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Abstract—We design controllers from formal specifica-
tions for positive discrete-time monotone systems that are
subject to bounded disturbances. Such systems are widely
used to model the dynamics of transportation and bio-
logical networks. The specifications are described using
signal temporal logic (STL), which can express a broad
range of temporal properties. We formulate the problem
as a mixed-integer linear program (MILP) and show that
under the assumptions made in this paper, which are not
restrictive for traffic applications, the existence of open-
loop control policies is sufficient and almost necessary
to ensure the satisfaction of STL formulas. We establish
a relation between satisfaction of STL formulas in infinite
time and set-invariance theories and provide an efficient
method to compute robust control invariant sets in high
dimensions. We also develop a robust model predictive
framework to plan controls optimally while ensuring the
satisfaction of the specification. Illustrative examples and
a traffic management case study are included.

Index Terms—Formal synthesis and verification, mono-
tone systems, transportation networks.

I. INTRODUCTION

IN RECENT years, there has been a growing interest in using
formal methods for specification, verification, and synthesis

in control theory. Temporal logics [1] provide a rich, expressive
framework for describing a broad range of properties, such as
safety, liveness, and reactivity. In formal synthesis, the goal is
to control a dynamical system from such a specification. For
example, in an urban traffic network, a synthesis problem can
be to generate traffic light control policies that ensure gridlock
avoidance and fast enough traffic through a certain road, for all
times.

Control synthesis for linear and piecewise affine systems from
linear temporal logic (LTL) specifications was studied in [2]–[4].
The automata-based approach used in these works requires con-
structing finite abstractions that (bi)simulate the original system.
Approximate finite bisimulation quotients for nonlinear systems
were investigated in [5] and [6]. The main limitations of finite
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abstraction approaches are the large computational burden of
discretization in high dimensions and conservativeness when
exact bisimulations are impossible or difficult to construct. As an
alternative approach, LTL optimization-based control of mixed-
logical dynamical (MLD) systems [7] using mixed-integer pro-
grams was introduced in [8] and [9], and was recently extended
to model predictive control (MPC) from signal temporal logic
(STL) specifications in [10]–[12]. However, these approaches
are unable to guarantee infinite-time safety, and the results are
fragile in the presence of nondeterministic disturbances.

In some applications, the structural properties of the system
and the specification can be exploited to consider alternative
approaches to formal control synthesis. We are interested in
systems in which the evolution of the state exhibits a type of
order preserving law known as monotonicity, which is common
in models of transportation, biological, and economic systems
[13]–[16]. Such systems are also positive in the sense that the
state components are always nonnegative. Control of positive
systems have been widely studied in the literature [17]–[19].
Positive linear systems are always monotone [20].

In this paper, we study optimal STL control of discrete-time
positive monotone systems (i.e., systems with state partial or-
der on the positive orthant) with bounded disturbances. STL
allows designating time intervals for temporal operators, which
makes it suitable for describing requirements with deadlines.
Moreover, STL is equipped with quantitative semantics, which
provides a measure to quantify how strongly the specification
is satisfied/violated. The quantitative semantics of STL can also
be used as cost for maximization in an optimal control setting.
The STL specifications in this paper are restricted to a partic-
ular form that favors smaller values for the state components.
We assume that there exists a maximal disturbance element that
characterizes a type of upper-bound for the evolution of the
system. These assumptions are specifically motivated by the
dynamics of traffic networks, where the disturbances represent
the volume of exogenous vehicles entering the network and
the maximal disturbance characterizes the rush hour exogenous
flow. Our optimal control study is focused on STL formulae with
infinite-time safety/persistence properties, which is relevant to
optimal and correct traffic control in the sense that the vehicular
flow is always free of congestion while the associated delay is
minimized.

The key contributions of this paper are as follows. First, for
finite-time semantics, we prove that the existence of open-loop
control policies is necessary and sufficient for maintaining STL
correctness. For the correctness of infinite-time semantics, we
show that the existence of open-loop control sequences is suffi-
cient and almost necessary, in a sense that is made clear in the
paper. Implementing open-loop control policies is very simple
since online state measurements are not required, which can
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prove useful in applications where the state is difficult to access.
We use a robust MPC approach to optimal control. The main
contribution of our MPC framework is guaranteed recursive fea-
sibility, a property that was not established in prior STL MPC
works [10]–[12]. We show via a case study that our method is
applicable to systems with relatively high dimensions.

This remainder of the paper is organized as follows. We
introduce the necessary notation and background on STL in
Section II. The problems are formulated in Section III. The tech-
nical details for control synthesis from finite and infinite-time
specifications are given in Section IV and Section V, respec-
tively. The robust MPC framework is explained in Section VI.
Finally, we introduce a traffic network model and explain its
monotonicity properties in Section VII, where a case study is
also presented.

A. Related Work

This paper is an extension of the conference version [21],
where we studied safety control of positive monotone systems.
Here, we significantly enrich the range of specifications to STL,
provide complete proofs, and include optimal control.

Monotone dynamical systems have been extensively inves-
tigated in the mathematics literature [22]–[24]. Early stud-
ies mainly focused on stability properties and characteriza-
tion of limit sets for autonomous, deterministic continuous-time
systems [22], [25]. The results do not generally hold for discrete-
time systems, as discussed in [23]. In particular, attractive pe-
riodic orbits are proven to be nonexistent for continuous-time
autonomous systems [25], but may exist for discrete-time au-
tonomous systems. Here, we present a similar result for con-
trolled systems, where we show that a type of attractive periodic
orbit exists for certain control policies.

Angeli and Sontag [26] extended the notion of monotonicity
to deterministic continuous-time control systems and provided
results on interconnections of these systems. However, they as-
sumed monotonicity with respect to both state and controls. We
do not require monotonicity with respect to controls, which en-
ables us to consider a broader class of systems. In particular, we
do not require controls to belong to a partially ordered set.

Switching policies for exponential stabilization of switched
positive linear systems were studied in [27] and [28]. Stabi-
lization is closely related to set-invariance, which is thoroughly
studied in this paper. Apart from richer specifications, we can
handle more complex systems. We consider hybrid systems in
which the mode is either determined directly by the control input
or indirectly by the state (e.g., signalized traffic networks).

Recently, there has been some interest on formal verifica-
tion and synthesis for monotone systems. Safety control of
cooperative systems was investigated in [29]–[31]. However,
these work, like [26], assumed monotonicity with respect to
the control inputs as well. Computational benefits gained from
monotonicity for reachability analysis of hybrid systems were
highlighted in [32]. More recently, Coogan and Arcak [33] pro-
vided an efficient method to compute finite abstractions for
mixed-monotone systems (a more general class than monotone
systems). Kim et al. [34] exploited monotonicity to compute
finite-state abstractions that are used for compositional LTL
control. While the approaches in [33] and [34] can consider sys-
tems and specifications beyond the assumptions in this paper,
they still require state-space discretization, which is a severe
limitation in high dimensions. Moreover, they are conservative
since the finite abstractions are often not bisimilar with the

original system—whereas our approach provides a notion of
(almost) completeness. Finally, as opposed to the all mentioned
works, our framework is amenable to optimal temporal logic
control.

II. PRELIMINARIES

A. Notation

For two integers a and b, we use rem(a, b) to denote
the remainder of division of a by b. Given a set S and a
positive integer K, we use the shorthand notation SK for
∏K

i=1 S. A signal is defined as an infinite sequence s = s0s1 . . .,
where sk ∈ S, k ∈ N. Given s1 , s2 , . . . , sK ∈ S, the repeti-
tive infinite-sequence s1s2 . . . sK s1s2 . . . sK . . . is denoted by
(s1s2 . . . sK )ω . The set of all signals that can be generated from
S is denoted by Sω . We use s[k] = sksk+1 . . . and s[k1 : k2 ] =
sk1 sk1 +1 . . . sk2 , k1 < k2 , to denote specific portions of s. A
real signal is r = r0r1r2 . . ., where rk ∈ Rn ,∀k ∈ N. A vec-
tor of all ones in Rn is denoted by 1n . We use the notation
1n [0 : K] := 1n . . . 1n , where 1n is repeated K + 1 times. The
positive closed orthant of the n-dimensional Euclidian space
is denoted by Rn

+ := {x ∈ Rn |x[i] ≥ 0, i = 1, . . . , n}, where
x = (x[1], x[2], . . . , x[n ])T . For a, b ∈ Rn , the nonstrict partial
order relation � is defined as: a � b⇔ b− a ∈ Rn

+ .
Definition 1 ([35]): A set X ⊂ Rn

+ is a lower set if ∀x ∈
X , L(x) ⊆ X , where L(x) := {y ∈ Rn

+ |y � x}.
It is straightforward to verify that ifX1 andX2 are lower sets,

then X1 ∪ X2 and X1 ∩ X2 are also lower sets. We extend the
usage of notation � to equal-length real signals. For two real
signals r, r, we denote r′[t′1 : t′2 ] � r[t1 : t2 ], t2 − t1 = t′2 −
t′1 , if r′t ′1 +k � rt1 +k , k = 0, 1, . . . , t2 − t1 . Moreover, if r, r′ ∈
(Rn

+)ω , we are also allowed to write r′[t′1 : t′2 ] ∈ L(r[t1 : t2 ]).

B. Signal Temporal Logic (STL)

In this paper, STL [36] formulas are defined over discrete-
time real signals. The syntax of negation-free STL is

ϕ := π | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1UI ϕ2 | FI ϕ |GI ϕ (1)

where π = (p(r) ≤ c) is a predicate on r ∈ Rn , p : Rn → R,
c ∈ R; ∧ and ∨ are Boolean connectives for conjunction and
disjunction, respectively; UI , FI , and GI are the timed until,
eventually, and always operators, respectively, and I = [t1 , t2 ]
is a time interval, t1 , t2 ∈ N ∪ {∞}, t2 ≥ t1 . When t1 = t2 ,
we use the shorthand notation {t1} := [t1 , t1 ]. Exclusion of
negation does not restrict expressivity of temporal properties.
It can be easily shown that any temporal logic formula can be
brought into negation normal form (where all negation operators
apply to the predicates) [12], [37]. We deliberately omit negation
from STL syntax for laying out properties that are later exploited
in the paper. For simplicity, in the rest of the paper, we will refer
to negation-free STL simply as STL. The semantics of STL is
inductively defined as

r[t] |= π ⇔ p(rt) ≤ c
r[t] |= ϕ1 ∨ ϕ2 ⇔ r[t] |= ϕ1 ∨ r[t] |= ϕ2

r[t] |= ϕ1 ∧ ϕ2 ⇔ r[t] |= ϕ1 ∧ r[t] |= ϕ2

r[t] |= ϕ1 UI ϕ2 ⇔ ∃t′ ∈ t+ I s.t r[t′] |= ϕ2

∧ ∀t′′ ∈ [t, t′], r[t′′] |= ϕ1

r[t] |= FI ϕ ⇔ ∃t′ ∈ t+ I s.t. r[t′] |= ϕ

r[t] |= GI ϕ ⇔ ∀t′ ∈ t+ I s.t. r[t′] |= ϕ (2)
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where |= is read as satisfies. The language of ϕ is the set of
all signals such that r[0] |= ϕ. The horizon of an STL formula
ϕ, denoted by hϕ , is defined as the time required to decide the
satisfaction of ϕ, which is recursively computed as [38]

hπ = 0

hϕ1 ∧ϕ2 = hϕ1 ∨ϕ2 = max(hϕ1 , hϕ2 )

hF [ t 1 , t 2 ]ϕ = hG [ t 1 , t 2 ]ϕ = t2 + hϕ

hϕ1 U [ t 1 , t 2 ]ϕ2 = t2 + max(hϕ1 , hϕ2 ). (3)

Definition 2: An STL formula ϕ is bounded if hϕ <∞.
Definition 3 ([39]): A safety STL formula is an STL formula

in which all “until” and “eventually” intervals are bounded.
The satisfaction of ϕ by r[t] is decided only by r[t : t+ hϕ ]

and the rest of the signal values are irrelevant. Therefore, instead
of r[t] |= ϕ, we occasionally write r[t : t+ hϕ ] |= ϕ with the
same meaning. The STL robustness score ρ(r, ϕ, t) ∈ R is a
measure indicating how strongly ϕ is satisfied by r[t], which is
recursively computed as [36]

ρ(r, π, t) = c− p(rt)
ρ(r, ϕ1 ∨ ϕ2 , t) = max(ρ(r, ϕ1 , t), ρ(r, ϕ2 , t))

ρ(r, ϕ1 ∧ ϕ2 , t) = min(ρ(r, ϕ1 , t), ρ(r, ϕ2 , t))

ρ(r, ϕ1 UI ϕ2 , t) = max
t ′∈t+I

(
min(ρ(r, ϕ2 , t

′)

min
t ′′∈[t,t ′]

ρ(r, ϕ1 , t
′′))
)

ρ(r,FI ϕ, t) = max
t ′∈t+I

ρ(r, ϕ, t′)

ρ(r,GI ϕ, t) = min
t ′∈t+I

ρ(r, ϕ, t′). (4)

Positive (respectively, negative) robustness indicates satisfac-
tion (respectively, violation) of the formula.

Example 1: Consider signal r ∈ Rω , where rk = k, k ∈ N,
and π = (r2 ≤ 10). We have ρ(r,G[0,3]π, 0) = min(10− 0,
10− 1, 10− 4, 10− 9) = 1 (satisfaction) and ρ(r,F[4,6]π,
0) = max(10− 16, 10− 25, 10− 36) = −6 (violation).

Remark 1: There are minor differences between the original
STL introduced in [36] and the one used in this paper. In [36],
STL was developed as an extension of metric interval temporal
logic [39] for real-valued continuous-time signals. Here, without
any loss of generality, we apply STL to discrete-time signals.
Our STL is based on metric temporal logic (similar to [38]).
Thus, we allow the intervals of temporal operators to be single-
tons (punctual) or unbounded. It is worth to note that any STL
formula in this paper can be translated into an LTL formula by
appropriately replacing the time intervals of temporal operators
with LTL “next” operator. However, the LTL representation of
STL formulas can be very inefficient. We prefer STL for conve-
nience of specifying requirements for systems with real-valued
states. We also exploit the STL quantitative semantics.

III. PROBLEM STATEMENT AND APPROACH

We consider discrete-time systems of the following form:

xt+1 = f(xt, ut , wt) (5)

where xt ∈ X is the state,X ⊂ Rn
+ , ut ∈ U is the control input,

U = Rmr × {0, 1}mb , and wt ∈ W is the disturbance (adver-
sarial input) at time t, t ∈ N,W = Rqr × {0, 1}qb . The sets U

and W may include real and binary values. For instance, the
set of controls in the traffic model developed in Section VII
includes binary values for decisions on traffic lights and real
values for ramp meters. These types of systems are positive as
all state components are nonnegative. We also assume that X is
bounded.

Definition 4: System (5) is monotone (with partial order
on Rn

+ ) if for all x, x′ ∈ X , x′ � x, we have f(x′, u, w) �
f(x, u, w),∀u ∈ U ,∀w ∈ W .

The systems considered in this paper are positive and mono-
tone with partial order on Rn

+ . For the remainder of the pa-
per, we simply refer to systems in Definition 4 as monotone.1

Although the results of this paper are valid for any general
f : X × U ×W → X , we focus on systems that can be written
in the form of MLD systems [7], which are defined in Section IV.
It is well known that a wide range of systems involving discon-
tinuities (hybrid systems), such as piecewise affine systems, can
be transformed into MLDs [40].

Assumption 1: There exist w∗ ∈ W such that

∀x ∈ X ∀u ∈ U , f(x, u, w) � f(x, u, w∗) ∀w ∈ W. (6)

We denote f(x, u, w∗) by f ∗(x, u) and refer to f ∗ as the
maximal system. As it will be further explained in this pa-
per, the behavior of monotone system (5) is mainly charac-
terized by its maximal f ∗. Assumption 1 is restrictive but holds
for many compartmental systems where the disturbances are
additive and the components are independent. Therefore, the
maximal system corresponds to the situation that every compo-
nent takes its most extreme value. We also note that if As-
sumption 1 is removed, overestimating f by some f ∗ such
that f(x, u, w) � f ∗(x, u),∀w ∈ W is always possible for a
bounded f . By overestimating f the control synthesis methods
of this paper remain correct, but become conservative.

We describe the desired system behavior using specifications
written as STL formulas over a finite set of predicates. We
assume that each predicate π is in the following form:

π =
(
aTπ x ≤ bπ

)
(7)

where aπ ∈ Rn
+ , bπ ∈ R+ . It is straightforward to verify that the

closed half-space defined by (7) is a lower set in Rn
+ . By restrict-

ing the predicates into the form (7), we ensure that a predicate
remains true if the values of state components are decreased
(Note that this is true for any lower set. We require linearity
in order to decrease the computational complexity.). This re-
striction is motivated by monotonicity. For example, in a traffic
network, the state is the vector representation of vehicular den-
sities in different segments of the network. The satisfaction of a
“sensible” traffic specification has to be preserved if the vehic-
ular densities are not increased all over the network. Otherwise,
the specification encourages large densities and congestion.

Definition 5: A control policy μ :=
⋃
t∈N μt is a set of func-

tions μt : X t+1 → U , where

ut = μt(x0 , x1 , . . . , xt).

An open-loop control policy takes the simpler form ut =
μt(x0), i.e., the decision on the sequence of control in-
puts is made using only the initial state x0 . On the other
hand, in a (history dependent) feedback control policy, ut =

1The term cooperative in dynamics systems theory is used specifically to
refer to systems that are monotone with partial order defined on the positive
orthant. We avoid using this term here as it might generate confusion with the
similar terminology used for multiagent control systems.
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μt(x0 , x1 , . . . , xt), the controller implementation requires real-
time access to the state and its history.

An infinite sequence of admissible disturbances is w =
w0w1 . . ., where wk ∈ W , k ∈ N. Following the notation in-
troduced in Section II-A, the set of all infinite-length sequences
of admissible disturbances is denoted by Wω . Given an initial
condition x0 , a control policy μ and w ∈ Wω , the run of the
system is defined as the following signal:

x = x(x0 , μ,w) := x0x1x2 . . .

where xt+1 = f(xt, ut , wt),∀t ∈ N. Now, we formulate the
problems studied in this paper. In all problems, we assume that
a monotone system (5) is given, Assumption 1 holds, and all the
predicates are in the form of (7).

Problem 1 (Bounded STL Control): Given a bounded STL
formula ϕ, find a set of initial conditions X0 ⊂ X and a control
policy μ such that

x(x0 , μ,w)[0] |= ϕ ∀w ∈ Wω ∀x0 ∈ X0 .

As mentioned in the previous section, the satisfaction of ϕ
solely depends on x[0 : hϕ ], where hϕ is obtained from (3). The
horizon hϕ can be viewed as the time when the specification
ends. In many engineering applications, the system is required
to uphold certain behaviors for all times. Therefore, guarantee-
ing infinite-time safety properties is important. We formulate
bounded-global STL formulas in the form of

ϕb ∧G[Δ ,∞]ϕg (8)

where ϕb and ϕg are bounded STL formulas, G[Δ ,∞] stands for
unbounded temporal “always”—as defined in Section II-B, and
Δ ≥ hϕb is a positive integer. Formula (8) states that first, ϕb
is satisfied by the signal from time 0 to Δ, and afterwards, ϕg
holds for all times.

Problem 2 (Bounded-global STL Control): Given bounded
STL formulas ϕb, ϕg , Δ ∈ [hϕb ,∞) find a set of initial con-
ditions X0 ⊂ X and a control policy μ such that

x(x0 , μ,w)[0] |= ϕb ∧G[Δ ,∞]ϕg ∀w ∈ Wω ∀x0 ∈ X0 .
(9)

As a special case, we allowϕb to be logical truth so Problem 2
reduces to global STL control problem of satisfying G[Δ ,∞]ϕg .
Note that if ϕg is replaced by logical truth, Problem 2 reduces
to Problem 1. We have distinguished Problem 1 and Problem 2
as we use different approaches to solve them.

It can be shown that (see Appendix) a large subset of safety
STL formulas—as in Definition 3—can be written as

∨nφ
i=1 φi,

where each φi, i = 1, . . . , nφ , is a bounded-global formula.
Therefore, the framework for solutions to Problem 2 can also
be used for safety STL control as it leads to nφ instances of
Problem 2, where a solution to any of the instances is also a so-
lution to the original safety STL control problem. The drawback
to this approach is that nφ can be very large.

Remark 2: We avoid separate problem formulations for STL
formulas containing unbounded “eventually” or “until” opera-
tors as their unbounded intervals can be safely underapproxi-
mated by bounded intervals. However, bounded underapproxi-
mation is not sound for the unbounded “always” operator. A
safety formula can be satisfied (respectively, violated) with
infinite-length (respectively, finite-length) signals [39].

In the presence of disturbances, feedback controllers ob-
viously outperform open-loop controllers. We show that the

existence of open-loop control policies for guaranteeing the
STL correctness of monotone systems in Problem 1 (respec-
tively, Problem 2) is sufficient and (respectively, almost) nec-
essary. The online knowledge of state is not necessary for STL
correctness. But it can be exploited for planning controls opti-
mally. While our framework can accommodate optimal control
versions of Problem 1 and Problem 2, the focus of this paper is
on robust optimal control problem for global STL formulas—of
the form G[0,∞)ϕ, where ϕ is a bounded formula. These type of
problems are of practical interest for optimal traffic management
(as discussed in Section VII).

We use a MPC approach, which is a popular, powerful ap-
proach to optimal control of constrained systems. Given a plan-
ning horizon of lengthH ,2 a sequence of control actions starting
from time t is denoted by uHt := u0|tu1|t . . . uH−1|t . Given uHt
and xt , we denote the predicted H-step system response by

xHt
(
xt, u

H
t , w

H
t

)
:= x1|tx2|t . . . xH |t

where xk+1|t = f(xk |t , uk |t , wk |t), k = 0, 1, . . . ,H − 1,x0|t =
xt and wH

t := w0|tw1|t . . . wH−1|t . At each time, uHt is found
such that it optimizes a cost function J(xHt , u

H
t ), J : XH ×

UH → R, subject to system constraints. When uHt is computed,
only the first control action u0|t is applied to the system and
given the next state, the optimization problem is resolved for
uHt+1 . Thus, the implementation is closed loop.

Problem 3 (Robust STL MPC): Given a bounded STL for-
mula ϕ, an initial condition x0 , a planning horizon H , and a
cost function J

(
xHt , u

H
t

)
, find a control policy such that ut =

μ(x0 , . . . , xt) = uopt
0|t , where uH,opt

t := uopt
0|t . . . u

opt
H−1|t , and

uH,opt is the following minimizer:

argmin
uHt

max
wH
t

J
(
xHt (xt, uHt , w

H
t ), uHt

)

s.t. x(x0 , μ,w)[0] |= G[0,∞]ϕ ∀w ∈ Wω

xk+1 = f(xk , uk , wk ) ∀k ∈ N. (10)

The primary challenge of robust STL MPC is guaranteeing
the satisfaction of the global STL formula while the controls
are planned in a receding horizon manner [see the constraints
in (10)]. Our approach takes the advantage of the results from
Problem 2 to design appropriate terminal sets for the MPC algo-
rithm such that the generated runs are guaranteed to satisfy the
global STL specification while the online control decisions are
computed (sub)optimally. Due to the temporal logic constraints,
our MPC setup differs from the conventional one. The details
are explained in Section VI.

For computational purposes, we assume that J is a piece-
wise affine function of the state and controls. Moreover, the cost
functions in our applications are nondecreasing with respect
to the state in the sense that x′k |t � xk |t , k = 1, 2, . . . ,H ⇒
J(x′Ht , uHt ) � J(xHt , u

H
t ),∀uHt ∈ UH . As it will become clear

later in the paper, we will exploit this property to simplify the
worst case optimization problem in (10) to an optimization prob-
lem for the maximal system.

As mentioned earlier, a natural objective is maximizing STL
robustness score. It follows from the linearity of the predicates
in (7) and max and min operators in (4) that STL robustness
score is a piecewise affine function of finite-length signals. We

2The MPC horizon H should not be confused with the STL horizon hϕ .
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can also consider optimizing a weighted combination of STL
robustness score and a given cost function. We use this cost
formulation for traffic application in Section VII.

IV. FINITE HORIZON SEMANTICS

In this section, we explain the solution to Problem 1. First,
we exploit monotonicity to characterize the properties of the
solutions. Next, we explain how to synthesize controls using a
mixed-integer linear programming (MILP) solver.

Lemma 1: Consider runs x and x′ and an STL formula ϕ.
If for some t, t′, we have x′[t′ : t′ + hϕ ] � x[t : t+ hϕ ], then
x[t] |= ϕ implies x′[t′] |= ϕ.

Proof: Since all predicates denote lower sets in the form of
(7), we have x′t ′ � xt ⇒ aTπ x

′
t ′ ≤ aTπ xt , x[t] |= π ⇒ x′[t] |= π.

Thus, all predicates that were true by the valuations in x re-
main true for x′. The negation-free semantics in (2) implies that
without falsifying any predicate, a formula cannot be falsified.
Therefore, x[t] |= ϕ implies x′[t′] |= ϕ �

The largest set of admissible initial conditions is defined as:

Xmax
0 :=

{
x0 ∈ X

∣
∣
∣∃μ s.t. x(x0 , μ,w) |= ϕ ∀w ∈ Wω

}
.

The set Xmax
0 is a union of polyhedra. Finding the half-space

representation of all polyhedral sets inXmax
0 may not be possible

for high dimensions. Therefore, we find a half-space represen-
tation for a subset of Xmax

0 . The following result states how to
check whether x0 ∈ Xmax

0 .
Theorem 1: We have x0 ∈ Xmax

0 if and only if there exists
an open-loop control sequence

uol,x0
0 uol,x0

1 . . . uol,x0
hϕ −1

such that xol,x0 [0 : hϕ ] |= ϕ, where xol,x0 [0 : hϕ ] =
xol,x0

0 xol1 . . . x
ol,x0
hϕ , and xol,x0

k+1 = f ∗(xol,x0
k , uol,x0

k ), k = 0, . . . ,
hϕ − 1, xol,x0

0 = x0 .
Proof: (Necessity) Satisfaction of ϕ with w ∈ Wω re-

quires at least one satisfying run for the maximal sys-
tem, hence a corresponding control sequence exists. Denote
it by uol,x0

0 uol,x0
1 . . . , uol,x0

hϕ −1 . (Sufficiency) Consider any run

generated by the original system xk+1 = f(xk , u
ol,x0
k , wk ).

We prove that xk � xol,x0
k , k = 0, 1, . . . , hϕ by induction

over k. The base case x0 � xol,x0
0 is trivial (x0 = xol,x0

0 ).
The inductive step is verified from monotonicity: xk+1 =
f(xk , u

ol,x0
k , wk ) � f ∗(xk0 , ukk ) = xol,x0

k+1 . Therefore, x[0 : hϕ ]
� xol,x0 [0 : hϕ ], ∀w[0 : hϕ−1] ∈ Whϕ . It follows from
Lemma 1 that x[0 : hϕ ] |= ϕ,∀w[0 : hϕ−1] ∈ Whϕ . �

Corollary 1: The set Xmax
0 is a lower set.

Proof: Consider any x′0 ∈ L(x0), x0 ∈ Xmax
0 . Let x′k+1 =

f(x′k , u
ol,x0
k , wk ), k = 0, 1, . . . , hϕ − 1. It follows from mono-

tonicity that x′k � xol,x0
k , k = 0, 1, . . . , hϕ , ∀w[0 : hϕ−1] ∈

Whϕ . By the virtue of Lemma 1, x′[0 : hϕ ] � xx0 ,ol [0 : hϕ ].
Therefore, we have ∀x0 ∈ Xmax

0 , x′0 ∈ L(x0)⇒ x′0 ∈ Xmax
0 ,

which indicates that Xmax
0 is a lower set. �

Corollary 2: If x0 ∈ Xmax
0 and μol is the following open-

loop control policy

μolt (x0) = uol,x0
t , t = 0, 1, . . . , hϕ − 1

then x(x′0 , μ,w)[0 : hϕ ] |= ϕ,∀w ∈ Whϕ ,∀x′0 ∈ L(x0).
Proof: Follows from the proof of Corollary 1. �

Now that we have established the properties of the solu-
tions to Problem 1, we explain how to compute the admissible
initial conditions and their corresponding open-loop control se-
quences. The approach is based on formulating the conditions
in Theorem 1 as a set of constraints that can be incorporated
into a feasibility solver. We convert all the constraints into a set
of mixed-integer linear constraints and use off-the-shelf MILP
solvers to check for feasibility. Converting logical properties
into mixed-integer constraints is a common procedure, which
was employed for MLD systems in [7]. Karaman et al. [8] and
Raman et al. [10] extended this technique to a framework for
time-bounded model checking of temporal logic formulas. A
variation of this method is explained here.

First, the STL formula is recursively translated into a set of
mixed-integer constraints. For each predicate π = (aTπ x ≤ bπ ),
as in (7), we define a binary variable zπk ∈ {0, 1} such that 1
(respectively, 0) stands for true (respectively, false). The relation
between zπ , robustness ρ, and x are encoded as

aTπ x−M(1− zπ ) + ρ ≤ bπ (11a)

aTπ x+Mzπ + ρ ≥ bπ . (11b)

The constantM is a sufficiently large number such thatM ≥
max{aTπ K, bπ}, where K ∈ Rn

+ is the upper bound for the
state values,xk � K, k = 0, 1, . . . , hϕ . In practice,M is chosen
sufficiently large such that the constraint x � K is never active.
Note that the largest value of ρ for which zπ = 1 is bπ − aTπ x,
which is equal to the robustness of π.

Now, we encode the truth table relations. For instance, we
desire to capture 1 ∧ 0 = 0 and 1 ∨ 0 = 1 using mixed-integer
linear equations. Disjunction and conjunction connectives are
encoded as the following constraints:

z =
nz∧

i=1

zi ⇒ z ≤ zi, i = 1, . . . , nz (12a)

z =
nz∨

i=1

zi ⇒ z ≤
nz∑

i=1

zi (12b)

where z ∈ [0, 1] is declared as a continuous variables. However,
it only can take binary values as evident from (12). Similarly,
define zϕk ∈ [0, 1] as the variable indicating whether x[k] |= ϕ.
An STL formula is recursively translated as:

ϕ =
nϕ∧

i=1

ϕi ⇒ zϕk =
nϕ∧

i=1

zϕi

k

ϕ =
nϕ∨

i=1

ϕi ⇒ zϕk =
nϕ∨

i=1

zϕi

k

ϕ = GI ψ ⇒ zϕk =
∧

k ′∈I
zψk ′

ϕ = FI ψ ⇒ zϕk =
∨

k ′∈I
zψk ′

ϕ = ψ1UI ψ2 ⇒ zϕk =
∨

k ′∈I

⎛

⎝zψ2
k ′ ∧

∧

k ′′∈[k,k ′]

zψ1
k ′′

⎞

⎠ . (13)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 24,2023 at 10:51:22 UTC from IEEE Xplore.  Restrictions apply. 



SADRADDINI AND BELTA: FORMAL SYNTHESIS OF CONTROL STRATEGIES FOR POSITIVE MONOTONE SYSTEMS 485

Finally, we add the following constraints:

zϕ0 = 1, ρ ≥ 0. (14)

Proposition 1: The set of constraints in (11)–(14) has the
following properties.

i) We have x[0] |= ϕ if the set of constraints is feasible.
ii) We have x[0] �|= ϕ if the set of constraints is infeasible.

iii) The largest ρ such that the set of constraints, while “ρ ≥
0” is removed from (14), is feasible is equal to ρ(x, ϕ, 0).

Proof: i) We provide the proof for (12), as the case for more
complex STL formulas are followed in a recursive manner from
(13). If z = 1, we have from (12a) that zi = 1, i = 1, . . . , nz ,
which correctly encodes conjunctions. Similarly, z = 1 in (12b)
indicates that not all zi, i = 0, . . . , nz can be zero, or, ∃i ∈
{1, . . . , nz} such that zi = 1, which correctly encodes disjunc-
tions. ii) Infeasibility can be recursively traced back into (12).
For both (12a) and (12b), if z = 1 is infeasible, it indicates that
zi = 0, i = 1, . . . , nz . iii) We also prove this statement for (12)
as it is the base of recursion for general STL formulas. Let
zi = (aTπi x+ ρ ≤ bπi ), i = 1, . . . , nz . Consider (12a) and the
following optimization problem:

ρmax = argmax ρ

s.t. aTπi x+ ρ ≤ bπi , i = 1, . . . , nz

where its solution is mini=1,...,nz (bπi − aTπi x), which is identi-
cal to the quantitative semantics for conjunction [see (4)]. Sim-
ilarly, consider (12b) and the following optimization problem:

ρmax = argmax ρ

s.t. ∃i ∈ {1, . . . , nz}, aTπi x+ ρ ≤ bπi
where the solution is maxi=1,...,nz (bπi − aTπi x), which is iden-
tical to the quantitative semantics for disjunction. �

Our integer formulation for Boolean connectives slightly dif-
fers from the formulation in [8] and [10], where lower bound
constraints for the z s are required. For example, for translating
z =

∧nz
i=1 zi , it is required to add z ≥∑nz

i=1 zi − nz + 1 to im-
pose a lower bound for z. However, these additional constraints
become necessary only when the negation operator is present in
the STL formula. Hence, they are removed in our formulation.
This reduces the constraint redundancy and degeneracy of the
problem. By doing so, we observed computation speed gains
(up to reducing the computation time by 50%) in our case stud-
ies. Moreover, we encode quantitative semantics in a different
way than [10], where a separate STL robustness-based encod-
ing is developed, which introduces additional integers. Due to
property iii) in Proposition 1, our encoding does not require
additional integers to capture robustness, hence it is computa-
tionally more efficient.

Definition 6: System (5) is in MLD form [7] if written as

xt+1 = Axt +Buut +Bwwt +Dδδt +Drrt (15a)

Eδδt + Errt � Exxt + Euut + Ewwt + e (15b)

where δt ∈ {0, 1}nδ and rt ∈ Rnr are auxiliary variables
and A,Bu ,Bw ,Dδ ,Dr ,Eδ , Er , Ex,Eu ,Ew , e are appropri-
ately defined constant matrices such that (15) is well posed in
the sense that given xt, ut , wt , the feasible set for xt+1 is a sin-
gle point equal to f(xt, ut , wt). Introducing auxiliary variables
and enforcing (15b) can capture nonlinear f [7].

The system equations are brought into mixed-integer linear
constraints by transforming system (5) into its MLD form. As
mentioned earlier, any piecewise affine system can be trans-
formed into an MLD. In the case studies of this paper, the
construction of (15) from a piecewise affine (5) is not explained
as the procedure is well documented in [40].

Finally, the set of constraints in Theorem 1 can be cast as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xol,x0
0 = x0 , Initial condition

xol,x0
k+1 = f ∗(xol,x0

k , uol,x0
k ), System constraints

zπk = (aTπ x
ol,x0
k ≤ bπ ), Predicates

zϕ0 = 1, ρ ≥ 0, STL satisfaction.

(16)

Checking the satisfaction of the set of constraints in (16) can
be formulated as a MILP feasibility problem, which is handled
using powerful off-the-shelf solvers. For a fixed initial condition
x0 , the feasibility of the MILP indicates whether x0 ∈ Xmax

o .
An explicit representation of Xmax

o requires variable elimina-
tion from (16), which is computationally intractable for a large
MILP. Alternatively, we can set x0 as a free variable while
maximizing a cost function (e.g., norm of x0) such that a large
L(x0) is obtained. Another natural candidate is maximizing
ρ(xol,x0 , ϕ, 0). It is worth to note that by finding a set of distinct
initial conditions and taking the union of all L(x0), we are able
to find a representation for an underapproximation of Xmax

o .
MILPs are NP-complete. The complexity of solving (16)

grows exponentially with respect to the number of binary
variables and polynomially with respect to the number of
continuous variables. The number of binary variables in our
framework is O (hϕ (nπ +mb + qb + nδ ))—nπ is the num-
ber of predicates—and the number of continuous variables is
O (hϕ (n+mr + qr + nr )). In other words, the exponential
growth builds upon the intricacy of the specification and the
number of modes demonstrated by the hybrid nature of the sys-
tem. However, the complexity is polynomial with respect to the
dimension of the state.

Example 2: Consider the following switched system:

x+ = eAu τ x+A−1
u (I − e−Au τ )w

where x = (x[1], x[2])T ∈ R2
+ , u ∈ U is the control input

(switch), U = {1, 2}, and

A1 =
(

1 1
1 −5

)

, A2 =
(−8 1

1 2

)

.

The (additive) disturbance w is bounded to L(w∗), where w∗ =
(1.5, 1)T and τ = 0.1. This system is the discrete-time version
of ẋ = Aux+ w with sample time τ . Both matrices are Metzler
(all off-diagonal terms are nonnegative, hence all the elements
of its exponential are positive) and non-Hurwitz, hence constant
input results in unbounded trajectories. The system is desired to
satisfy the following STL formula:

ϕ =
10∨

T =0

(
F[0,T ]p1 ∧ F{T }p2

)

where p1 = ((x[1] ≤ 1) ∧ (x[2] ≤ 5)) and p2 = ((x[1] ≤ 5) ∧
(x[2] ≤ 1)). In plain English,ϕ states that “within ten time units,
the trajectory visits the box characterized by p1 first and then
the box corresponding to p2” (see Fig. 1 ). We transformed this
system into its MLD form (15). We formulated the constraints
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Fig. 1. Example 2: [Left] The trajectory of the maximal system f ∗ that
satisfies the specification. [Right] For the same controls, the trajectory
of the original system f with w drawn from an uniform distribution over
L(w∗).

in (16) as a MILP and set the cost function to maximize ‖x0‖∞
and used the Gurobi3 MILP solver. The solution was obtained
in less than 0.05 s on a 3-GHz Dual Core MacBook Pro. We ob-
tained x0 = (2.82 2.82)T and the following open-loop control
sequence: 1 2 1 2 2 1 1 1 1 1. By applying this control sequence,
we sampled a trajectory of the original system f with values
of w drawn from a uniform distribution over L(w∗). Both the
trajectories of f and f ∗ satisfy the specification. The results are
shown in Fig. 1.

V. INFINITE HORIZON SEMANTICS

In this section, we provide a solution to Problem 2. We show
that the infinite-time property in (8) can be guaranteed using
repetitive control sequences. First, we consider global specifi-
cations and extend the results from our previous work [21] in
Section V-A. Next, we show how to find controls for bounded-
global STL formulas (see Problem 2) in Section V-B. Solution
completeness is discussed in Section V-C.

A. Global Formulas: S-Sequences and Inductive
Invariance

Consider the global specification G[0,∞]ϕ, where ϕ is a
bounded formula. We introduce some additional notation.

Definition 7: Given a bounded STL formula ϕ over pred-
icates in the form (7), the language realization set (LRS)
[41] is

Lϕ :=
{
x0x1 . . . xhϕ ∈ X hϕ

∣
∣x0x1 . . . xhϕ |= ϕ

}
. (17)

Proposition 2: The set Lϕ is a lower set.
Proof: For all x0x1 . . . xhϕ ∈ Lϕ and x′0x

′
1 . . . x

′
hϕ �

x0x1 . . . xhϕ , it follows from Lemma 1 that x′0x
′
1 . . . x

′
hϕ |= ϕ.

Thus, x′0x
′
1 . . . x

′
hϕ ∈ LRS(ϕ), hence LRS(ϕ) is a lower set. �

It follows from the semantics of global operator in (2) that
x |= G[0,∞]ϕ is equivalent to x[t : t+ hϕ ] ∈ Lϕ ,∀t ∈ N.

Definition 8: A set ΩLϕ ⊆ Lϕ is a robust control invariant
(RCI) set if:

∀ x0x1 . . . xhϕ ∈ ΩLϕ ,∃u ∈ U , s.t.
x1x2 . . . xhϕ f(xhϕ , u, w) ∈ ΩLϕ ∀w ∈ W. (18)

Satisfaction of G[0,∞]ϕ is accomplished by finding a RCI
set in Lϕ . Note that unlike traditional definitions of RCI sets

3www.gurobi.com

(e.g., [42]), where the set is defined in the state-space X , our
RCI set is defined in an augmented form of the state-space
X hϕ . The LRS can also be interpreted as the “safe” set in the
(hϕ + 1)-length trajectory space. The maximal RCI set inside
Lϕ provides a complete solution to the set-invariance problem.
The computation of maximal RCI set requires implementing an
iterative fixed-point algorithm, which is computationally inten-
sive for MLD systems and nonconvex sets (see [43] and [44]
for discussion). We use monotonicity to provide an alternative
approach. The following result is a more general version of the
one in [21].

Theorem 2: Given a bounded formulaϕ, if there exists xs [0 :
hϕ ] ∈ Lϕ , and a sequence of controls: us0 , . . . , u

s
T −1 , where T is

a positive integer determining the length of the sequence, such
that:

1) xs [k : k + hϕ ] ∈ Lϕ , k = 0, 1, . . . , T , where xshϕ +k+1
= f ∗(xshϕ +k , u

s
k ),

2) xs [T : T + hϕ ] � xs [0 : hϕ ],
then the following set is a RCI set in Lϕ :

ΩLϕ :=
T −1⋃

k=0

L(xs [k : k + hϕ ]). (19)

Proof: For any x′0x
′
1 . . . x

′
hϕ ∈ ΩLϕ , there exists i ∈

{0, 1 . . . , T − 1} such that x′0x
′
1 . . . x

′
hϕ ∈ L(xs [i : i+ hϕ ]).

On one hand, we have xsi+1 . . . x
s
i+hϕ f

∗(xsi+hϕ , u
s
i ) ∈ ΩLϕ . On

the other hand, we have x′1 � xsi+1 , . . . , x
′
hϕ � xsi+hϕ . By ap-

plying usi , monotonicity implies

f(x′hϕ , u
s
i , w) � f ∗(xsi+hϕ , usi ) = xsi+1+hϕ ∀w ∈ W

⇒ x′1x
′
2 . . . x

′
hϕ f(x′hϕ , u

s
i , w) ∈

L
(
xsi+1x

s
i+2 . . . x

s
i+1+hϕ )

) ∀w ∈ W.

The proof is complete from the fact that xsi+1 . . . x
s
i+1+hϕ ∈

ΩLϕ for all i ∈ {0, 1 . . . , T − 1}. �
Corollary 3: Let the conditions in Theorem 2 hold and

x[t0 : t0 + hϕ ] ∈ L(xs [0 : hϕ ]) for some t0 ∈ N. Consider the
following control sequence starting from time t0 + hϕ :

us :=
(
us0u

s
1 . . . u

s
T −1
)ω

(20)

i.e., ust = usrem(t−t0−hϕ ,T ) , t ≥ t0 + hϕ . Let xk+1 = f ∗(xk ,
uk ), k = t0 + hϕ, . . .. Then, we have x[t : t+ hϕ ] ∈
ΩLϕ ,∀t ≥ t0 .

Proof: We prove by induction that x[t : t+ hϕ ] ∈ L(xs
[rem(t− t0 , T ) : rem(t− t0 , T ) + hϕ ]),∀t ≥ t0 . The base
case for t = t0 is true. In order to prove the in-
ductive step x[t+ 1 : t+ 1 + hϕ ] ∈ L(xs [rem(t+ 1− t0 , T ) :
rem(t+ 1− t0 , T ) + hϕ ]), we need to prove that xt+k+1 �
xsrem(t+1−t0 ,T )+k , k = 0, . . . , hϕ , for which we need to only
prove the case for k = hϕ as previous inequalities are already
assumed by induction. We show xt+hϕ +1 � xsrem(t+1−t0 ,T )+hϕ

through monotonicity and the induction assumption that
xt+hϕ � xsrem(t−t0 ,T )+hϕ :

xt+hϕ +1 = f ∗
(
xt+hϕ , u

s
rem(t−t0 ,T )

)

� f ∗
(
xsrem(t−t0 ,T )+hϕ , u

s
rem(t−t0 ,T )

)

= xsrem(t−t0 ,T )+1+hϕ � xsrem(t+1−t0 ,T )+hϕ .
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Fig. 2. Example 3: [Left] The trajectory satisfying the conditions of
s-sequences. [Right] The corresponding RCI set inside S.

Note that xsT +hϕ � xshϕ . The “�” in the last line can be replaced
by “=” when rem(t− t0 , T ) + 1 �= T . �

We refer to the repetitive sequence of controls in (20) as an
s-sequence. An s-sequence is an invariance inducing open-loop
control policy. Once the latest hϕ + 1-length of system state
are brought into ΩLϕ , an s-sequence keeps the hϕ + 1-length
trajectory of the system in ΩLϕ for all subsequent times.

The computation of an s-sequence requires solving an MILP
forxs [hϕ : T ] |= G[0,T ]ϕ (an instance of Problem 1) with an ad-
ditional set of constraints in xs [0 : hϕ ] |= ϕ (again, an instance
of Problem 1, but without the dynamical constraints. In other
words, xs [0 : hϕ ] does not need to be a trajectory of the maximal
system), and xs [T : T + hϕ ] � xs [0 : hϕ ] (linear constraints).
We are usually interested in the shortest s-sequence since its
computation requires the smallest MILP. Algorithmically, we
start from T = 1 and implement T ← T + 1 until the MILP
formulating the conditions in Theorem 2 becomes feasible and
an s-sequence is found. As it will be implied from results in
Section V-C, existence of an s-sequence is almost necessary for
existence of a RCI set.

Example 3: Consider the system in Example 2. We wish to
keep the trajectory in the set characterized by p1 ∨ p2 , i.e., S =
L
(
(1, 5)T )

) ∪ L ((5, 1)T )
)
. Note that this set is nonconvex. We

set the cost function to maximize ‖x0‖1 . The shortest s-sequence
has T = 5 and is (2 1 2 1 1)ω . The resulting trajectory satisfying
the definition of s-sequence is shown in Fig. 2 [Left]. The
corresponding RCI set is shown in Fig. 2 [Right] (cyan region),
which is characterized by the xs0 , x

s
1 , . . . , x

s
4 (red dots) that lie

insideS (green region). Note that the [0, 2]× [0, 2] portion of the
coordinates in Fig. 1 is shown here for a clearer representation
of the details.

B. Bounded-Global Specifications: φ-Sequences

Now, we consider general bounded-global formulas—as in
Problem 2—and generalize the paradigm used for s-sequences.
We provide the key result of this section.

Theorem 3: Given a bounded-global STL formula φ =
ϕb ∧G[Δ ,∞]ϕg , an initial condition x0 , a control sequence

uφ0 . . . u
φ
Δ+T +hϕ g −1 , where T is a positive integer, and a non-

negative integer T0 < T , let the following conditions hold:
1) xφ [0 : Δ + T + hϕg ] |= ϕb ∧G[Δ ,Δ+T ]ϕg ,
2) xφ [Δ + T : Δ + T + hϕg ] � xφ [Δ + T0 : Δ + T0 +
hϕg ],

where xφk+1 = f ∗(xφk , u
φ
k ), k ∈ [0,Δ + T + hϕg − 1], xφ0 = x0 .

Let μol be the open-loop control policy corresponding to the
following control sequence:

uφ := uφ0 . . . u
φ
Δ+T0 +hϕ g −1

(
uφΔ+T0 +hϕ g . . . u

φ
Δ+T +hϕ g −1

)ω

(21)

Then, x(x′0 , μ
ol ,w) |= φ,∀w ∈ Wω ,∀x′0 ∈ L(x0). Moreover,

the following set is a RCI set in Lϕg :

ΩLϕ g :=
T −T0−1⋃

i=0

L(xφ [Δ + T0 + i : Δ + T0 + hϕg + i]).

(22)

Proof: We need to prove that x(xφ0 , μ
ol ,w∗) |= φ, where

w∗ = (w∗)ω . The fact that x(x′0 , μ
ol ,w)[0] |= φ,∀x′0 ∈

L(x0),∀w ∈ Wω follows from monotonicity and Lemma 1.
The fact that ΩLϕ g is a RCI set follows from Theorem 2 as
(19) is obtained from replacing Δ = T0 = 0 in (22). It follows

that
(
uφΔ+T0 +hϕ g . . . u

φ
Δ+T +hϕ g −1

)ω
is an s-sequence. For all

t ≥ Δ + T + hϕg , let

xφt+1 = f ∗
(
xφt , u

φ
Δ+T0 +hϕ g +rem(t−Δ−T0−hϕ g ,T −T0 )

)
. (23)

Using Corollary 3, we have xφ [k + Δ + T0 : k + Δ + T0 +
hϕg ] ∈ Lϕg ,∀k ∈ N, and the proof is complete. �

We refer to the sequence of controls in (21) as a φ-sequence.
The computation of a φ-sequence requires solving an MILP
for xφ [0 : Δ + T + hϕg ] |= ϕb ∧G[Δ ,Δ+T ]ϕg (an instance of
Problem 1) with an additional set of constraints in xφ [Δ +
T : Δ + T + hϕg ] � xφ [Δ + T0 : Δ + T0 + hϕg ] (linear con-
straints). Thus, similar to s-sequences, the computation of a
φ-sequence is based on feasibility checking of a MILP. We
have two parameters T and T0 < T to search over. We start
from T = 1 and implement T ← T + 1, while checking for all
T0 < T , until the corresponding MILP gets feasible. In Sec-
tion V-C, we discuss the necessity of existence of a feasible
solution for some T0 , T .

Another interpretation of a φ-sequence is a sequence that con-
sists of an initialization segment of length Δ + hϕg to bring the
latest hϕg states of the system into ΩLϕ g ⊆ Lϕg and a repetitive
segment of lengthT to stay in ΩLϕ g . The repetitive segment is an
s-sequence. Since control inputs eventually becoming periodic,
the long-term behavior is expected to demonstrate periodicity,
which leads to the following result based on Theorem 3.

Corollary 4: The ω-limit set of the run given by (23) is
nonempty and corresponds to the following periodical orbit:

(
xφ,∞0 xφ,∞1 . . . xφ,∞T −T0−1

)ω
(24)

where xφ,∞k := limc→∞ x
φ
k+Δ+T0 +c(T −T0 ) , k = 0, . . . , T −

T0 − 1.
Proof: We show that xφt � xφt+T −T0

,∀t ≥ Δ + T0 . Similar
to the proof of Corollary 3, we use induction. The base case for
t = Δ + T0 is already in the second condition in Theorem 3.
The inductive step is proven as follows:

xφt+1+T −T0
= f ∗(xφt+T −T0

, uT −T0 +t) � f ∗(xφt , ut) = xφt+1
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Fig. 3. Example 4: [Left] The first 19 points of the trajectory of the
maximal system f ∗ that satisfy the conditions in Theorem 3. A sample
trajectory of f is also shown. [Right] The ω-limit set (red dots) of f ∗ is a
seven-periodic orbit.

where from (21), we have

ut+T −T0 = ut = uφt+Δ+T0 +hϕ g +rem(t−Δ−T0−hϕ g ,T −T0 ) .

Thus, each component of the sequence xφΔ+T0 +kx
φ
Δ+T +k

xφΔ+2T −T0 +k . . ., k = 0, . . . , T − T0 is monotonically decreas-
ing. Monotone convergence theorem [45] explains that a
lower-bounded monotonically decreasing sequence converges
(in this case, all values are lower-bounded by zero). Thus,
limc→∞ x

φ
Δ+T0 +k+c(T −T0 ) , k = 0, . . . , T − T0 , exists and the

proof is complete. �
Example 4: Consider the system in Example 2. We wish to

satisfy

φ = F[0,5]p1 ∧ G[5,∞)
(
F[0,6]p1 ∧ F[0,6]p2

)
.

The specification is in the form in (9) with hϕb = Δ = 5, hϕg =
6. This specification requires that p1 is visited at least once
until t = 5 and, afterwards, p1 and p2 are persistently visited
while the maximum time between two subsequent visits is not
greater than 6. We find a φ-sequence solving a MILP for T =
7, T0 = 0, while maximizing ‖x0‖1 . The obtained φ-sequence
is uφ = 2 2 2 2 1 2 1 1 1 1 2 (2 2 1 1 1 1 2)ω for x0 =
(12.4, 0)T . The first Δ + T + hϕg + 1 = 5 + 7 + 6 + 1 = 19
time points of the trajectory of the maximal system f ∗ satisfying
the conditions in Theorem 3 are shown in Fig. 4 [Left]. A sample
trajectory of f with values ofw chosen uniformly fromW is also
shown. Both trajectories satisfy φ. The limit-set of f ∗, which is
a seven-periodical orbit, is shown in Fig. 4 [Right].

C. Necessity of Open-Loop Strategies

We showed that if there exists an initial condition and a finite
length control sequence such that the statements in Theorem 2
hold, an open-loop control sequence is sufficient for satisfying
of a bounded-global formula, as was formulated in Problem 2.
In this section, we address the necessity conditions. We show
that the existence of open-loop control strategies for satisfying a
bounded-global specifications is almost necessary in the sense
that if a φ-sequence is not found using Theorem 3 for large
values of T , then it is almost certain that no correct control
policy (including feedback policies) exists, or, if exists any, it
is fragile in the sense that a slight increase in the effect of
the disturbances makes the policy invalid. We characterize the
necessity conditions based on hypothetical perturbations in the
disturbance set.

Theorem 4: Suppose system (5) is strongly monotone with
respect to the maximal disturbance in the sense that for all
ε > 0, there exists a perturbed disturbance setWp with maximal
disturbance w∗p such that

∀x ∈ X ∀u ∈ U , f(x, u, w∗) + 1n ε � f(x, u, w∗p). (25)

Consider the bounded-global formula φ = ϕb ∧G[Δ ,∞]ϕ.
Given ε > 0, the disturbance set is altered to Wp such that
(25) holds. If there exists a control policy μ and an initial con-
dition x0 such that x(x0 , μ,wp) |= φ,∀wp ∈ Wω

p , then there
exists at least one open-loop control policy μol in the form of a
φ-sequence in (21) for the original system such that

T ≤ A/εn(hϕ g +1) (26)

where A is a constant depending on Lϕg .
Proof: Given a bounded set C ⊂ Rn(hϕ +1) , we define

the diameter d(C) := inf{d|s1 � s2 + d1n(hϕ +1) ,∀s1 , s2 ∈ C}
(e.g., the diameter of an axis-aligned hyper-box is equal to the
length of its largest side). Consider a partition of Lϕ by a finite
number of cells, where the diameter of each cell is less than ε.
The maximum number of cells required for such a partition is
A/εn(hϕ g +1) , whereA is a constant dependent on the shape and
volume of Lϕg . A conservative upper bound on A can be given
as follows. Define a∗ ∈ R+ as

argmin
a/ε∈N

{
x[0 : hϕg ] � a1n [0 : hϕg ] ∀x[0 : hϕg ] ∈ Lϕg

}
.

Since Lϕg is bounded and closed, a∗ exists. We have
Lϕg ⊆ L(a∗1n(hϕ g +1)). Let A be a∗n(hϕ g +1)—the vol-
ume of L(a∗1n(hϕ g +1)), which is a hyper-box. Partition
L(a∗1n(hϕ g +1)) into N := A/εn(hϕ g +1) number of equally
sized cubic cells with side length of ε. Such a partition also
partitions Lϕg to at most N number of cells where the diameter
of each cell is not greater than ε.

Since there exists μ such that x(x0 , μ,wp) |= φ,∀wp ∈
Wω

p , then there exist at least one run satisfying φ for sys-
tem xk+1 = f(xk , uk , w∗p). Let x0 , . . . , xΔ+hϕ g +N be the
first Δ + hϕg +N + 1 time points of such a run. We
have x[k : k + hϕg ] ∈ Lϕg , k = Δ, . . . ,Δ +N . Consider the
sequence x[Δ : Δ + hϕg ]x[Δ + 1 : Δ + 1 + hϕg ] . . .x[Δ +
N : Δ +N + hϕg ]. Consider a partition of Lϕg with cells such
that for all cells the diameter is less than ε. By the virtue
of pigeonhole principle, there exists a cell that contains at
least two time points x[k1 : k1 + hϕg ] and x[k2 : k2 + hϕg ],
Δ ≤ k1 ≤ k2 ≤ Δ +N . From the assumption on the diameter
of the cells, we have

x[k2 : k2 + hϕg ] � x[k1 : k1 + hϕg ] + ε1n [0 : hϕg ]. (27)

Now consider system x′k+1 = f(x′k , uk , w
∗)—the original

maximal system—with x′k1 +hϕ g = xk1 +hϕ g . We prove that

x′k + 1n ε ≤ xk ∀k > k1 + hϕg . (28)

We use induction. The base case for k = k1 + hϕg + 1 is veri-
fied using (25):

x′k1 +1+hϕ g + 1n ε = f(x′k1 +hϕ g , uk1 +hϕ g , w
∗) + 1n ε

≤ f(x′k1 +hϕ g , uk1 +hϕ g , w
∗
p)

= xk1 +1+hϕ g .
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The inductive step is verified using monotonicity and (25):

x′k+1+hϕ g + 1n ε = f(x′k+hϕ g , uk+hϕ g , w
∗) + 1n ε

≤ f(x′k+hϕ g , uk+hϕ g , w
∗
p)

≤ f(xk+hϕ g , uk+hϕ g , w
∗
p) = xk+1+hϕ g .

It immediately follows from (28) that

x′[k2 : k2 + hϕg ] + ε1n [0 : hϕg ] ≤ x[k2 : k2 + hϕg ]. (29)

Since the left-hand side of (27) is the right-hand side of (29),
we have

x′[k2 : k2 + hϕg ] ≤ x[k1 : k1 + hϕg ]. (30)

This is reminiscent of the conditions in Theorem 2. Now by
definingx′k := xk , k = k1 , . . . , k1 + hϕg − 1, we conclude that

Ω′Lϕ g :=
k2−1⋃

k=k1

L(x′[k : k + hϕ ])

is a RCI set for system with adversarial disturbance setW and
(uk1 . . . uk2 +hϕg −1)ω is an s-sequence.

Now, once again, consider the original system x′k+1 =
f(x′k , uk , w

∗) with x′0 = x0 . Monotonicity implies x′[0 : k1 +
hϕg ] ≤ x[0 : k1 + hϕg ]. Thus, by applying u0 , . . . , uk1 +hϕ g −1
and using Lemma 1, we have x′[0 : k1 + hϕg ] |= ϕb ∧
G[Δ ,k1 ]ϕg . Corollary 3 implies x′[k1 + hϕg ] |= G[0,∞)ϕg ,
if (uk1 , . . . , uk2−1)ω is applied starting from time k1 . Fi-
nally, monotonicity and Lemma 1 immediately indicate that
x(x′′0 , μ

ol ,w) |= φ,∀x′′0 ∈ L(x0),∀w ∈ Wω , where μol is the
following open-loop control strategy producing the following
control sequence:

u0 . . . uk1−1(uk1 uk2 +hϕg −1)
ω

which is in the form of (21) with k1 = Δ + T0 + hϕg and
k2 = Δ + T . Since k2 ≤ Δ +N , we also have T ≤ N,N =
A/εn(hϕ g +1) , and the proof is complete. �

Corollary 5: Suppose that for all T ≤ Tmax , T0 < T , there
does not exist an initial condition and a control sequence such
that the conditions in Theorem 3 hold. Then there does not exist
any solution to Problem 2 given that the maximal disturbance is
w∗p such that (25) holds with ε > n (h ϕ g + 1 )

√
Tmax .

The relation between the fragility in Theorem 4 and the length
of the φ-sequence suggests that by performing the search for
longer φ-sequences (which are computationally more difficult),
the bound for fragility becomes smaller, implying that a correct
control policy (if exists) is close to the limits (i.e., robustness
score is close to zero, or the constraints are barely satisfied in
the case with maximal disturbance). In practice, the bounds in
Theorem 4 are very conservative and one may desire to find
tighter bounds for specific applications.

Example 5: Consider Example 3. Suppose that there does
not exist an s-sequence of length smaller than 144 with
maximal disturbance w∗. The constant A (area in this 2-D
case, see proof of Theorem 4) of region corresponding to
p1 ∨ p2 is 9. Therefore, S can be partitioned into 144 equally
sized square cells with side length 0.25. Note that we have
ε2 ≥ 9/T . Since the disturbances are additive, it follows that
if A−1

u (I − e−Au t)(w∗p − w∗) > (0.25, 0.25)T , u = 1, 2, then
there does not exist any control strategy μ and x0 ∈ Rn

+ such
that x(x0 , μ,wp) |= G[0,∞](x ∈ S),∀wp ∈ Wω

p .

VI. MODEL PREDICTIVE CONTROL

In this section, we provide a solution to Problem 3. We as-
sume full knowledge of the history of state. As mentioned in
Section III, the cost function J is assumed to be nondecreasing
with respect to the state values, hence the system constraints are
replaced with those of the maximal system. First, we explain the
MPC setup for global STL formulas. Next, we prove that the
proposed framework is guaranteed to generate runs that satisfy
the global STL specification (8).

Let t ≥ hϕ − 1. The case of t < hϕ − 1 is explained later.
Given planning horizonH , the states that are predictable at time
t using controls in uHt are x1|t , x2|t , . . . , xH |t . Given predictions
x1|t , x2|t , . . . , xH |t , we need to enforce x[t− hϕ + 1, t+H] |=
G[0,H−1]ϕ at time t. Notice that

x|t [t− hϕ + 1, t+H] := xt−hϕ +1 . . . xtx1|t . . . xH |t (31)

i.e., the first hϕ time points are actual values, the rest are pre-
dictions. Also, note that the values in x[τ : τ + hϕ ] are inde-
pendent of the values in xHt for τ ≤ t− hϕ and are not fully
available for τ > t+H − hϕ . Thus, [t− hϕ + 1, t+H − hϕ ]
is the time window for imposing constraints at time t [12].

The MPC optimization problem is initially written as (we do
not use it for control synthesis as explained shortly):

minimize J
(
xHt , u

H
t

)

s.t. xk+1|t = f ∗(xk |t , uk |t), k = 0, . . . , H − 1

x|t [t− hϕ + 1, t+H] |= G[0,H−1]ϕ. (32)

The set of constraints in (32) requires the knowledge of
xt−hϕ +1xt−hϕ +2 . . . xt . Thus, the proposed control policy re-
quires a finite memory for the history of last hϕ states. As it
will be shown in Proposition 3, persistent feasibility of the con-
straints in (32) leads to fulfilling G[0,∞]ϕ. However, persistent
feasibility of the MPC setup in (32) is not guaranteed. We ad-
dress this issue for the remainder of this section.

Definition 9: An MPC strategy is recursively feasible if, for
all t ∈ N, the control at time t is selected such that the MPC
optimization problem at t+ 1 becomes feasible.

Our goal is to modify (32) such that it becomes recursively
feasible. It is known that adding a (the maximal) RCI set acting
as a terminal constraint is sufficient (and necessary) to guarantee
recursive feasibility [46]. We add the terminal constraint x[t+
H − hϕ : t+H] ∈ ΩLϕ to (32) to obtain

uH,opt
t = argmin

uHt ∈UH
J
(
xHt , u

H
t

)

s.t. xk+1|t = f ∗(xk |t , uk |t), k = 0, . . . , H − 1

x|t [t− hϕ + 1, t+H] |= G[0,H−1]ϕ

x|t [t+H − hϕ : t+H] ∈ ΩLϕ . (33)

Proposition 3: Let μt( x0 , . . . , xt ) = μt( xt−hϕ +1 , . . . ,

xt) = uH,opt
0|t , where uH,opt = uH,opt

0|t . . . uH,opt
H−1|t is given by

(33). If the optimization problem (33) is feasible for all t ≥
hϕ − 1, then x(x0 , μ,w)[0] |= G[0,∞]ϕ,∀w ∈ Wω .

Proof: We show that x( x0 , μ,w )[ 0 : k + hϕ ] |=
G[0,k ]ϕ,∀w ∈ W∗,∀k ∈ N, using induction over k. Consider
(33) for t = k + hϕ − 1 for any k ∈ N. The second con-
straint in (33) requires x|t [k, k + hϕ ] |= ϕ, or equivalently,
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xk . . . xk+hϕ −1x1|k+hϕ −1 |= ϕ. By applying uopt
0|t , mono-

tonicity implies xk+hϕ = f(xk+hϕ −1 , u
opt
0|t , w) � x1|k+hϕ −1

= f ∗(xk+hϕ −1 , u
opt
0|t),∀w ∈ W. From Lemma 1, we have x[k :

k + hϕ ] |= ϕ. Thus, we have shown x[k : k + hϕ ] |= ϕ,∀k ∈
N, and the proof is complete. �

Proposition 4: The MPC strategy corresponding to (33) is
recursively feasible.

Proof: Suppose uHt = u0|t . . . uH−1|t and xHt = xt+1|t · · · ,
xt+H−1|t is a feasible solution for (33) at time t. Since ΩLϕ is
a RCI set, there exist ur ∈ U such that x|t [t+H + 1− hϕ :
t+H + 1] = xH−hϕ +1|txH−hϕ +2|t · · ·xH |tf(xH |t , ur , w) ∈
ΩLϕ ,∀w ∈ W . Suppose u0|t is applied to the system. We have
xt+1 = f(xt, u0|t , w) � f ∗(xt, u0|t) = x1|t ,∀w ∈ W .

Now, we prove that the optimization problem at time
t+ 1 is feasible by showing that at least one feasible so-
lution exists. Let uHt+1 = u1|tu2|t · · · , uH |tur . We already
showed that xt+1 = x0|t+1 � x1|t . By induction and using
monotonicity, it follows that xk |t+1 � xk+1|t , k =, 1, · · · ,H −
2. Therefore, we have xt−hϕ +2 · · ·xt+1x1|t+1 · · ·xH−1|t+1 �
xt−hϕ +2 · · ·x1|tx2|t · · ·xH |t , which using Lemma 1 establishes
xt−hϕ +2 · · ·xt+1x1|t+1 · · ·xH−1|t+1 |= G[0,H−1]ϕ. In order to
complete the proof, it remains to show that x[t+H +
1− hϕ : t+H + 1] = xH+1−hϕ |t · · ·xH |t+1 |= ϕ. This fol-
lows from invariance. Note that xH |t+1 = f ∗(xH |t , ur ). There-
fore xH+1−hϕ |t l = cdots · · ·xH |t+1 ∈ ΩLϕ , and since ΩLϕ ∈
Lϕ , we have xH+1−hϕ |t · · · · · ·xH |t+1 |= ϕ, and the proof is
complete. �

The MPC optimization problem is also converted into a MILP
problem. It is computationally easier to solve the optimization
problem in (33) by solving T MILPs:

uopt,H
t = argmin

uHt ∈UH ,i=0,...,T −1
J
(
xHt , u

H
t

)

s.t. xk+1|t = f ∗(xk |t , uk |t), k = 0, . . . , H − 1

x|t [t− hϕ + 1, t+H] |= G[0,H−1]ϕ

x|t [t+H − hϕ : t+H] ∈ L(xϕ,x0 [i : i+ hϕ ]).
(34)

Note that all MILPs can be aggregated into a single large MILP
in the expense of additional constraints for capturing noncon-
vexities of the terminal condition.

Finally, consider t < hϕ . In this case, we requireH ≥ hϕ and
replace the interval [t− hϕ + 1, t+H − hϕ ] with [0, t+H −
hϕ ] for t < hϕ in (34). For applications where initialization
is not important in the long term (like traffic management), a
simpler approach is to initialize the MPC from t = hϕ − 1 and
assume that all previous state values are zero (hence, all the past
predicates are evaluated as true).

Remark 3: In our previous work on STL MPC of linear sys-
tems [12], we did not establish recursive feasibility. In order to
recover from possible infeasibility issues, we proposed maxi-
mizing the STL robustness score (a negative value) whenever
the MPC optimization problem became infeasible. Although re-
cursive feasibility is guaranteed here, unmodeled disturbances
and initial conditions outsideXmax

0 can lead to infeasibility. The
formalism in [12] can be used to recover from infeasibility with
minimal violation of the specification.

VII. APPLICATION TO TRAFFIC MANAGEMENT

In this section, we explain how to apply our methods to traffic
management. First, the model that we use for traffic networks is
explained, which is similar to the one in [47] but freeways are
also modeled. Next, the monotonicity properties of the model
are discussed. We show that there exists a congestion-free set
in the state space in which the traffic dynamics is monotone.
Finally, a case study on a mixed urban and freeway network is
presented.

A. Model

The topology of the network is described by a directed graph
(V,L), where V is the set of nodes and L is the set of edges.
Each l ∈ L represents a one-way traffic link from tail node
τ(l) ∈ V ∪ ∅ to head node η(l) ∈ V , where τ(l) = ∅ stands for
links originating from outside of the network. We distinguish
between the following three types of links based on their control
actuations:

1) Lr : road links actuated by traffic lights;
2) Lo : freeway on-ramps actuated by ramp meters; and
3) Lf : freeway segments that are not directly controlled.

Freeway off-ramps are treated in the same way as the roads.
Uncontrolled roads are also treated the same as freeways. We
have Lr ∪ Lo ∪ Lf = L.

Remark 4: Some works, e.g., [14], consider control over
freeway links by varying speed limits, which adds to the control
power but requires the existence of such a control architecture
within the infrastructure. We do not consider this type of control
actuation in this paper but it can easily be incorporated into our
model by modeling freeways links the same way as on-ramps,
where the speed limit becomes analogous to the ramp meter
input.

The number of vehicles on link l at time t is represented by
x[l],t ∈ [0, cl ], which is assumed to be a continuous variable,
and cl is the capacity of l. In other words, vehicular movements
are treated as fluid-like flow in our model. The number of ve-
hicles that are able to flow out of l in one time step, if link l is
actuated, is

q[l],t := min
{

x[l],t , q̄l , min
{l ′ |τ (l ′)=η (l)}

αl:l ′

βl:l ′
(cl ′ − x[l ′],t)

}

(35)

where q̄l is the maximum outflow of link l in one time step,
which is physically related to the speed of the vehicles. The
last argument in the minimizer determines the minimum supply
available in the downstream links of l, where αl:l ′ ∈ [0, 1] is
the capacity ratio of link l′ available to vehicles arriving from
link l (typically portion of the lanes), βl:l ′ ∈ [0, 1] is the ratio of
the vehicles in l that flow into l′ (turning ratio). For simplicity,
we assume that capacity ratios and turning ratios are constants.
System state is represented by x ∈ Rn

+ : {x[l]}l∈L, where n is
the number of the links in the network. The state space is X :=∏

l∈L[0, cl ].
A schematic diagram illustrating the behavior of q[l] with re-

spect to the state variables x[l], x[l ′]—which is known as the
fundamental diagram in the traffic literature [48]—is shown in
Fig. 4. The link flow drops if one (or more) of its downstream
links do not have enough capacity to accommodate the incom-
ing flow. In this case [when the last argument in (35) is the
minimizer], we say that the traffic flow is congested. Otherwise,
the traffic flow is free. This motivates the following definition.
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Fig. 4. Fundamental diagram. The flow out of link l drops if the number
of vehicles on the immediate downstream link l′ is close to its capacity.
The congestion is defined by this blocking behavior.

Definition 10: The congestion-free set, denoted by Π, is de-
fined as the following region in the state space:

Π :=
{
x ∈ X

∣
∣
∣min{x[l], q̄l} ≤ αl:l ′

βl:l ′

(
cl ′ − x[l ′]

)

∀l, l′ ∈ L, τ(l′) = η(l)
}
. (36)

Proposition 5: The congestion-free set is a lower set.
Proof: Consider x ∈ Π and any x′ ∈ L(x). For all l, l′ ∈

L, τ(l′) = η(l), we have min{x′l , q̄l} ≤ min{x[l], q̄l} and (cl ′ −
x[l]′) ≤ (cl ′ − x′l ′). Therefore, min{x′l , q̄l} ≤ αl : l ′

βl : l ′
(cl ′ − x′l ′).

Thus, x′ ∈ Π, which indicates Π is a lower set. �
Note that Π is, in general, nonconvex. The predicate (x ∈ Π)

can be written as a Boolean logic formula over predicates in the
form of (7) as

∧

l,l ′∈L,τ (l ′)=η (l)

((

(x[l] ≤ q̄l) ∧
(

x[l] +
αl:l ′

βl:l ′
x[l]′ ≤ αl:l ′

βl:l ′
cl ′

))

∨
(

q[l] +
αl:l ′

βl:l ′
x[l]′ ≤ αl:l ′

βl:l ′
cl ′

))

. (37)

Notice how the minimizer in (36) is translated to a disjunction
in (37).

Now, we explain the controls. The actuated flow of link l at
time t is denoted by �q[l],t , where we have the following relations:

�q[l],t =

⎧
⎪⎨

⎪⎩

s[l],tq[l],t , l ∈ Lr
min{q[l],t , r[l],t}, l ∈ Lo
q[l],t , l ∈ Lf

(38)

where s[l],t ∈ {0, 1} is the traffic light for link l, where 1 (re-
spectively, 0) stands for green (respectively, red) light, and
r[l],t ∈ R+ is the ramp meter input for on-ramp l at time t.
Ramp meter input limits the number of vehicles that are al-
lowed to enter the freeway in one time step. In order to disallow
simultaneous green lights for links l, l′ (which are typically pair
of links pointing toward a common intersection in perpendicular
directions), we add the additional constraints s[l],t + s[l]′,t ≤ 1.
In simple gridded networks, as in our case study network il-
lustrated in Fig. 5, it is more convenient to define phases for
actuation in north–south (NS) or east–west (EW) directions that
are unambiguously mapped to traffic lights for each individual
link. The evolution of the network is given by the following:

x[l],t+1 = x[l],t − �q[l],t + w[l],t +
∑

l ′,η (l ′)=τ (l)

βl ′:l�q[l ′],t (39)

where w[l],t is the number of exogenous vehicles entering link l
at time t, which is viewed as the adversarial input. The evolution
relation mentioned above can be compacted into the form (5) as

Fig. 5. Traffic management case study: A network of freeways and
urban roads. There are 14 intersections controlled by traffic lights and 4
ramp meters.

follows:

xt+1 = ftraffic(xt, ut , wt) (40)

where ut andwt are the vector representations for control inputs
(combination of traffic lights and ramp meters) and disturbances
inputs, respectively. Note that ftraffic represents a hybrid system
in which each mode is affine. The mode is determined by the
control inputs and state (which determines the minimizer argu-
ments). Some works consider nonlinear representations for the
fundamental diagram (see Fig. 4), but they still can be approxi-
mated using piecewise affine functions.

B. Monotonicity

Theorem 5: System (40) is monotone in Π.
Proof: Consider x′, x ∈ Π, x � x′. We show that ftraffic

(x, u, w) � ftraffic(x′, u, w),∀w ∈ W,∀u ∈ U . Observe in (39)
that we only need to verify is proving that x[l] − �q[l] is a non-
decreasing function of x[l] as all other terms are additive and
nondecreasing with respect to x. Since x, x′ ∈ Π, the last ar-
gument in (35) is never the minimizer. Thus, for all l ∈ L,
we have x[l] − �q[l] ∈ {0, x[l] − r[l], x[l] − cl , x[l]}, depending
on the mode of the system and actuations, which all are nonde-
creasing functions of x[l] . Thus, ftraffic is monotone in Π. �

The primary objective in our traffic management approach
is finding control policies such that the state is restricted to Π,
which not only eliminates congestion, but also ensures that the
system is monotone, hence the methods of this paper become
applicable. It is worth to note that the traffic system becomes
nonmonotone when flow is congested in diverging junctions, as
shown in [49]. This phenomenon is attributed to the first-in-first-
out (FIFO) nature of the model. By assuming fully non-FIFO
models, system becomes monotone in the whole state space. For
a more thorough discussion on physical aspects of monotonicity
in traffic networks see [15].

The maximal system in (40) corresponds to the scenario
where each wl is equal to its maximum allowed value w∗l .

C. Case Study

1) Network: Consider the network in Fig. 5, which consists
of urban roads (see links 1–26, 27, 29, 31, 33 and 49–53),
freeway segments (see links 35–48), and freeway on-ramps (see
links 28, 30, 32, 34). The layout of the network illustrates a
freeway passing by an urban area, which is common in many
realistic traffic layouts. There are 14 intersections (nodes a-n)
controlled by traffic lights. Each intersection has two modes of
actuation: NS and EW. There are four entries to the freeway
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TABLE I
PARAMETERS OF THE NETWORK IN FIG. 5

links parameters

1–26, 49–53 q̄l = 15, cl = 40
27–34 q̄l = 15, cl = 30
35–48 q̄l = 40, cl = 60

Turning ratios value
β2:50 , β4:53 , β8:51 , β12:7 , β13:28 , β15:30 , β16:28 ,
β21:32 , β24:32 , β26:2 , β36:31 , β36:33 , β39:27 , β43:29

0.2

β5:12 , β6:13 , β6:18 , β10:21 , β10:26 0.3
β1:20 , β6:7 0.4

β1:2 , β11:12 , β14:30 , β17:7 , β17:18 , β19:2 , β19:20 ,
β22:34 , β23:24 , β23:34 , β27:14 , β27:17 , β29:16 ,
β31:22 , β31:25 , β33:24 , β49:3 , β49:50 , β51:4 ,
β52:5 , β52:53 ,

0.5

β2:3 , β3:4 , β4:5 , β8:9 , β12:13 , β13:14 , β15:16 , β16:17 ,
β20:21 , β21:22 , β24:25 , β25:26 , β36:37 , β39:40 ,
β43:44 , β46:47 ,

0.8

Capacity ratios value
α19:2 , α26:2 , α17:7 , α12:7 , α13:28 , α16:28
α14:30 , α15:30 , α21:32 , α24:32 , α22:34 , α23:34

0.5

Disturbances (arrival rates)
w∗1 = w∗6 = 4.5, w∗11 = w∗15 = w∗19 = 5, w∗23 = 6

w∗35 = w∗42 = 20, w∗49 = w∗52 = 2

TABLE II
EXISTENCE OF φ-SEQUENCES FOR THE NETWORK IN FIG. 5

Demand Changes from Table I T Existence Comp.
Time (s)

– 5 yes 6
– 6 no 4
– 7 no 10
– 8 no 75
– 9 no 11
– 10 yes 36
w∗1 = w∗6 = 3, w∗11 = w∗15 = w∗19 = 6 5 yes 5
w∗1 = w∗6 = 4, w∗11 = w∗15 = w∗19 = 6 5 no 0.5
w∗1 = w∗6 = 1.5, w∗49 = w∗52 = 3.5 5 yes 16
w∗1 = w∗6 = 7.5, w∗11 = w∗15 = w∗19 = w∗23 = 2 6 yes 9
w∗1 = w∗6 = 9, w∗11 = w∗15 = w∗19 = w∗23 = 1 5 yes 4
w∗1 = w∗6 = 10, w∗11 = w∗15 = w∗19 = w∗23 = 0 30 no 3.5
w∗15 = w∗23 = 8, w∗35 = w∗42 = 10 6 yes 23
w∗15 = w∗23 = 0, w∗35 = w∗42 = 30 5 yes 4

(nodes o-r) that are regulated by ramp meters. We have n = 53
and U = R4

+ × {0, 1}14 . Vehicles arrive from links 1, 6, 11, 15,
19, 23, 35, 42, 49, and 52. The parameters of the network are
shown in Table I.

2) Specification: As mentioned earlier, the primary objec-
tive is keeping the state in the congestion-free set. In addition,
since the demand for the NS side roads (see links 49–53) is
smaller than the traffic in the EW roads, we add a timed liveness
requirement for the traffic flow on links 49–53:

ψ =
∧

l=49,50,...,53

(x[l] ≥ 5)⇒ F[0,3](x[l] ≤ 5)

which states that “if the number of vehicles on any of the NS
side roads exceeds 5, their flow is eventually actuated within
three time units ahead.” The global specification is given as

φ = G[0,∞] ((x ∈ Π) ∧ ψ) . (41)

TABLE III
φ-SEQUENCE IN THE CASE STUDY

– Initialization Repetitive Controls

node uφ0 uφ1 uφ2 uφ3 uφ4 uφ5 uφ6 uφ7

a EW NS NS NS EW EW NS NS
b NS EW EW EW NS NS EW EW
c EW NS NS EW EW EW NS NS
d EW NS EW NS EW EW NS EW
e EW EW NS NS NS EW EW NS
f NS EW NS EW NS NS EW NS
g NS EW NS EW EW NS EW NS
h EW NS EW EW EW EW NS EW
i EW NS EW EW NS EW NS EW
j EW EW NS NS EW EW EW NS
k EW EW NS NS NS EW EW NS
l NS EW EW NS NS NS EW EW
m EW NS NS EW NS EW NS NS
n NS NS EW NS EW NS NS EW
o 0.0 0.0 0.0 12.8 0.0 0.0 0.0 0.0
p 4.0 14.0 0.0 9.5 0.0 4.0 11.5 0.0
q 0.0 0.0 10.0 0.0 2.5 0.0 0.0 10.0
r 5.5 0.0 4.0 14.0 11.5 5.5 0.0 4.0

Note that hϕ = 3, ϕ = (x ∈ Π) ∧ ψ.
3) Open-Loop Control Policy: We use Theorem 3. The

shortest φ-sequence that we found for this problem has T =
5, T0 = 0. The corresponding MILP had 2357 variables (of
which 1061 were binary) and 4037 constraints,4 which is solved
using the Gurobi MILP solver in less than 6 s on a dual core
3.0 GHz MacBook Pro. The cost is set to zero in order to just
check for feasibility. Even though finding an optimal solution
and checking for feasibility of a MILP have the same theoretical
complexity, the latter is executed much faster in practice. For in-
stance, finding a φ-sequence, while minimizing or maximizing
∑7

k=0 ‖xφk ‖1 both took more than 20 min. Note that it is virtu-
ally intractable to attack a problem of this size (53 dimensional
state) using any method that involves state-space discretization,
such as the method in [33] (e.g., if each state-component is par-
titioned into two intervals, the finite-state problem size will be
253).

Monotonicity implies that any demand setW for which there
exists a solution to Problem 2 is a lower set. The set correspond-
ing to the values at the bottom of Table I is one of them. Table II
shows results on existence of φ-sequences for some other de-
mand scenarios. Computation times for solving a MILP do not
demonstrate a generic behavior. For the rest of this section, the
numerical examples are reported for the values in Table I.

The control values in the φ-sequence are shown in Table III.
As stated in Theorem 3, starting from an initial condition in
L(x0), applying the open-loop control policy (21) guarantees
satisfaction of the specification. In other words, after applying
the initialization segment, the repetitive controls in Table III be-
come a fixed timetable for the inputs of the traffic lights and the
ramp meters. Starting from x0 , which is a 53-dimensional vec-
tor, we apply (21) using the values in Table III. The trajectory of
the maximal system is shown in Fig. 6 [Top]. The traffic signals
are coordinated such that the traffic flows free of congestion.
The black dashed lines represent the capacity of the links, and

4The scripts for this case study are available in
http://blogs.bu.edu/sadra/format-monotone
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Fig. 6. Traffic management case study: [Top Row] the trajectory of the maximal system obtained from applying the open-loop control policy (21)
with initial condition xφ0 [Middle Row] robust MPC generated trajectory with zero initial condition with disturbances chosen uniformly L(w∗) [Bottom
Row] trajectory generated from applying the open-loop control policy (21) with zero initial conditions and the same disturbances as in [Middle Row].

the dashed line in the fourth figure (from the left) represents the
threshold for the liveness subspecification (ψ). It is observed
that all the state values for side road links (49–53) persistently
fall below the threshold. The robustness values for (x ∈ Π) and
ψ are shown in the fifth figure. As mentioned earlier, robustness
corresponds to the minimum volume of vehicles that the sys-
tem is away from congestion, or violating the specification. The
robustness values are always positive, indicating satisfaction.

As stated in Theorem 4, the trajectory of the maximal system
converges to a periodic orbit. It is worth to note that the num-
ber of vehicles on freeway links is significantly smaller than its
capacity, which is attributed to the fact that the number desig-
nated for q̄ (related to the maximum speed) of freeway links
is relatively large (30, as opposed to 15 for roads). Therefore,
freeway links are utilized in a way that there is enough space
for high-speed noncongested flow.

4) Robust MPC: Here, it is assumed that the controller has
full state knowledge. We apply the techniques developed in
Section VI. Using the result from the previous section, the set
ΩLϕ is constructed in R212

+ (= Rn(hϕ +1) , n = 53, hϕ = 3). The
cost criteria that we use in this case study is the total delay
induced in the network over the planning horizon H . A vehicle
is delayed by one time unit if it cannot flow out of a link in
one time step, which may be because of the actuation (e.g., red
light) or waiting for the flow of other vehicles in the same link
(i.e., we have x[l] ≥ cl). We are also interested in maximizing
the STL robustness score. The cost function is

Jtraffic(xH , uH ) := − ζ ρ(x,G[0,H−1]ϕ, t− hϕ + 1)

+
H−1∑

k=0

γk
∑

l∈L
(x[l],t+k − �q[l],t+k ) (42)

where �q[l] , given by (38), is the amount of vehicles that flow
out of link l, γ is the discount factor for delays predicted in
future, and ζ is a positive weight for robustness. Notice the
connection between the time window of STL robustness score
in (42) and MPC constraint enforcement in (33). It follows
from Theorem 5 and STL quantitative semantics (4) that the
cost function mentioned above is nondecreasing with respect to
the state in Π. Therefore, in order to minimize the worst case

cost, the maximal system is considered in the MPC optimization
problem.

Starting from zero initial conditions, we implement the MPC
algorithm (34) with H = 3 for 40 time steps. We set ζ = 1000,
γ = 0.5 in (42). The disturbances at each time step were ran-
domly drawn from L(w∗) using a uniform distribution. The
maximum computation time for each MPC step time step was
less than 0.8 s (less than 0.5 s on average). The resulting tra-
jectory is shown in Fig. 6 [Middle]. For the same sequence of
disturbances, the trajectory resulted from applying the open-
loop control policy (21) (using the values in Table III) is shown
in Fig. 6 [Bottom]. Both trajectories satisfy the specification.
However, robust MPC has obviously better performance when
costs are considered. The total delay accumulated over 40 time
steps is

J40 =
40∑

τ=0

∑

l∈L
(x[l],τ − �q[l],τ ).

The cost above obtained from applying robust MPC was J40 =
1843, while the one for the open-loop control policy was J40 =
2299, which demonstrates the usefulness of the state knowledge
in planning controls in a more optimal way. An optimal tuning of
parameters η and γ requires an experimental study which is out
of scope of this paper. We only remark that we usually obtained
larger delays with nonzero η, which shows that including STL
robustness score in the MPC cost function may be useful even
though the ultimate goal is minimizing the total delay.

It is worth to note that we also tried implementing the MPC
algorithm (for the case w = (w∗)ω , or the maximal system)
without the terminal constraints, as in (32). The MPC got infea-
sible at t = 8. The violating constraints were those in x ∈ Π.
This observation indicates that the myopic behavior of MPC in
(32), when no additional constraints are considered, can lead to
congestion in the network.

VIII. CONCLUSION AND FUTURE WORK

We developed methods to control positive monotone discrete-
time systems from STL specifications. We showed that open-
loop control sequences are sufficient and (almost) necessary
for guaranteeing the correctness of STL specifications. A ro-
bust MPC method was introduced to plan controls optimally,
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while guaranteeing global STL specifications. We showed the
usefulness of our results on traffic management.

Future work will focus on nonmonotone systems with para-
metric uncertainty whose state evolution can be overapproxi-
mated in an appropriate way using monotone systems. We will
develop adaptive control schemes to tune parameters automati-
cally using the data gathered from the evolution of the system.
This will eventually lead to data-driven control techniques for
transportation networks with formal guarantees.

APPENDIX

Theorem 6: Let S be the set of all STL formulas that can be
written in the form:

φ =
nφ∨

i=1

ϕb,i ∧G[Δ i ,∞]ϕg,i (43)

where ϕb,i ,Δi ≥ hϕb , i , ϕg,i , i = 1, . . . , nφ are bounded STL
formulas. Then, S is a subset of safety STL formulas that is
closed under STL syntax with bounded temporal operators.

Proof: First, a quick inspection of (43) verifies that it is a
safety STL formula. A predicate π is a bounded formula (with
zero horizon) and is a special case of (43), hence π ∈ S.

We also have the following property that relaxes the form
in (43): For all bounded STL formulas ϕ1 , ϕ2 , we have ϕ1 ∧
G[Γ,∞)ϕ2 ∈ S, ∀Γ ∈ N. Proof: The case for Γ ≥ hϕ1 is already
in the form (43) withnφ = 1. If Γ < hϕ1 , we write G[Γ,∞)ϕ2 =
G[Γ,hϕ 1 ]ϕ2 ∧G[hϕ 1 ,∞)ϕ2 . Now, define ϕ1 ∧G[Γ,hϕ 1 ]ϕ2 as
the new bounded formula and retain the form in (43) with
nφ = 1.

We show that S is closed under STL syntax with bounded
operators. The distributivity properties of Boolean connectives
and temporal operators (see, e.g., [50]) imply that: φ1 ∨ (φ2 ∧
φ3) = (φ1 ∨ φ2) ∧ (φ2 ∨ φ3), φ1 ∧ (φ2 ∨ φ3) = (φ1 ∧ φ2) ∨
(φ2 ∧ φ3), FI (φ1 ∨ φ2) = (FI φ1) ∨ (FI φ2), and GI (φ1 ∧
φ2) = (GI φ1) ∧ (GI φ2), where φ1 , φ2 , φ3 are temporal logic
formulas and I is an interval.

1) φ1 , φ2 ∈ S⇒ φ1 ∧ φ2 ∈ S, φ1 ∨ φ2 ∈ S: This result
easily follows from the distributivity properties of
Boolean connectives mentioned above.

2) φ ∈ S⇒ F{t}φ ∈ S: We use F{t}G[a,b] = G[t+a,t+b]
and distributivity to have (note that F{t} = G{t})

F{t}

( nφ∨

i=1

(ϕb,i ∧G[Γ i ,∞]ϕg,i)

)

=
nφ∨

i=1

(F{t}ϕb,i ∧G[t+Γ i ,∞]ϕg,i).

Introducing F{t}ϕb,i , i = 1, . . . , nφ as new bounded STL
formulas leads to the form in (43).

3) φ ∈ S⇒ F[a, b]φ ∈ S,G[a,b]φ ∈ F : Use F[a,b] =∨
t∈[a,b] F{t} and G[a,b] =

∧
t∈[a,b] F{t} to convert tem-

poral operators to Boolean connectives.
4) φ1 , φ2 ∈ S⇒ φ1U[a,b]φ2 ∈ S: Use the STL semantics

(2) to substitute the bounded “until” operator using

bounded “eventually” and bounded “always” operators

φ1U[a,b]φ2 =
∨

t∈[a,b]

(G[a,t]φ1 ∧ F{t}φ2).

Example 6: The “reach and stay” formula FIG[0,∞)ϕ,
where ϕ is a bounded formula, is equivalent to

∨
t∈I G[t,∞)ϕ.

Remark 5: What remains to show that S is equivalent
to the set of all safety STL formulas is having that φ ∈
S⇒ G[Γ,∞)φ ∈ S,∀Γ ∈ N, which is not true by restricting
nφ in (43) to be finite. Formulas that involve nested un-
bounded “always” operator and cannot be further simplified,
such as G[Γ ′,∞)(ϕ1 ∨G[Γ,∞)ϕ2), are rarely encountered in
applications. �
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