the requests that occur
at the parking lots and the road, intersection, and parking lot labels.

Remark 3.3: For a set of MS plans, the corresponding Lteam
MS

could be an empty set by the definition of product of languages
(since there may not exist a word w ∈ Σ∗, such that w�Σ i

=
si ∀i ∈ I). In practice, this case corresponds to a scenario, where
one (or more) agent waits indefinitely for other agents to service
a request σ that is shared among these agents. For example, if
σ does not appear in the service plan of one of the agents who
own σ, but it appears in the service plans of some other agents,
then all those agents will be stuck in a “deadlock” state and wait
indefinitely. As another example, let s1 = σ1σ2 , s2 = σ2σ1 , and
Σ1 = Σ2 = {σ1 , σ2}. In this case, robots A1 and A2 will wait
for each other indefinitely. When a deadlock occurs, the set of
MS plans is not satisfying.

We are now ready to formulate the main problem.
Problem 3.1: Given a team of agents Ai , i ∈ I with motion

capabilities Ti [see (2)] on a graph E [see (1)], a set of service
requests Σ, a function a : Σ → V that shows the location of
the service requests, a distribution, i.e., Δ = {Σi ⊆ Σ, i ∈ I},
of Σ that models the capacity of the robots to service requests
and the cooperation requirements among the robots, and a task
specification φ in the form of an RE over Σ, find a satisfying set
of MS plans {msi, i ∈ I}.

Case Study 1: For illustration, throughout this paper, we con-
sider an example in our RULE (see Fig. 2). Modeling RULE
by the use of the proposed framework proceeds as follows. The
set of vertices V of the environment graph E is the set of labels
that are assigned to the roads, intersections, and parking lots.
The edges in →E show how these regions are connected. We
consider two robots (Khepera III miniature cars) running in the
environment, whose motion capabilities can be modeled as a TS
Ti , which is shown in Fig. 3, where →i=→E captures how the
robot can move among adjacent regions. Note that these tran-
sitions are, in reality, enabled by low-level control primitives
(see Section VIII). We assume that the selection of a control
primitive at a region uniquely determines the next region. This
corresponds to a deterministic (control) TS, in which each tra-
jectory of Ti can be implemented by the robot in the environment
by using the sequence of corresponding motion primitives.
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Fig. 3. Transition systems Ti that capture the motion capabilities of the robots,
which are identical, except for the initial state (not shown).

Assume that the set of service requests is given as Σ =
{H1 ,H2 , L1 , L2 , L3}, where Li’s represent pieces of data that
can be collected in parallel by a single robot, while Hi’s
represent data fusion and decision making processes, which
require the cooperation of the two robots. The distribution,
i.e., Σ1 = {L1 ,H1 ,H2},Σ2 = {L2 , L3 ,H1 ,H2}, captures the
robots’ capabilities to collect the data and cooperation require-
ments for the data fusion. Assume that the requests occur at the
parking lots as shown in Fig. 2. The relation |=i indicates the
locations of the requests. We want to accomplish the following
task: “Fuse the initial information carried by two robots (H1);
collect data at P1 (L1) and P2 (L2) in an arbitrary order; fuse
the collected data at P5 (H2); and finally, collect data from P1
(L1) and P3 (L3) in an arbitrary order.” Such a task translates to
the following RE:

φ : H1 (L1L2 + L2L1) H2 (L1L3 + L3L1). (4)

IV. OUTLINE OF THE APPROACH

Our approach to solve Problem 3.1 can be summarized as
follows. We first generate “implementable” global behaviors of
the team, which capture all the service plans that can be imple-
mented by the robots (see Section V-A). Then, if the language
Lφ that satisfies the global specification φ is trace closed, we
generate a solution to the problem. Otherwise, we attempt to
find a subset of Lφ that is trace closed. If we succeed (i.e.,
the obtained subset is not empty), then we use it to generate a
solution (see Section V-B). We illustrate our approach in Fig. 4.

In our previous work [19], we provided a solution to
Problem 3.1 through an extension to regular languages of the
standard approach to distributed synthesis modulo SPs and lan-
guage equivalence for TS [18]. As stated in [18], if the language
that satisfies φ is a product language, then we can construct
a set of local specifications, such that when they synchronize,
they are equivalent to the global specification. At first look, one
might think that we can generate control and communication
strategies individually for robot Ai given such a local specifica-

Fig. 4. Schematic representation of our approach to Problem 3.1.

tion and the motion capabilities of Ai . However, such a purely
top-down approach will not work because of the “deadlock” sce-
nario that is described in Remark 3.3, i.e., we cannot guarantee
that the motion of the team Lteam

MS �= ∅. In [19], we approached
the “deadlock” problem through an additional (computation-
ally expensive) synchronization process. However, our approach
was conservative since we could only generate a solution to
Problem 3.1 for the case when the language that satisfies
φ was a product language over the given distribution (see
Definition 2.4).

In this paper, we propose a solution to Problem 3.1, which is
complete if the language that satisfies φ is trace closed over the
given distribution. Since trace-closed languages are less restric-
tive than product languages (i.e., product languages are trace
closed but not vice versa), we reduce the conservativeness of
our previous approach. Furthermore, our proposed solution is
less computationally expensive. Indeed, to check whether a lan-
guage is trace closed is linear in the size of the FSA accepting
the language, while to check whether a language is a product
language is polynomial space (PSPACE) complete [24]. Last
but not least, in this paper, we attempt to find a solution even
when the language that satisfies φ is not trace closed over the
given distribution (in which case, our previous approach cannot
provide a solution).

V. SYNTHESIS OF LOCAL MOTION AND SERVICE PLANS FROM

THE GLOBAL SPECIFICATION

A. Synthesis of Implementable Global Behaviors

We begin with the conversion of the specification φ over Σ
to a minimal DFA, i.e., A = (Q, q0 ,Σ,→, F ), which accepts
exactly the language over Σ that satisfies φ (using JFLAP [23]).
We call A the global specification. Given the distribution Δ,
we assign requests to each agent. Specifically, we construct a
set of projected FSAs, i.e., Ai = (Qi, q0i

,Σi ,→Ai
, Fi), whose

languages are the projections of L(A) onto the local alphabets
Σi , i ∈ I. (See Section II for the construction of Ai .) The pro-
jected FSAs are used as a starting point to find a solution to
Problem 3.1 because of the following proposition.
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Proposition 5.1: If a set of MS plans {msi, i ∈ I} is a solution
to Problem 3.1, then its corresponding service plans, i.e., si =
msi�Σ i

, are accepted words of Ai for all i ∈ I .
Proof: If {msi, i ∈ I} is a solution to Problem 3.1, then

we have ‖i∈I si ⊆ L(A) and ‖i∈I si �= ∅. We can find a word
w ∈ ‖i∈I si ⊆ L(A), such that [w]Δ = ‖i∈I si , where si = w�Σ i

for all i ∈ I . By the definition of the projection of A onto a
distribution, w�Σ i

∈ L(Ai), and thus, si ∈ L(Ai).
However, to provide a provably correct solution for

Problem 3.1, it is not sufficient to simply choose an arbitrary
accepted word from the projected FSAs Ai to be a service plan
si . We need to make sure that 1) the service plan si can be
implemented by robot Ai , and 2) all possible sequences of re-
quests that are serviced by the team satisfy φ. To satisfy the
first requirement, we aim to model the implementable global
behaviors of the team. To achieve this, we first obtain an “im-
plementable local” specification AE

i for each i ∈ I , such that
the language of AE

i equals the set of all the accepted words of
Ai that can be implemented by the agent Ai . We address the
second requirement in Section V-B.

To obtain AE
i , we construct a new FSA ̂Ai from Ai =

(Qi, q0i
,Σi ,→Ai

, Fi) by adding action ε to Σi and self-
transitions (q, ε, q) to each state q ∈ Qi . For a robot, ε means
that no request is serviced. We denote the set of all these self-
transitions by →εi

. The FSA ̂Ai can now be defined as

̂Ai = ( ̂Qi, q̂0i
, ̂Σi ,→Â i

, ̂Fi) (5)

where ̂Qi = Qi , q̂0i
= q0i

, ̂Σi = Σi ∪ {ε}, →
Â i

=→Ai
∪ →εi

,

and ̂Fi = Fi . It is important to note that these self-transitions do
not affect the semantics of Ai , since they mean that if no request
is served by robot Ai , then the state of Ai remains the same.
Given a word ŵ that is accepted by ̂Ai , we can obtain a word,
i.e., w = ŵ�Σ i

, accepted by Ai by treating ε as an empty string.
Note that input ε corresponds to the observation ε in the TS Ti ,
and the set of inputs ̂Σi of ̂Ai is a subset of the observations Π
of Ti .

To restrict the trajectories of a TS Ti with a set of observations
Π to the language that is accepted by an FSA with a set of actions
̂Σi ⊆ Π, we define the following product automaton, which is
inspired by LTL model checking [7]:

Definition 5.1 (Adapted from [4]): The product automa-
ton, i.e., Pi = Ti ⊗ ̂Ai , between a TS Ti = (V, v0i

,→i ,Π, |=i)
and an FSA ̂Ai = ( ̂Qi, q̂0i

, ̂Σi ,→Â i
, ̂Fi), where ̂Σi ⊆ Π, is an

FSA Pi = (QPi
, q0P i

,ΣPi
,→Pi

, FPi
), where QPi

= V × ̂Qi ,

q0P i
= (v0i

, q̂0i
) is the initial state, ΣPi

= ̂Σi is the set of in-

puts, and FPi
= V × ̂Fi is the set of accepting (final) states.

The transition relation →Pi
⊆ QPi

× ΣPi
× QPi

is defined as

(v, q)
σP i→Pi

(v′, q′) if and only if v →i v′, q
σP i→

Â i
q′, and σPi

∈
Πv .

A transition (v, q) σ→Pi
(v′, q′) of Pi exists if and only if

(v, v′) ∈→i and request σ occurs at the vertex v. Transitions
with input ε mean that a robot is moving from a vertex v to a ver-
tex v′ (v may be equal to v′) without servicing any request. rPi

=
(vi(0), q̂i(0))(vi(1), q̂i(1)) · · · (vi(n), q̂i(n)), where q̂i(j) ∈

Fig. 5. Example of construction of AE
i from Ti and Ai . We first generate ̂Ai

from Ai , and then, we obtain Pi as defined in Definition 5.1. AE
i is Pi after

ε-closure, determinization, and minimization. For example, word ac ∈ L(Ai )
cannot be implemented by Ti , and thus, it is not accepted by AE

i .

̂Qi , vi(j) ∈ V, and j ∈ {1, . . . , n} is a run accepted by the
product automaton Pi , i ∈ I . An accepted run rPi

can be easily
found using a backward reachability search that starts from all
states in FPi

and ends at the initial state q0P i
. We define the pro-

jection of rPi
onto Ti as γTi

(rPi
) = vi(0)vi(1) · · · vi(n). The

following proposition shows that we can use a run of Pi to find
a trajectory of Ti that satisfies the local specification (a word of
̂Ai).

Proposition 5.2: Given any word w
Âi

∈ L( ̂Ai), there exists
at least one trajectory of Ti that satisfies w

Âi
if and only if

w
Âi

∈ L(Pi).
Proof “⇐=”: Given a word w

Âi
∈ L(Pi); then, there exists

a run rPi
of Pi that generates w

Âi
. The projection γTi

(rPi
) is a

trajectory rTi
of Ti that satisfies the language of ̂Ai (by definition

of the product automaton). Hence, there exists a trajectory of
Ti , which satisfies w

Âi
.

“=⇒”: Given a word w
Âi

= w(0)w(1) · · ·w(n) accepted by
̂Ai and a trajectory rTi

= v(0)v(1) · · · v(n) of Ti that satisfies
w

Âi
; then, we have v(j) →i v(j + 1) and w(j) ∈ Πv (j ) for all

j ∈ {0, . . . , n − 1}. Since the transition relation →i of Ti is a
reflexive transition relation, there is always a transition stating
at every state. Hence, for v(n), we can always find a vertex
v(n + 1), such that v(n) →i v(n + 1). Therefore, given w

Âi
,

we can find an accepted run r
Âi

= q̂(0)q̂(1) · · · q̂(n + 1) of ̂Ai ,
which generates w

Âi
. According to Definition 5.1, there must

exist a run rPi
= (v(0), q̂(0))(v(1), q̂(1)) · · · (v(n + 1), q̂(n +

1)), which is accepted by Pi , and generate word w
Âi

. Hence,
we have w

Âi
∈ L(Pi). �

Next, we obtain AE
i that accepts L(Pi) by removing the

environment information that is stored in Pi . To achieve this, we
collapse the states of Pi by taking ε-closure, determinizing, and
minimizing Pi . See [22] for more details about these standard
procedures. An example that shows the construction of AE

i ,
given Ti and Ai , is illustrated in Fig. 5. Given a word w ∈
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L(AE
i ), there exists a word w′ ∈ L(Pi), such that w′�Σ i

= w.
By the use of this fact, the following proposition shows that AE

i

captures the largest subset of the language that is accepted by Ai

which can be implemented by the robot Ai in the environment.
Proposition 5.3: A word si ∈ L(Ai), i ∈ I can be used to

generate an MS plan msi for Ai , such that msi�Σ i
= si , if and

only if si ∈ L(AE
i ).

Proof “⇐=”: We propose the following three-step proce-
dure to construct an MS plan msi given si ∈ L(AE

i ):break
1) construct a DFA As

i that only accepts si ; 2) construct
̂As

i from As
i according to (5), and 3) construct the prod-

uct automaton, i.e., Ps
i = Ti ⊗ ̂As

i . According to its construc-
tion, ̂As

i accepts only the words w
Âi

∈ ({ε} ∪ Σi)∗, such that

w
Âi
�Σ i

= si . Since si ∈ L(AE
i ), there must exist a trajectory

of Ti , satisfying a word w
Âi

(see Proposition 5.2). There-
fore, the language of Ps

i is nonempty. Since L(Ps
i ) �= ∅, we

can find an accepted run rPi
of Ps

i (this can be achieved
by a backward reachability search as described earlier) and
the corresponding accepted word, i.e., wi = wi(0) . . . wi(n).
We obtain a trajectory, i.e., rTi

= vi(0) . . . vi(n), of Ti that
satisfies wi by projecting rPi

onto Ti . Then, we obtain
a word, i.e., w′

i = vi(0)wi(0)vi(1)wi(1) . . . vi(n)wi(n), such
that a(wi(j)) = vi(j), where j ∈ {1, . . . , n}, for all wi(j) �= ε.
Finally, we obtain msi = w′

i�Σ i ∪V . Since msi ∈ (Σi ∪ V )∗,
msi meets all the conditions in Definition 3.1. Therefore, follow-
ing the procedure outlined earlier, msi can always be generated
from a word si ∈ L(AE

i ), and msi is an MS plan for the robot
Ai .

“=⇒”: If there exists an MS plan msi , such that msi�Σ i
= si ,

then there exists a motion plan mi = msi�V that satisfies a word
wi ∈ (Σ ∪ ε)∗ and wi�Σ i

= si . Hence, according to Proposition
5.2, wi ∈ L(Pi), where Pi = Ti ⊗ ̂Ai . Since AE

i accepts all the
words in L(Pi)�Σ i

, then we have si ∈ L(AE
i ), which completes

the proof. �
Note that the proof of Proposition 5.3 provides a procedure

that guarantees to generate an MS plan msi , given a word si ∈
L(AE

i ), i ∈ I , such that si is the service plan for msi .
Finally, the implementable global behaviors of the team can

be modeled by the SP of the implementable local specifications
AE

i , which is defined as follows.
Definition 5.2 (Synchronous Product): The SP of n

FSAs, i.e., AE
i = (QE

i , qE
0i

,Σi ,→E
i , FE

i ), which is denoted
by ‖n

i=1 AE
i , is an FSA Reach((QG, q0G

,Σ,→G, FG )),1

where QG = Q1 × Q2 × · · · × Qn , q0G
= (q01 , q02 , . . . , q0n

),
and FG = F1 × F2 × · · · × Fn . The transition relation →G⊆
QG × Σ × QG is defined by q

σ→Gq′ if and only if ∀ i ∈ Iσ :
q[i] σ→E

i q′[i] and ∀ i /∈ Iσ : q[i] = q′[i], where q[i] denotes the
ith component of q.

Case Study 1 (Revisited): Returning to the proposed example,
we first construct AE

1 and AE
2 and, then, the SP AE

1 ‖ AE
2 . Since

RULE is fully connected, all the words that are accepted by Ai

can be implemented. The constructed FSAs are shown in Fig. 6.

1For an FSA A let Reach(A) denote the automaton that is obtained by keeping
only the states and the transitions from A that are reachable from the initial state
q0 .

Fig. 6. FSAs generated in case study 1.

B. Synthesis of Individual Motion and Service Plans

To solve Problem 3.1, we need to find a satisfying set of MS
plans. Specifically, we aim to find a set of service plans {si, i ∈
I}, such that ‖i∈I {si} ⊆ L(A) and ‖i∈I {si} �= ∅. First, we
make the important observation that a trace-closed specification
is sufficient to satisfy this requirement and provide a solution to
Problem 3.1. Formally, we have the following.

Proposition 5.4: Given a language L and a distribution, i.e.,
Δ = {Σi ⊆ Σ, i ∈ I} of Σ, if L is a trace-closed language over
Δ and w ∈ L, then ‖i∈I {w�Σ i

} ⊆ L.
Proof: We first prove the following statement. Given a

distribution Δ = {Σi ⊆ Σ, i ∈ I} of Σ and a word w ∈ Σ∗,
we have [w]Δ =‖i∈I {w�Σ i

}. For all words w′ ∈ [w]Δ , ac-
cording to Definition 2.5, w′�Σ i

= w�Σ i
∀i ∈ I . According to

Definition 2.4, since w′ ∈ Σ∗ and w′�Σ i
= w�Σ i

∀i ∈ I , then
w′ ∈‖i∈I {w�Σ i

}. Hence, [w]Δ ⊆‖i∈I {w�Σ i
}. For all words

w′ ∈‖i∈I {w�Σ i
}, according to Definition 2.4, w�Σ i

= w′�Σ i
.

According to Definition 2.5, w′ ∼Δ w, which implies w′ ∈
[w]Δ . Hence, ‖i∈I {w�Σ i

} ⊆ [w]Δ . Combined with the fact that
[w]Δ ⊆‖i∈I {w�Σ i

}, we have [w]Δ =‖i∈I {w�Σ i
}.

According to Definition 2.5, we have [w]Δ ⊆ L for all w ∈ L.
Since [w]Δ =‖i∈I {w�Σ i

}, we have ‖i∈I {w�Σ i
} ⊆ L for all

w ∈ L. Therefore, the proof is complete. �
Case Study 1 (Revisited): The language that satisfies φ [see

(10)] is trace closed over the given distribution since all of its
words

H1L1L2H2L1L3 , H1L1L2H2L3L1

H1L2L1H2L3L1 , H1L2L1H2L1L3

are trace equivalent. By the projection of w = H1L1L2H2L1L3
on the given distribution, we obtain w�Σ1 = H1L1H2L1 and
w�Σ2 = H1L2H2L3 , where ‖i∈I {w�Σ i

} satisfies Lφ . On the
other hand, the specification H1L1L2H2L1L3 by itself is not
trace closed since its trace-equivalent word H1L2L1H2L1L3
violates the specification. This is intuitive, since L1 and L2 are
independent and can be executed in parallel. We cannot find
a distributed solution for this specification, since the parallel
execution might produce a “wrong” order of serviced requests,
violating the specification.
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Fig. 7. Independent diamond property.

Our approach aims to construct a DFA AG whose language is
both trace closed and included in L(A). By Proposition 5.4, an
arbitrary word that is accepted by AG can be used to generate
a set of service plans that satisfies the desired requirement by
the projection of this word onto the given distribution Δ. Fur-
thermore, we need to guarantee that the word in L(AG ) can be
implemented by the team of robots. To generateL(AG ), we pro-
duce the intersection of the trace-closed subset of L(A) and the
implementable global behaviors of the team L(‖i∈I AE

i ). The
intersections of regular languages can be produced by taking
products of automata.2

To find AG , we first check if L(A) is trace closed. An al-
gorithm that checks this property for an arbitrary DFA A is
summarized in Algorithm 1. Specifically, we can check if L(A)
is trace closed because of the following result from [24]. Given
a distribution Δ of Σ and a minimal DFA A, L(A) is trace
closed if and only if A satisfies the independent diamond (ID)
property. The ID property is illustrated in Fig. 7 and defined as
the following.

Definition 5.3 (Independent Diamond Property): Given a dis-
tribution, i.e., Δ = {Σi ⊆ Σ, i ∈ I}, of Σ and a minimal DFA,
i.e., A = (Q, q0 ,Σ,→A , F ), we say that the DFA satisfies the
ID property if for any q1 , q2 , q3 ∈ Q and σ, σ′ ∈ Σ, we have

q1σ → q2
σ ′
→ q3 ∧ (Iσ ∩ Iσ ′ = ∅) ⇒

∃q4 ∈ Q such that q1
σ ′
→ q4

σ→ q3 . (6)

If L(A) is trace closed, we define AG = A× ‖i∈I AE
i . Oth-

erwise, we define AG = ¬(‖i∈I Bi)× ‖i∈I AE
i , where Bi =

B�Σ i
and B =‖i∈I AE

i × (¬A). In the second case, AG is con-
structed to remove words w ∈ L(‖i∈I AE

i ) that cannot be used
to generate desired individual service plans for the robots [i.e.,
‖i∈I {si = w�Σ i

}�L(A)]. The following proposition shows
that AG satisfies the desired requirement in both cases.

Proposition 5.5: L(AG ) is a trace-closed language over Δ
and L(AG ) ⊆ L(A).

Proof: IfL(A) is trace closed, thenL(AG ) = L(A) ∩ L(‖i∈I

AE
i ). Hence, L(AG ) ⊆ L(A). Since the language of an SP is a

product language that is always trace closed, then L(‖i∈I AE
i )

is trace closed. Since L(A) is trace closed and the class of trace-

2As a particular case of Definition 5.2, in the case when n = 2, Σ1 = Σ2 =
Σ, and A1 and A2 are DFAs, the SP ‖2

i=1 Ai is called simply the product
of automata A1 and A2 and is denoted by A1 × A2 , where L(A1 × A2 ) =
L(A1 ) ∩ L(A2 ) [27]. Consequently, we can use products of automata to obtain
intersections of regular languages.

closed language is closed under intersection,L(AG ) is also trace
closed.

If L(A) is not trace closed, then L(AG ) =
L(‖i∈I Bi) ∩ L(‖i∈I AE

i ). Since L(‖i∈I Bi) and L(‖i∈I AE
i )

are both product languages, then they are both trace
closed. Since trace-closed languages are closed un-
der complementation and intersection, L(AG ) is also a
trace-closed language. Since L(B) = L(‖i∈I AE

i ) ∩ L(A),
then L(‖i∈I AE

i ) = L(B) ∪ (L(‖i∈I AE
i ) ∩ L(A)). Hence,

L(AG ) = L(‖i∈I Bi) ∩ ( L(B) ∪ (L( ‖i∈I AE
i ) ∩ L (A))) =

(L(‖i∈I Bi) ∩ L(B)) ∪ (L(‖i∈I Bi) ∩ L(‖i∈I AE
i ) ∩ L(A)).

Since L(B) ⊆ L(‖i∈I Bi), then L(‖i∈I Bi) ⊆ L(B).
Hence, (L(‖i∈I Bi) ∩ L(B)) ⊆ (L(B) ∩ L(B)) = ∅. Since
L(AG ) = L(‖i∈I Bi) ∩ L(‖i∈I AE

i ) ∩ L(A), then L(AG ) ⊆
L(A), which completes the proof. �

If L(AG ) is not empty, then a solution to Problem 3.1 can
be found by picking any accepted word of AG . We obtain an
accepted word wg ∈ L(AG ) by using a backward reachability
search that starts from the set of accepting states and that ends
at the initial state. Once obtained, wg is projected onto the given
distribution Δ to generate a set of MS plans by the use of the
procedure outlined in the proof of Proposition 5.3.

The overall approach that is proposed in this section is sum-
marized in Algorithm 2. In the next theorem, we show that the
solution obtained by Algorithm 2 is provably correct.

Theorem 5.1: If L(AG ) �= ∅, then Algorithm 2 returns a so-
lution to Problem 3.1, i.e., , a set of MS plans {msi, i ∈ I} such
that Lteam

MS ⊆ Lφ and Lteam
MS �= ∅.

Proof: If L(AG ) �= ∅, then we can obtain wg ∈ L(AG ).
1) Since L(AG ) ⊆ L(‖i∈I AE

i ), the word wg ∈ L(‖i∈I

AE
i ). Hence, si ∈ L(AE

i ). Steps 17–21 in Algorithm 2
correspond to the procedure that is described in the proof
of Proposition 5.3. According to Proposition 5.3, a set of
MS plans {msi, i ∈ I} can always be generated by the set
of words {si, i ∈ I}, such that msi�Σ i

= si for all i ∈ I .
2) According to the construction of {msi, i ∈ I}, si =

msi�Σ i
= wg �Σ i

. According to Proposition 5.5, L(AG )
is trace closed, and L(AG ) ⊆ L(A). Since wg ∈ L(AG ),
according to Proposition 5.4, ‖i∈I {wg �Σ i

} ⊆ L(AG ).
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Hence, ‖i∈I {si} ⊆ L(A). Since Lteam
MS =‖i∈I {si}, we

have Lteam
MS ⊆ L(A). SinceL(A) = Lφ , we have Lteam

MS ⊆
Lφ .

3) By construction of {msi, i ∈ I}, si = wg �Σ i
; therefore,

wg ∈‖i∈I {si}. Hence, Lteam
MS �= ∅.

In the rest of this section, we discuss the completeness of the
approach.

Proposition 5.6: If L(A) is trace closed over Δ, then Algo-
rithm 2 returns a solution to Problem 3.1 if one exists.

Proof: If L(A) is trace closed over Δ, we have AG =
A× ‖i∈I AE

i . Assume that there is a solution to Problem 3.1,
which means that there is a set of MS plans {msi, i ∈ I} such
that the corresponding set of service plans {si, i ∈ I} satisfies
‖i∈I {si} ⊆ L(A) and ‖i∈I {si} �= ∅. According to Proposition
5.1, si ∈ (Ai). According to Proposition 5.3, si ∈ (AE

i ). Hence,
‖i∈I {si} ⊆ L(‖ i ∈ I(AE

i )). Since AG = A× ‖i∈I AE
i , ‖i∈I

{si} ⊆ L(‖ i ∈ I(AE
i )), and ‖i∈I {si} ⊆ L(A), we have ‖i∈I

{si} ⊆ L(AG ). Since ‖i∈I {si} �= ∅, we have L(AG ) �= ∅. Ac-
cording to Theorem 5.1, Algorithm 2 returns a solution to Prob-
lem 3.1. The proof is complete. �

If L(A) is not trace closed, a complete solution to Problem
3.1 requires to find a nonempty trace-closed subset of L(A)
if one exists. Equivalently, we can formulate it as the problem
of finding L(A)Δ , given L(A) and Δ. We show in the next

proposition that this problem is undecidable. Therefore, if L(A)
is not trace closed, our approach to Problem 3.1 is not complete,
and there exists no general solution to the problem.

Proposition 5.7: The problem of finding a nonempty trace-
closed subset of a regular language L is undecidable.

The undecidability is proved using a reduction to Post’s cor-
respondence problem (PCP), which is known to be undecid-
able [28]. We skip the details and only mention that this is
an adaptation of a proof in [24], which in turn is based on a
construction from [29].

Case Study 1 (Revisited): By the application of Algorithm
1, we verify that Lφ is trace closed since its corresponding
minimal DFA A that is shown in Fig. 6 satisfies the ID prop-
erty. Thus, we have AG = A × (AE

1 ‖ AE
2 ). We choose wg =

H1L1L2H2L1L3 ∈ L(AG ). The corresponding service plans
for the two robots are s1 = H1L1H2L1 and s2 = H1L2H2L3 ,
respectively.

VI. COMPLEXITY

In this section, we analyze the computational complexity of
the algorithms that are proposed in Section V, given the as-
sumption that a request does not occur in more than one ver-
tex. The running time of Algorithm 1 (i.e., to check if a lan-
guage of a minimal DFA, i.e., A = (Q, q0 ,Σ,→, F ), is trace
closed) is bounded above by O(|Q| · |Σ|). The running time of
Algorithm 2 depends essentially on the construction of AG .
Furthermore, the construction of AG relies primarily on the
construction of AE

i and ‖i∈I AE
i , which maps to step 3 and 4

in Algorithm 2. In the rest of the section, we discuss, in more
detail, the size of AE

i and ‖i∈I AE
i , as well as the running time

of steps 3 and 4. We denote |A| as the number of states in A, if
A is an FSA.

Proposition 6.1: |AE
i | and | ‖i∈I AE

i | are bounded above by
| →Ai

| and
∏

i∈I | →Ai
|, respectively.

Proof: To prove Proposition 6.1, we first prove the following
statement. The number of states in the DFA, which is denoted
as AD

i and obtained by taking ε-closure and determinizing the
NFA, i.e., Pi = Ti ⊗ ̂Ai , is bounded above by the number of
transitions | →Ai

| in the DFA Ai .
See [22] for details of the subset construction algorithm for

ε-closure and determinization. Via this algorithm, an equivalent
DFA is constructed from an NFA by the generation of subsets
of the states of the NFA, which then become the states of the
equivalent DFA.

We first prove by contradiction that for each subset of QPi

(i.e., a new state in AD
i ) constructed during the subset con-

struction algorithm, all states (v, q) in this subset have the same
second component q ∈ Qi . If this is not the case, then if there
exist two states (v, q) and (v, q′) in the same subset and q �= q′,
we can reach both (v, q) and (v, q′) from the initial state, given
the same sequence of inputs. Thus, by the construction of Pi ,
we can reach q and q′ from the initial state of q0i

given the same
sequence of inputs. However, this contradicts with the fact that
Ai is a DFA. Therefore, we have that all states (v, q) in each
subset of QPi

have the same second component q.
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For each state q ∈ Qi , we denote Sq
i as the set of states

{(v, q) ∈ QPi
, v ∈ V }. From the previous paragraph, we know

that all the subsets that we constructed during the subset con-
struction algorithm are in fact the subsets of Sq

i , q ∈ Qi .
For each Sq

i , we denote Σq
i as the set of requests {σ ∈ Σi |

(v′, q′) σ→Pi
(v, q), (v′, q′) ∈ QPi

and (v, q) ∈ Sq
i }.

Now, we show that given q ∈ Qi , the number of subsets of
Sq

i that can be constructed during the subset construction al-
gorithm is bounded above by |Σq

i |. If (v1 , q
′) σ→Pi

(v3 , q) and
(v2 , q

′′) σ→Pi
(v4 , q), where (v3 , q) and (v4 , q) ∈ Sq

i and v3 �= v4 ,
then v1 = v2 = v since σ can occur at only one vertex (i.e.,
a(σ) = v), and (v, q′) σ→Pi

(v4 , q) and (v, q′′) σ→Pi
(v3 , q). This

is trivially true if v3 = v4 . Hence, (v1 , q
′) and (v2 , q

′′) with
the same input σ must reach the same set of states, i.e.,
Nσ,q

i = {(v, q) ∈ Sq
i | a(σ) = v′, (v′, v) ∈→i}. According to

the construction of Pi , for all transitions (v, q) ε→Pi
(v′, q′), we

have q = q′. After taking ε-closure of Nσ,q
i , we obtain a sub-

set of Sq
i , which is denoted as Sσ,q

i = {(v, q) | v ∈ Reach(σ)},
where Reach(σ) is the set of vertices that can be reached from
the vertex a(σ). Since (v′, q′) σ→Pi

(v, q) only if q′
σ→Ai

q and
v′ = a(σ), then all states (v′, q′) taking the input sequence σε∗

always reach the same subset Sσ,q
i . For each q, since each subset

containing a state (note that there can be at most 1), which can
take input σε∗ always reaches the same subset of Sq

i , the number
of constructed subsets of Sq

i is smaller than or equal to |Σq
i |.

Finally, since the number of constructed subsets of QPi
is

smaller than or equal to
∑

q∈Qi
|Σq

i |, which is smaller than or
equal to | →Ai

|, the statement is proved.
Following from the statement that we just proved, the con-

struction of AE
i (AE

i is obtained by the minimization of AD
i )

and the definition of the SP (see Definition 5.2), we see that
the number of states in AE

i and ‖i∈I AE
i are bounded above by

| →Ai
| and

∏

i∈I | →Ai
|, respectively. �

Proposition 6.2: The running time to construct AE
i (step 3 in

Algorithm 2) is bounded above by O(| →Ai
| · |V |) + O(| →Ai

| · log | →Ai
|), and the running time to construct ‖i∈I AE

i (step
4 in Algorithm 2) is bounded above by O((

∏

i∈I | →Ai
|)2 ·

|Σ|).
Proof: To prove the first part of Proposition 6.2, we first

prove that the complexity of construction of AD
i (we use the

same notation AD
i as in the proof of Proposition 6.1) is bounded

above by O(| →Ai
| · |V |).

As shown in the proof of Proposition 6.1, the number of
constructed subsets of QPi

(i.e., the states of AD
i ) is smaller

than or equal to | →Ai
|. According to the subset construction

algorithm, the complexity of construction of a new subset that
can be reached from a set of states is linear in the number
of states in Sq

i . (We use the same definition as in the proof
of Proposition 6.1.) Note that |Sq

i | = |V |. Therefore, O(| →Ai

| · |V |) is the upper bound of the complexity of taking ε-closure
and determinizing the FSA Pi .

By the usage of the minimization algorithm that is described
in [22], the running time of minimization of the DFA AD

i is
linear in n log n, where n = |AD

i |. Since we obtain AE
i by the

construction of AD
i and, then, minimization of AD

i , the first part
of Proposition 6.2 is proved.

To construct the SP of FSAs, we first generate the set of
states of ‖i∈I AE

i by taking the Cartesian product of QE
i , i ∈ I ,

where QE
i represents the set of states of AE

i . Then, we check if
there exist transitions between each pair of states of ‖i∈I AE

i .
Hence, the running time to construct ‖i∈I AE

i is bounded
above by O((

∏

i∈I | →Ai
|)2 · |Σ|). Therefore, the proof is

complete. �
According to the construction of AG (see Section V-B), if

L(A) is trace closed, then |AG | (constructed in step 10) is at
most |A| · | ‖i∈I AE

i |. Otherwise, |AG | (constructed in step 12)
is at most | ‖i∈I Bi | · | ‖i∈I AE

i |.
Remark 6.1: Note that |AG | is not related to the size of the

TS Ti but only with Ai , which is apparent from Proposition
6.1 and the fact that the size of Bi and ‖i∈I Bi depend only on
A and the distribution Δ. This fact substantiates the statement
made in Section I that we avoid the construction of the parallel
composition of the individual motions (represented by Ti) and
prevent state-space explosions.

VII. RELAXING THE SIMPLIFYING ASSUMPTIONS

IN PROBLEM 3.1

There were two simplifying assumptions made in the formu-
lation of Problem 3.1 and its solution described in the previous
sections: 1) No two vertices can share a request, and 2) the robots
can communicate with each other only when they are at the same
vertex. As stated in Section III, these assumptions were made for
simplicity of notation and to reduce the complexity of the overall
approach. However, these assumptions may be restrictive from
a practical point of view. One can imagine scenarios, where the
same request occurs at several different vertices (e.g., data are
available at different locations). Furthermore, by using wireless
or other types of communication devices, the robots can possi-
bly communicate and, therefore, cooperate to service requests
at different vertices (regions) in the graph (environment).

To relax the first assumption, we now model the locations of
the requests as a function a : Σ → 2V (as opposed to a function
that takes values in V as before) with the following semantics:
v ∈ a(σ) means that service request σ occurs at the vertex v.
If a request σ occurs at different vertices in the environment
(i.e., |a(σ)| > 1), then we say that σ is serviced if there exists
a time instant at which all the robots that own σ are at vertices,
where σ occurs (two or more robots are allowed to overlap at a
vertex). A practical example of a request that occurs at multiple
vertices is the case in which an agent has several options to
collect a certain piece of data. This also allows for a situation
in which the agents that own σ need to synchronize to make a
collective decision, possibly based on information they collected
individually earlier.

The definition of the TS Ti , i ∈ I, [see (2)] remains the same,
with the exception of the satisfaction relation |=i⊆ V × Π,
which is redefined as follows: (v, ε) ∈|=i for all v ∈ V and
(v, σ) ∈|=i , σ ∈ Σi , if and only if v ∈ a(σ). In other words, all
requests that occur at vertex v become the observations of the
state v of Ti .

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 06:08:39 UTC from IEEE Xplore.  Restrictions apply. 



168 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 1, FEBRUARY 2012

To relax the second assumption, we model the communica-
tion capabilities of the robots as an undirected communication
graph

C = (V,EC) (7)

where EC ⊆ V × V is a symmetric relation that models the
environment-induced interrobot communication constraints.
Specifically, (vi, vj ) ∈ EC if and only if a robot that is located
at vi can directly communicate with another robot that is lo-
cated at vj . We use Ck = (Vk ,Ek ), where k ∈ K, Vk ⊆ V, and
Ek ⊆ E, to denote a connected component (CC) of an undi-
rected graph (a CC is a maximal connected subgraph of an
undirected graph). K is a set that indexes all CCs of an undi-
rected graph. A partition of the set V can be obtained from
the collection of subsets {Vk , k ∈ K}, where Vk is the set of
vertices of Ck and ∪k∈K Vk = V . We say that two robots can
communicate with each other if they locate in the same CC. Ac-
cording to the semantics of servicing requests as given earlier,
in order to service a shared request σ, all robots that own σ must
be at vertices, where σ occurs at the same time, and be part of
the same CC.

With the two relaxed assumptions as described earlier, Prob-
lem 3.1 can be reformulated as follows.

Problem 7.1: Given a team of agents Ai , i ∈ I, with motion
capabilities Ti [see (2) with |=i adapted as described earlier]
and communication constraints C [see (7)] on a graph E [see
(1)], a set of requests Σ, a function a : Σ → 2V that represents
the locations of the requests, a distribution, i.e., Δ = {Σi ⊆
Σ, i ∈ I}, of Σ that models the capacity of the robots to service
requests and the cooperation requirements among the robots,
and a task specification φ in the form of an RE over Σ find a
set of MS plans {msi, i ∈ I} such that the motion of the team
satisfies φ.

We first consider the particular case when for all shared re-
quests σ, the vertices in the set a(σ) ⊆ V are connected in the
graph C. In this case, all robots that own a shared request σ
can always communicate with each other and service σ simul-
taneously when they visit vertices in a(σ). Problem 7.1 is then
reduced to Problem 3.1 with a relaxed assumption for the lo-
cation of the requests, which can be viewed as Problem 3.1
with a modified function a and relation |=i of Ti . Note that in
the approach that is outlined in Section V, |=i is only used in
the definition of the product automaton Pi (see Definition 5.1).
Since Definition 5.1 also applies to the modified |=i , the previ-
ous approach can be used to solve this special case of Problem
7.1 without any changes, and all the results that are shown in
Section V still hold.

Next, we show that the general case of Problem 7.1 can be
solved by reducing it to the special case described earlier. Specif-
ically, we treat a shared request σ that occurs in different CCs
as different shared requests by labeling σ with the CC Ck . We
denote σCk

as the relabeling of σ in the CC Ck . For the given
set of requests Σ, the distribution Δ, the task specification φ,
and communication graph C for Problem 7.1, we then construct
the following:

1) a set of requests

ΣC = {σ||Iσ | = 1} ∪
⋃

k ∈K , σ ∈Σ
|I σ |> 1

σCk
;

2) a distribution ΔC = {ΣC
i ⊆ ΣC, i ∈ I} such that 1) for

all σ ∈ Σ, we have σ ∈ ΣC
i if and only if σ ∈ Σi and

2) for all σCk
/∈ Σ, we have σCk

∈ ΣC
i if and only if the

corresponding request σ ∈ Σi (i.e., if a robot Ai owns the
shared request σ, then Ai also owns σCk

, for all k ∈ K);
3) a set of labels IC

σ = {i ∈ I |σ ∈ ΣC
i } for each request

σ ∈ ΣC;
4) a task specification φC by replacement of all instances of

the shared requests σ in φ by (σC1 + · · · + σC|K |);
5) a location relation aC : ΣC → 2V such that 1) for all σ ∈

ΣC ∩ Σ, we have v ∈ aC(σ) if and only if v ∈ a(σ) and
2) for all σCk

∈ ΣC\Σ, we have v ∈ aC(σCk
) if and only

if v ∈ Vk and the corresponding request σ ∈ Σ satisfies
v ∈ a(σ);

6) TS T C
i = {V, v0i

,→i ,ΠC, |=C
i }, where ΠC = ΣC ∪ {ε},

and |=C
i ⊆ V × ΠC is a relation, where (v, ε) ∈|=C

i for all
v ∈ V , and (v, σ) ∈|=C

i , σ ∈ ΣC
i , if and only if v ∈ aC(σ).

By the use of the constructed ΣC, T C
i , aC, ΔC, and φC as

inputs of Problem 7.1, we guarantee that for all shared σ ∈ ΣC,
vertices aC(σ) ⊆ V are connected in the graph C. Hence, the
new problem is a special case of Problem 7.1, which means that
we can obtain a set of MS plans that satisfies φC by directly
using the approach for Problem 3.1. To find the solution to
the original problem (i.e., a set of MS plans that satisfies φ),
we simply replace all the labeled shared requests σCk

with the
corresponding shared requests σ in the obtained MS plans.

Remark 7.1: The computational complexity analysis in
Section VI does not apply to our solution for Problem 7.1.
The main challenge in the analysis of the complexity to solve
Problem 7.1 is to find the upper bound of the size of AE

i , which
now also depends on the occurrence of the requests in the envi-
ronment and the motion capabilities of the robots. In the worst
case, the size of AE

i is bounded above by the product of the
size of Ai and the size of Ti . A better upper bound might be
achieved by the consideration of the special structure of the
product automaton Pi and will be studied in our future work.

VIII. AUTOMATIC DEPLOYMENT IN THE ROBOTIC

URBAN-LIKE ENVIRONMENT

In our implementation, the global specification φ is first
converted to the minimal DFA A by using JFLAP [23]. The
rest of Algorithm 2 (including Algorithm 1) is implemented in
MATLAB. 1) We take a global DFA A, a distribution Δ, and a
set of TS Ti as inputs and output a set of individual MS plans
for the robotic team. 2) We use Dijkstra’s algorithm [30] to find
a word or a run that is accepted by an FSA by the assump-
tion that each transition of the FSA has default cost 1; if the
algorithm fails to find an accepted run, the language of this
FSA is empty. 3) We implement the standard algorithm [22]
for taking ε-closure, determinizing a ε-NFA, and minimizing a
DFA. The output of Algorithm 2 is then mapped to control and
communication strategies (which is defined in Section III)
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through the use of motion primitives and interrupts as described
earlier.

In this section, we show how our solution can be used to
deploy a team of robots by using a rich specification to service
requests that occur in a miniature city. Our RULE (see Figs. 1
and 2) is a collection of roads, intersections, and parking lots,
which are connected following a simple set of rules (e.g., a
road connects two (not necessarily different) intersections, the
parking lots can only be located on the side of (each bound of) a
road). Each intersection has traffic lights that are synchronized
in the usual way. A desktop computer at 2 GHz and with 2 GB
RAM is used to remotely control the traffic lights through XBee
wireless boards. Each parking lot consists of several parking
spaces, where each parking space can accommodate exactly
one car, and each parking lot has enough parking spaces to
accommodate all the robots at the same time. The city is easily
reconfigurable through retaping and replacement of the wireless
traffic lights in intersections.

The robots are Khepera III miniature cars. Each car can sense
when entering an intersection from a road, when entering a road
from an intersection, when passing in front of a parking lot,
when it is correctly parked in a parking space, and when a front
obstacle is dangerously close. In particular, the cars can avoid
collisions among themselves, which implies that several cars can
be in the same region at the same time. Moreover, by ensuring
all the cars follow the basic traffic rules and setting reasonable
time intervals for the traffic lights, we make sure that motion
deadlocks (i.e., two cars fail to move forward because they are
blocking each other) do not occur. Each car can distinguish the
color of a traffic light and different parking spaces in the same
parking lot. Each car is programmed with motion and commu-
nication primitives, which allows it to safely drive on a road,
turn in an intersection, park, and communicate with other cars.
All the cars can communicate through Wi-Fi with the desktop
computer that is described earlier, which is used as an interface
to the user (i.e., to enter the global specification) and to perform
all the computation that is necessary to generate the individual
control and communication strategies. Once computed, these
are sent to the cars, which execute the task autonomously by
interacting with the environment and by communicating with
each other, if necessary. We assume that the communication
protocol is deadlock free.

As we described in Section III, RULE can be modeled by the
usage of the proposed framework. We assume that interrobot
communication is possible only when the robots are in the same
parking lot. The motion capabilities of the robots are captured
by a TS Ti that is illustrated in Fig. 3. Note that, in reality,
each vertex of Ti has associated a set of motion primitives, and
each transition is triggered by a Boolean combination of inter-
rupts. For example, at vertex R5l , only one motion primitive
follow_road is available, which allows the robot to drive on the
road. There is only one possible transition from R5l to I1 , which
is triggered by at_int AND green_light, where at_int is an in-
terrupt generated when the robot reaches the end of a road at
an intersection, and green_light is an interrupt that is generated
at the green color of the traffic light. As another example, there
are three motion primitives available at I1 , i.e., turn_right_int,

turn_left_int, and go_straight_int, which allow the robot to turn
right, left, or go straight through an intersection, respectively.
The transitions from I1 to R6r , R5r , R3l , and R1r are all trig-
gered by the same interrupt on_road, which is generated when
the robot is back on a road leaving an intersection.

It is important to note that, by the selection of a motion
primitive that is available at a vertex, the robot can correctly
execute a run of Ti , given that it is initialized on a road. Indeed,
only one motion primitive (i.e., follow_road) is available on a
road, and at an intersection, the choice of a motion primitive
uniquely determines the next vertex given the road that the
robot entered the intersection from. For example, by selecting
turn_right_int at I1 , the robot goes to R1r given that it came
from R3r . This justifies our assumption from Section III that
runs of Ti can be executed by the robots. In other words, MS
plans that are defined in Section III and derived as described in
Section V can be immediately implemented by a robot. It is easy
to see that under some reasonable liveness assumptions about
environmental events (e.g., the traffic lights will eventually turn
green), such a TS captures the motion of each robot correctly.
(See [31] for implementation details.)

Assume that two robots, which are labeled as A1 and A2 ,
are available for deployment in the city with the topology from
Fig. 2. In the rest of this section, we complete the case study
that is introduced in the earlier sections and present another case
study.

Case Study 1 (Revisited): Using Algorithm 2, we generate the
MS plans for A1 and A2 . By the assumption that A1 and A2
start in R2l and R1l , respectively, the two MS plans are

ms1 :
R2l I2R4r I3R8rP4H1R8r I4R5l I1R6rP1L1

R6r I4R8lP5H2R8l I3R8r I4R5l I1R6rP1L1
(8)

ms2 :
R1l I1R3l I2R4r I3R8rP4H1R8r

I4R5l I1R3l I2R3rP2L2R3r I1R5r I4R8l

P5H2R8l I3R8r I4R6lP3L3

. (9)

Snapshots from a movie of the actual deployment are shown
in Fig. 8. The movie of the deployment in the RULE platform
is available at http://hyness.bu.edu/RULE_media.html.

Case Study 2: Assume Σ = {H1 ,H2 , L1 , L2 , L3 , L4 , L5},
Σ1 = {L1 , L4 ,H1 ,H2} and Σ2 = {L2 , L3 , L5 ,H1 ,H2}. Con-
sider the following specification: “first service L4 and then L5
or first service H1 ; both L1 and L2 in an arbitrary order; H2 ;
and finally, both L1 and L3 in an arbitrary order.” Formally, this
specification translates to the following RE over Σ:

φ : (L4L5 + H1) (L1L2 + L2L1) H2 (L1L3 +L3L1). (10)

In this example, L(A) is not a trace-closed language. There-
fore, the FSA AG is obtained as described in Section V-B.
We choose wg = H1L1L2H2L1L3 ∈ L(AG ). The correspond-
ing service plans for A1 and A2 are s1 = H1L1H2L1 and
s2 = H1L2H2L3 , respectively. The FSAs that are generated
by Algorithm 2 are shown in Fig. 9. Finally, we generate the
MS plans for A1 and A2 by the assumption that A1 and A2
start in R2l and R1l , respectively. Since the service plans and
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Fig. 8. Six snapshots from the deployment, which correspond to the MSs given in (8) and (9). The labels for the roads, intersections, and parking spaces are
given in Fig. 2. (1) Position of the cars immediately after the initial time, when A1 is on road R2 l and A2 is on road R1 l . (2) Two cars visit parking lot P4
simultaneously to service the “heavy” request H1 . (3) A1 is in P1 , and therefore, the “light” request L1 is serviced. (4) A2 is in P2 , and therefore, request L2 is
serviced. (5) Two cars are in parking lot P5 to service the “heavy” request H2 . (6) Eventually, A1 stops in P1 , and A2 stops in P3 , which means that L1 and L3
are serviced.

Fig. 9. FSAs generated by the application of Algorithm 2 to case study 2 that is described in Section VIII.

the initial positions of the robots are equal to those in case study
1, we obtain the same MS plans as the ones in case study 1.

IX. CONCLUSION AND FINAL REMARKS

We have presented a framework for automatic deployment
of a robotic team from a specification given as an RE over
a set of service requests that occur at known locations of a
partitioned environment. Given the robot capabilities to service
the requests and the possible cooperation requirements for some
requests, we have found individual control and communication
strategies, such that the global behavior of the team satisfies the
given specification. We have illustrated the proposed method
with experimental results in our RULE.

The proposed framework does not accommodate for changes
in the environment and external events, and it is not robust to
agent failures, e.g., loss of communication. As future work, we
will study how to re-plan when such changes/events occur. For
instance, a reactive approach [32] can be used to accommodate
“well-behaved” external events, as recommended in [17]. More-
over, we will study optimal solutions that take into account the
motion and service costs. Finally, we will consider extensions of
this approach to formulas of temporal logics, such as LTL, and
to probabilistic systems, such as Markov decision processes.
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