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ABSTRACT
We propose a formal methods approach to control tra�c signals

optimally from speci�cations described by metric temporal logic

(MTL). Since real-time optimization is computationally infeasible

beyond small-scale networks, we use a divide and conquer approach.

We decompose the network into smaller subnetworks and synthe-

size assume-guarantee contracts for their interconnections. We

show how to exploit mathematical properties of tra�c dynamics

to �nd time varying contracts by solving a constraint satisfaction

problem. A model predictive control (MPC) approach is used to

�nd local controls for each subnetwork to minimize induced delays,

while assume-guarantee contracts and appropriately designed ter-

minal constraints ensure the satisfaction of the speci�cation all over

the network. We present a case study on an urban tra�c network.

CCS CONCEPTS
• Networks → Formal speci�cations; • Theory of computa-
tion → Distributed algorithms; Mixed discrete-continuous opti-

mization; • Applied computing → Transportation;
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1 INTRODUCTION
Tra�c signals are the primary mechanism for tra�c management.

Typical signals are tra�c lights in urban setting and ramp meters

and (less commonly used) variable speed limits on freeways. There

has been an extensive amount of research on control methodologies

of tra�c signals in recent years [4, 12, 14, 24]. Although tra�c

�ow estimation techniques have much improved due to recent

advances in sensing technologies, tra�c control problems are still

challenging. Tra�c models are mathematically complex - they often

include discrete and continuous variables (hybrid systems)- and
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various constraints are present to capture the safe operation of

tra�c signals (e.g. restrictions on the duration of tra�c lights). The

ultimate objective of tra�c management is to minimize a cost such

as the induced delay in the network, while taking into account the

dynamics and constraints of the network.

Due to computational complexity, traditional optimal control

techniques such as Hamilton-Jacobi-Bellman (HJB) equations are

not suitable for tra�c control. Tra�c-responsive strategies em-

ploy approximate dynamic programming methods such as model

predictive control (MPC) for real-time optimization. Notable imple-

mentations are SCOOT [16], OPAC [11] and UTOPIA [21]. However,

real-time optimization is not possible beyond small-scale systems.

Totally decentralized methods optimize the controls of each inter-

section individually but can cause gridlocks in the network [12].

Hierarchical distributed control architectures [22], while alleviating

the real time computational complexity, are not able to formally

guarantee global behaviors such as avoidance of tra�c jams. In this

paper, we propose a method in which, while control decisions are

optimized locally, desired speci�cations are guaranteed globally.

Formal methods approaches have received increased attention

from the control community in recent years. Using tools such as

model checking [3] and automata theory, correct by design meth-

ods have been developed to control hybrid systems from high-level

speci�cations described by temporal logics [31, 32]. In fact, tra�c

networks are amenable to such high-level speci�cations that can

capture behaviors such as prevention of congestion, sequentiality

of tra�c lights and various reactiveness properties. The authors in

[7] studied the control of tra�c networks from linear temporal logic

(LTL) speci�cations. However, there are drawbacks to existing meth-

ods. First, automata-based approaches require constructing �nite-

state abstractions. Even though mathematical properties of tra�c

networks facilitate e�cient computation of �nite-state transitions

[5], state-space discretization is still necessary and computationally

intractable beyond very few dimensions. Second, optimal control

is not yet fully combined with �nite-state approaches for the case

when the speci�cations include safety properties. Recent works on

MPC from signal temporal logic (STL) speci�cations [25, 27] rely

on �nite horizon predictions and do not guarantee safety properties

and are vulnerable to disturbances.

We propose a method that mitigates the issues above. We use

metric temporal logic (MTL) to describe system speci�cations. MTL

is an extension of LTL with bounds on temporal operators, which

is very useful to express time intervals for requirements in tra�c

networks. Furthermore, it is more general than STL as it can reason

about both discrete-domain and continuous-domain signals, which

is useful for expressing requirements for discrete variables such

as tra�c lights. We use a discrete-time piecewise a�ne model for

tra�c dynamics, where additive disturbances represent exogenous
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vehicular �ow into the network. We follow a divide and conquer

approach by partitioning the network into smaller subnetworks and

synthesize controls locally for each subnetwork. For the dynamical

interconnections between the subnetworks, we take an assume-

guarantee approach [15]. Each subnetwork assumes the intercon-

nection e�ects from its neighbors satisfy a set of contracts, while

the controllers of neighboring subnetworks promise to maintain

those contracts. Therefore, local controls can be planned optimally

in a decentralized manner but with a global coordination induced

by the contracts and the global network speci�cation, which is

ensured to be satis�ed.

The main contributions of the paper are as follows. First, we

provide a method to synthesize assume-guarantee contracts by

feasibility checking of a mixed-integer linear programming (MILP)

problem, which is computed o�ine and it can be applied to rel-

atively large networks. Second, we �nd local controls optimally

using a robust MPC approach, which has feasibility guarantees for

both the local constraints and contracts hence the overall global

speci�cation is ensured. We present a case study on an urban tra�c

network and provide preliminary results on applying our methods

to microscopic tra�c models.

This work is related to the recent papers on compositional syn-

thesis [2, 26]. The authors in [18] studied compositional synthesis

for tra�c networks from LTL speci�cations. However, this approach

requires assumption mining [19] for all subnetworks, which is a

computationally expensive procedure and it is conservative since it

only considers �xed-time contracts, as opposed to our work where

contracts are time varying. Compositional methods, ideally and

under some assumptions, are applicable to arbitrarily large systems.

Our contract synthesis process is centralized and is closely related

to the methodology in [23], where the authors introduce separable
control invariant sets for linear systems with �xed feedback gain.

As opposed to [23], our method is able to deal with the hybrid na-

ture of tra�c networks, does not require �xed feedback structure,

considers a much richer class of speci�cations, and �nds controls

optimally over a prediction horizon.

This paper is organized as follows. First, we provide necessary

background on MTL and tra�c network modeling in Sec. 2. We for-

mulate the problem in Sec. 3. In Sec. 4, we explain how to partition

a network considering constraints of the system and speci�cation.

The technical details on computation of assume-guarantee contracts

and control synthesis are explained in Sec. 5 and Sec. 6, respectively.

The case study is presented in Sec. 7.

2 PRELIMINARIES
2.1 Partially Ordered Sets
A partially ordered set [9] S is a set associated with a partial order

relation �S that satis�es the following properties: 1) re�exivity:

s �S s,∀s ∈ S; 2) antisymmetry: s1 �S s2, s2 �S s1 ⇒ s1 = s2;

3) transitivity: s1 �S s2, s2 �S s3 ⇒ s1 �S s3. Given an element

s ∈ S, we de�ne the set L(s ) =
{
s ′ ∈ S|s ′ �S s

}
. For the case

S = Rn , we de�ne the partial order relation �+ such that s1 �
s2 ⇔ s2 − s1 ∈ R

n
+, where Rn+ is the positive orthant.

De�nition 2.1. A set S′ ⊆ S is a lower-set if for all s ′ ∈ S′, we

have L(s ′) ⊆ S.

2.2 Metric Temporal Logic
The detailed, formal de�nition of MTL is not presented here as it can

be found in [20]. Here we just provide the necessary notation and

some examples. Informally, MTL is constructed from a �nite set of

atomic propositions AP = {p1,p2, · · · ,pnp }, Boolean operators: ¬

(negation), ∧ (conjunction), ∨ (disjunction), and temporal operators:

G
[t1,t2 ) (always between t1 and t2), F

[t1,t2 ) (eventually between t1
and t2), and U

[t1,t2 ) (until between t1 and t2). Punctualities are also

allowed using F{t } (exactly at time t ). The set of atomic propositions

that are true at time t is denoted by ot ∈ 2
AP

, which we refer to as

the observation at time t . An in�nite word over 2
AP

is written as

σ := o0o1o2 · · · . We use σ
[t1,t2 ) , t1 < t2, to refer to a speci�c portion

of the word: σ
[t1,t2 ) = ot1ot1+1 · · ·ot2−1, and σt for a su�x of a word

starting at time t : σt = otot+1 · · · . The semantics of MTL formulas

are de�ned over word su�xes. We write σt |= φ to indicate su�x

σt satis�es MTL formula φ.

Example 2.2. Let AP = {p1,p2} and consider the in�nite word

σ = {p1}∅{p2}{p1,p2}{p2}∅, where overline stands for in�nite rep-

etition and ∅ is the empty set. We have σ2 |= G
[0,3)p2 (always be-

tween 0 and 3,p2 is true) sinceσ2 = {p2}{p1,p2}{p2}∅ andp2 appears

in all of the �rst three observations in σ2. However, σ4 6 |= F
[0,∞)p1

(eventually p1 is true) since σ4 = {p2}∅ and p1 never appears in this

su�x.

The horizon of an MTL formula φ, denoted by h(φ), is de�ned

as the required length of a su�x to decide the satisfaction of φ.

For the formulas in Example 2.2, we have h(G
[0,3)p2) = 3 and

h(F
[0,∞)p1) = ∞. A recursive de�nition for computing the horizon

of an MTL formula is given in [10]. The satisfaction of φ by σt
is decided only by σ

[t,t+hφ ) and the rest of the observations are

irrelevant.

De�nition 2.3. An MTL formula φ is bounded if h(φ) < ∞.

2.3 Tra�c Network Model
A link l is de�ned as a one-way tra�c road segment with the

following attributes: cl ∈ R+ is the capacity of l ; xl,t ∈ [0, cl ] is the

volume of vehicles on l at time t , t ∈ N; ql ∈ R+ is the maximum

out�ow (maximum volume of vehicles that can �ow out of l in one

time step); ul,t ∈ Ul is the control input of l at time t , whereUl
depends on the type of l :

• if l is controlled with tra�c lights:Ul = {0, 1}, where 1 (0)
corresponds to green (red) light;

• if l is controlled with ramp meter/speed limit:Ul = [0, 1],

where ul is the ratio of the maximum out�ow ql that is

allowed to �ow out of the link in one time step;

• if l is uncontrolled:Ul = {1}.

Additional constraints on control inputs (e.g., sequentiality con-

straints) are expressed using MTL formulas and are considered as a

part of the problem formulated in Sec. 3.

De�nition 2.4. A tra�c network is de�ned as a tuple

N = (L,δ ,α , β,A,w ) ,

where:

• L is the set of links in the network;
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Figure 1: Tra�c Network Topology

• δ : L → 2
L

, where δ (l ) is the set of downstream links of l
(downstream function; de�nes network topology);

• α : L × L → [0, 1], where α (l , l ′), l ′ ∈ δ (l ), is the propor-

tion of vacancies available in l ′ dedicated to l , which is

assumed to be constant (capacity ratios);

• β : L × L → [0, 1], where β (l , l ′), l ′ ∈ δ (l ), is the ratio

of volume �owing from l to l ′, which is assumed to be

constant (turning ratios);

• A ⊂ L × L is the set of antagonistic pairs. Two links form

an antagonistic pair if their tra�c lights are not allowed to

be green simultaneously
1

(de�nes tra�c phases);

• w : L × N → R+, where w (l , t ) is the exogenous demand
(volume of vehicles entering from outside of the network)

towards l at time t .

Although not required in the technical approach of this paper, it

is helpful to visualize a tra�c network as a directed graph (see Fig.

1).

Example 2.5. Consider the network in Fig. 1 with 84 links. This

network represents two urban areas on north and south sides con-

nected by three bridges in between (the network topology is in-

spired by the Boston-Cambridge area). Each link is shown as a

directed edge between nodes (intersections) shown as squares. For

all links we have cl = 40,ql = 15. The long bridges in the middle

are divided into two separate links, and links 35, 41, 47, 53, 59, 65

are uncontrolled (i.e., there are no tra�c lights in the middle of

the bridges). We have l ′ ∈ δ (l ) if the head of edge representing l is

followed by the tail of edge representing l ′. For example, we have

δ (1) = {2, 34, 44}, δ (14) = {15, 75}, δ (53) = {54}, δ (76) = ∅, etc.

Antagonistic pairs are determined by trivial tra�c conventions. For

instance, {12, 54} ∈ A, as the pair head into a common intersection

in perpendicular directions. The values for w (l , t ) vary between 0

and 8 vehicles per time step, depending on the location of the link.

The detailed valuations for w , and for other network components

from De�nition 2.4 including α and β , are not provided here but

are available in [1].

We de�ne the set of outgoing links of a network by Lout
:=

{l ∈ L|δ (l ) = ∅} and the set of internal links as Lint
:= L \ Lout

.

1
We assume that all antagonistic pairs are controlled by tra�c lights.

When describing the dynamics of a tra�c network N , we are only

interested in the evolution of the internal links. The out�ow of an

internal link l at time t is de�ned as:

fl,t := min

{
xl,t ,ul,tql , min

l ′∈δ (l )

α (l , l ′)

β (l , l ′)
(cl ′ − xl ′,t )

}
. (1)

Note that the out�ow is zero iful,t = 0 (red light). The last argument

of the minimizer is determined by the minimum available vacancy

in the downstream links of l . Physically, the out�ow model above is

governed by the �rst-in-�rst-out (FIFO) rule [6]. As a consequence

of this rule, lack of enough vacancy in a link blocks the �ow of its

upstream links to all other surrounding links. For example, in Fig.

1, if link 4 does not have enough vacancy for accommodating �ow

from link 3, the �ow from 3 to 74 is also blocked.

For all antagonistic pairs (l , l ′) ∈ A, we have ul,t + ul ′,t ≤
1,∀t ∈ N. The evolution of an internal link l is given by:

xl,t+1 = min

{
xl,t − fl,t +

∑
l ′,l ∈δ (l ′)

β (l ′, l ) fl ′,t +w (l , t ), cl
}
. (2)

The volume of vehicles that leave the network through an outgoing

link at time t is:

yl,t :=
∑

l ′,l ∈δ (l ′)

β (l ′, l ) fl ′,t , l ∈ L
out. (3)

The network dynamics is represented in a compact form as the

following discrete-time system:

xt+1 = F (xt ,ut ,wt ), (4)

yt = G (xt ,ut ), (5)

where xt = {xl,t }l ∈Lint , is the state at time t . We have xt ∈ X,∀t ∈
N, where X =

∏
l ∈Lint [0, cl ]. ut = {ul,t }l ∈Lint is the control input

at time t . We have ut ∈ U ,∀t ∈ N, where U ⊆
∏

l ∈Lint Ul .

wt = {w (l , t )}l ∈Lint is the additive disturbance at time t . We have

wt ∈ W,∀t ∈ N, where W ⊂ R |L
int |

+ is the set of admissible

disturbances. yt = {yl,t }l ∈Lout is the output at time t . We have

yt ⊂ R
|Lout |
+ ,∀t ∈ N. Note that both X and W are real-valued,

so the model treats the �ow of vehicles as a �uid. Also, both F :

X ×U ×W → X and G : X ×U → R |L
out |

+ are piecewise a�ne

and positive.

3 PROBLEM STATEMENT
Consider a tra�c network N .

Assumption 1. The set of admissible additive disturbances is in
the formW = L(wmax),wmax ∈ R |L

int |
+ .

The assumption above is reasonable when the sources of the

exogenous demands are independent of each other. Thus we have

w (l , t ) ∈ [0,wmax

l,t ],∀l ∈ Lint,∀t ∈ N.

De�nition 3.1. A control policy µ = {µt
���t ∈ N} is a set of relations

that map the (partial) history of state and controls into an admissible

control action:

ut = µt (x0, · · · ,xt ,u0, · · · ,ut−1),

where µt : X
t+1 ×U t →U .
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We assume full and exact state knowledge. We later explain how

to relax this assumption in Sec. 6. Given an initial condition x0,

a control policy µ and a sequence of additive disturbances w =
w0,w1, · · · , the system run is de�ned as:

ζ (x0, µ,w) := (x0,u0), (x1,u1), · · · . (6)

Similarly, the output run is de�ned as ξ (x0, µ,w) := y0,y1, · · · .

De�nition 3.2. The congestion-free set of a network is de�ned

as the set Π ⊂ X ×U , where:

Π :=

{
(x ,u)

����min{ulql ,xl } ≤ min

l ′∈δ (l )

{ α (l,l ′)
β (l,l ′) (cl ′ − xl ′ )

}
∧

xl − fl +
∑

l ′,l ∈δ (l ′)

β (l ′, l ) fl ′ +w
max

l ≤ cl ,∀l ∈ L
int

}
.

If the system is in the congestion-free set, then the two following

properties hold. First, the last argument from the minimization

in (1) is never the minimizer. Thus, the �ow of a link is never ob-

structed due to the lack of enough vacancy in its downstream links.

Second, cl in (2) is also never the minimizer. Therefore, the total

exogenous demand from outside of the network is accommodated

in the network hence there is no �ow obstruction from outside of

the network as well. Our primary interest is �nding a control policy

such that the evolution of the network is always restricted to the

congestion-free set.

Furthermore, we are also interested in various other objectives

described using MTL. We allow for two types of atomic propositions.

First are linear predicates over state, which are of the following

form:

px = (a1xl1 + a2xl2 + · · · + anpxlnp ≤ b), (7)

where l1, l2, · · · , lnp are the links whose vehicular volumes appear

in px and b,ai ∈ R+, i = 1, · · · ,np . Since all values are positive, the

half space induced by the linear predicate above is a lower-set in X

with partial order relation �+. Therefore, state predicates are not

falsi�ed when vehicular volumes are decreased. It is also assumed

that no negation operator applies to state predicates. The second

are predicates over controls, which are in the following form:

pu = (ul ∼ bu ), (8)

where ∼∈ {≤, ≥,=},bu ∈ [0, 1]. Using MTL temporal operators and

Boolean connectives, we can describe a wide variety of temporal

properties for tra�c networks.

Example 3.3. Consider the network in Fig. 1 and the following

MTL speci�cations:

• φ1 = F
[0,6) ((u12 = 0) ∧ (u46 = 0) ∧ (u54 = 0)); which reads:

“within 6 time units, all the tra�c lights of links heading to-

ward intersection at middle southern area turn red (hence

pedestrians can cross the intersection in diagonal direc-

tions)”.

• φ2 = ¬
(
(u28 = 0) ∧ F{1} (u28 = 1) ∧ F{2} (u28 = 0)

)
; which

states: “the tra�c light of link 28 can not be green for just

one time step.”

• φ3 = (x59 + x60 + x65 + x66 ≤ 100); which states: “the total

volume of the vehicles on the eastern bridge is less than

100.”

• φ4 = (x73 ≤ 5) ∨ F
[0,4) (u73 = 1); which translates to: “if

the volume of vehicles on link 73 exceeds 5, its tra�c light

eventually turns green within 4 time units.”

Given a bounded MTL formula φ, we consider speci�cations of

the following form:

Φдlobal := G
[0,∞)Φ, (9)

where Φ = ((x ,u) ∈ Π) ∧ φ, and Π is the congestion-free set from

De�nition 3.2. The operator G
[0,∞) (unbounded always) ensures

that the congestion-free property and the requirements in φ hold

for all times. Note that h(Φ) = h(φ). It can be shown that the

proposition ((x ,u) ∈ Π) can be transformed into a Boolean formula

over state and control predicates by translating the minimizers

into mixed-logical equations. We omit the explanation here as a

similar procedure can be found in [13]. Given Φ and its atomic

propositions in the form of (7), (8), the in�nite word generated by

run (6) is denoted by σ (ζ (µ,x0,w)).

Control policies guaranteeing satisfaction of Φдlobal are often

not unique. Thus, we are interested in choosing one optimally with

respect to a cost function. The cost criterion that we consider in this

paper is the total amount of delay induced in the network, which

is de�ned as:

J (x0, µ,w) =
∞∑
t=0

∑
l ∈Lint

γ t (xl,t − fl,t ), (10)

where γ ∈ (0, 1) is the discount factor that is introduced to make

the in�nite horizon cost properly de�ned. Observe that xl,t − fl,t
is the volume of vehicles on l at time t that are unable to travel in

the network for one time step. It is straightforward to show that

J ≤ 1

1−γ

∑
l ∈Lint

cl .

Problem 1. Given a tra�c network N with dynamics (4), a time
bounded MTL speci�cation φ with atomic propositions in the form of
(7), (8), and the cost function J as in (10), �nd a control policy µ and
a set of initial conditions X0 ⊂ X such that

σ0 (ζ (x0, µ,w)) |= Φдlobal ,∀x0 ∈ X,∀w.

Furthermore, given x0 ∈ X0, choose the optimal control policy such
that the worst-case cost is minimized:

minimize max

w
J ((x0, µ,w))

subject to σ0 (ζ (x0, µ,w)) |= Φдlobal ,∀w.
(11)

Our approach to Problem 1 involves some approximations. First,

we only �nd a subset of all admissible initial conditions. We discuss

the completeness of our method in Sec. 5. Second, we approximate

the in�nite horizon constrained optimal control in Problem 1 as a

receding horizon optimal control problem, i.e. we use a model pre-

dictive control (MPC) scheme. As mentioned earlier, there are two

primary challenges to this approach. First, we need to guarantee

that control synthesis in a receding horizon manner ensures global

speci�cation (9), which has in�nite time semantics. This issue is

covered in Sec. 6. Second, constrained optimization is computation-

ally expensive beyond small networks hence controls can not be

found in a centralized manner in real time. To overcome this issue,

we partition the network into smaller subnetworks. The dynamics

of subnetworks become interconnected since vehicles that leave a
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subnetwork arrive in other subnetworks. As mentioned earlier, we

follow an assume-guarantee approach to design contracts for the

interconnections of the subnetworks. The details are explained in

Sec. 5. Each subnetwork’s MPC incorporates the relevant contracts,

as explained in Sec. 6. Due to space limit, the proofs are omitted

here.

4 NETWORK PARTITIONING
In this section, we explain how to partition a network into smaller

subnetworks. We write φ in conjunction normal form (CNF)
2
:

φ =

nφ∧
k=1

φ
conj
k , (12)

where each φ
conj
k can not be written as a conjunction of multiple

MTL formulas. We de�ne

Links(φ) = {l ∈ L|xl or ul appears in φ}.

Assumption 2. MTL formula φ is sparse in the sense that for all
k,k ′ ∈ {1, · · · ,nφ },k , k ′, we have Links(φconjk ) ⊆ Links(φconjk ′ )

or Links(φconjk ) ∩ Links(φconjk ′ ) = ∅.

The assumption above is reasonable in tra�c networks since we

are usually interested in requirements at speci�c locations. While

our method can handle non-sparse speci�cations by introducing

some conservativeness (when designing contracts in Sec. 5), we do

not discuss it in this paper.

Given a network N and an integer N , we partition N into

N 1,N 2, · · · ,NN
. We take the following considerations into ac-

count when a network is partitioned. First, the set of subnetwork

internal links has to be disjoint:

⋃N
i=1 L

int,i = Lint
,Lint,i∩Lint, j =

∅,∀i , j , where Lint,i
is the set of internal links of subnetworkN i

.

Second, we desire that the size of a subnetwork (de�ned by the num-

ber of its internal links) does not exceed a predetermined bound K ,

hence the size of its MPC optimization problem (which is directly

related to the number of internal links) is con�ned. Therefore, we

have |Lint,i | ≤ K , i = 1, · · · ,N . Third, MTL formula φ has to be

translated into a conjunction of “local” MTL formulas for each sub-

network. Using the CNF of φ, we require that ∃i ∈ {1, · · · ,N } such

that Links(φ
conj
k ) ⊆ Lint,i

, k = 1, · · · ,nφ . Fourth, for all l , l ′ ∈ A,

we have ∃i ∈ {1, · · · ,N } such that l , l ′ ∈ Lint,i
. Therefore, the links

of each antagonistic pair are assigned to a single subnetwork. This

is important since subnetworks are controlled in a decentralized

way and the controls for antagonistic pairs are directly coupled.

Fifth, for all l ∈ Li , we have δ i (l ) = δ (l ) ∩ Li , where δ i de�nes

the downstream function of N i
. Finally, the partitioning should

lead to sparsity in the sense that the interconnections between

subnetworks are minimal. As it will be explained later, while not

a�ecting the satisfaction of the global speci�cation (9), interconnec-

tions impose constraints that may introduce conservativeness into

the planning of controls. Within all possible partitionings, want to

choose the one for which the total number of interconnections is

minimized:

minimize

1

2

N∑
i

N∑
j,i,j

|Li ∩ L j |.

2
Every MTL formula can be written in CNF.

The presence of constraints related to the speci�cation makes our

network partitioning problem di�erent from the traditional graph

partitioning problems in the literature [30]. For each internal link

l of N , we de�ne N binary variables bil ∈ {0, 1}, i = 1, · · · ,N ,

where bil = 1 indicates l is assigned to the internal links of network

N i
. We note that links in Lout

are excluded from the assignment

process. We formulate the requirements that were explained above

as the following integer constraints:




N∑
i=1

bil = 1,∀l ∈ Lint,∑
l ∈L

bil ≤ K ,

bil = b
i
l ′ ,∀(l , l

′) ∈ A,

bil = b
i
l ′ ,∀l , l

′ ∈ Links(φ
conj
k ),k = 1, · · · ,nφ ,

(13)

where i = 1, · · · ,N . The �rst states that the sets of internal links

are disjoint, the second ensures that the size of each subnetwork is

bounded byK , the third reads that antagonistic links are assigned to

the same subnetwork, and fourth declares that all the links in non-

conjunctive sub-speci�cations are assigned to the same subnetwork.

It is easy to show that the total number of interconnections is

equal to the summation of the di�erences in binary assignments of

links that are related by δ :

N∑
i

N∑
j,i,j

|Li ∩ L j | =
∑

l ∈L,l ′∈δ (l )

N∑
i

N∑
j,i,j

|bil − b
j
l ′ |. (14)

The decisions for {bil }i=1, · · · ,N ,l ∈Lint are found by solving the fol-

lowing integer programming problem:

minimize

∑
l ∈L,l ′∈δ (l )

N∑
i

N∑
j,i,j

|bil − b
j
l ′ |

subject to (13).

(15)

The complexity of integer programming problems grow exponen-

tially with the number of variables. The choices for N ,K are deter-

mined by the user. Usually, K is related to the computation power

available for solving the MPC optimization problems in real time.

We choose N ≥ 1 as the minimum integer such that a feasible

solution to (15) exists.

Example 4.1. The partitioning for the network in Fig. 1 with

N = 4,K = 20, is illustrated in Fig. 2. Solving (15) with 524 binary

variables took 0.65 seconds on a dual core 3GHz Macbook Pro using

Gurobi
3
. The internal links of each subnetwork are shown with

the same color.

Throughout this paper, we use “local” and “global" to refer to

the attributes of a subnetwork and the original network, respec-

tively. Once a network is partitioned, α i , βi , Ai
, i = 1, · · · ,N , are

constructed in the obvious way such that the values in α , β and the

pairs inA are inherited. Note that an interconnection is essentially

a local outgoing link for one subnetwork and a local internal link

3
www.gurobi.com
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N 1

N 4

N 2

N 3

Figure 2: Network Partitioned into 4 Subnetworks

for the other. We de�ne the local version of Φ for subnetwork N i

as:

Φi := ((xi ,ui ) ∈ π
i ) ∧

∧
Links(φconjk )⊆Lint,i

φ
conj
k , (16)

where π i is de�ned for subnetwork N i
in the same way as De�ni-

tion 3.2. Note that the control of each link is assigned to a single

subsystem. The control policy, the set of initial conditions and the

run of subsystem i are denoted by µi , Xi
0
, and ζ i , respectively.

For eachN i
, i = 1, · · · ,N , we de�ne the sets of downstream and

upstream subnetworks as Down(N i ) :=
{
N j |∃l ∈ Lint,i ,δ (l ) ∈

Lint, j
}
, Up (N i ) :=

{
N j |∃l ∈ Lint, j ,δ (l ) ∈ Lint,i

}
, respectively.

Since most interconnections are two-way, often two subnetworks

are both upstream and downstream of each other. Vehicles leaving

a subnetwork can enter to one of its downstream subnetworks

or leave the entire network. In other words, some components of

the output of a subnetwork become additive disturbances for its

downstream subnetwork. For all interconnections we have:

wi (l , t ) = w (l , t ) +
∑

N j ∈Up (N i ),l ∈L j,out

y
j
l,t . (17)

We write the system equations for each subnetwork as x it+1 =

F i (x it ,u
i
t ,w

i
t ), y

i
t = G

i (x it ,u
i
t ).

5 CONTRACT SYNTHESIS
In this section, we explain how the assume-guarantee contracts

between subnetworks in a partition are found and used for de-

centralized control synthesis, while satisfying the global speci�ca-

tion (9). We use the fact that tra�c dynamics are monotone in the

congestion-free set and the satisfaction of (9) can be converted into

a set-invariance problem in the trajectory space of length h(Φ).

5.1 Assume-Guarantee Contracts
For notation convenience, we denote the components of output

of N i
that a�ect N j

as y
i→j
t := {yil,t }l ∈Lout,i ,Lint, j . We also de�ne

ξ i→j
:= y

i→j
0
,y

i→j
1
, · · · .

De�nition 5.1. An assume-guarantee contract (AGC)ψ i→j
is an

MTL formula, with atomic propositions as predicates over y
i→j
t ,

such that:

• subnetwork N j assumes that ξ i→j
(which acts on as dis-

turbance) satis�es G
[0,∞)ψ

i→j
;

• subnetwork N i guarantees that ξ i→j
(which is its output)

satis�es G
[0,∞)ψ

i→j
.

The key idea in contract-based control design is that once AGCs

are found such that local control polices exist to ensure them, then

the local controllers can operate in a decentralized manner. We

also require the following assumption for synchronization of time

between subnetworks:

Assumption 3. All subnetworks have access to a global clock.

This assumption will be further discussed in Sec. 5.5. Given

subnetworks N 1, · · · ,NN
, we design all AGCs such that

N∧
i=1

(G
[0,∞) (Φ

i ∧
∧

N j ∈Down (N i )

ψ i→j )) ⇒ Φдlobal . (18)

Moreover, there should exist local control policies µi and a non-

empty set of initial conditions Xi
0
, i = 1, · · · ,N , such that both

assumptions and guarantees are met. That is to say for all allowable

wi
that satisfy

∧
N j ∈Up (N i ) ψ

j→i
(assumptions), we have

σ i
0
(ζ i (x i

0
, µi ,wi )) |= G

[0,∞) (Φ
i ∧

∧
N j ∈Down (N i )

ψ i→j ), (19)

for all x i
0
∈ Xi

0
(guarantees). Note that word σ i is constructed from

the local propositions including those of the local contracts.

As one can observe, the design of AGCs falls into circular reason-

ing for subnetworks that have two-way interconnections. Moreover,

AGCs are often not unique. In this paper, we formulate the problem

of contract synthesis as a single constraint satisfaction problem,

which leads to feasibility check for a MILP problem. Although the

complexity grows exponentially (in the worst case) with respect to

network size, we show that the computation time is small for fairly

large networks (e.g., the network in Fig. 1). Note that contracts are

computed o�ine.

5.2 Monotonicity
Proposition 5.2. System (4) is monotone with respect to the ad-

ditive disturbances in the sense that ∀x ∈ X,∀u ∈ U , we have
F (x ,u,w ) �+ F (x ,u,wmax),∀w ∈ W .

Proposition 5.3. System (4),(5) is monotone with respect to the

state in the congestion-free set, i.e. for all (x ,u) ∈ Π, (x ′,u) ∈ Π
such that x �+ x ′, we have F (x ,u,w ) �+ F (x ′,u,w ),∀w ∈ W, and
G (x ,u) �+ G (x ′,u).

It is worth to note that monotonicity property is not valid under

FIFO rule for congested �ow in diverging intersections [6]. Mono-

tonicity enables us to evaluate the worst-case trajectories by setting

the disturbances to wmax
, a technique that we use frequently in

this paper.
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5.3 Language Realization Set
We de�ne the extended state st , t ∈ N such that

st :=
(
(xt ,ut ), (xt+1,ut+1), · · · , (xt+h (Φ)−1,ut+h (Φ)−1)

)
,

where st ∈ S, S =
∏h (Φ)
τ=0 (X ×U ). For notation convenience, we

de�ne XS and US such that xt = XS (st ) and ut = US (st ). Using

st and atomic propositions in Φ, one can obtain the observations in

σ
[t,t+h (Φ)) . Therefore, we can check whether σ

[t,t+h (Φ)) (st ) |= Φ.

De�nition 5.4. The language realization set (LRS) of an MTL

formula Φ is de�ned as:

LRS(Φ) :=
{
s0 ∈ S|σ[0:h (Φ)) (s0) |= Φ

}
. (20)

In other words, LRS(Φ) ⊆ S is the set of all h(Φ)-length runs

that generate su�xes satisfying Φ.

Proposition 5.5. Theword generated by ζ (x0, µ,w ) satis�esG
[0,∞)Φ

if and only if st ∈ LRS(Φ),∀t ∈ N.

The relation �S is de�ned such that s �S s ′ indicates 1) xk �+
x ′k , and 2) uk = u

′
k , k = 0, 1, · · · ,h(Φ) − 1.

Proposition 5.6. The relation �S is a partial order.

For the remainder of this section, we use partial order �S . Re-

stricting the state predicates to 7, the following can be stated.

Proposition 5.7. LRS(Φ) ⊂ S is a lower-set.

5.4 Controlled Invariance
The evolution of the extended state st is written as:

st+1 = FS (st ,vt ,dt ), (21)

where vt = ut+h (Φ) is the extended control, dt = wt+h (Φ) is the

extended disturbance, and FS (st ,vt ,dt ) is:(
(x1,u1), · · · , (x (h (Φ) ,u(h (Φ) ), (F (x (h (Φ) ,vt ,dt )),vt )

)
.

Proposition 5.8. System (21) is monotone with respect to the
extended state in LRS(Φ).

In order to satisfy G
[0,∞)Φ, we need to compute a robust control

invariant set (RCIS) [17] that lies entirely in LRS(Φ). Computation

of an RCIS inside a non-convex set for a hybrid system is a compu-

tationally di�cult problem. We exploit monotonicity to propose an

alternative computational approach. The following theorem is an

extension of the one in our previous work [28],[29]:

Theorem 5.9. Consider a sequence of extended states s∗
0
, s∗

1
,· · · ,

s∗T−1, and a sequence of extended controlsv
∗
0
,v∗

1
, · · · ,v∗T−1, such that

1) s∗k+1 = FS (sk ,vk ,d
max

k ), 2) s∗k ∈ LRS(Φ), k = 0, 1, · · · ,T − 1, 3)
sT � s∗

0
. Then Ω :=

⋃T−1
k=0 L(s

∗
k ) is an RCIS inside LRS(Φ).

We refer to the obtained extended control sequence v∗
0
, v∗

1
, · · · ,

v∗T−1 as s-sequence, where T is its length. The main feature of the

theorem above is that we can compute an RCIS without using the

traditional �xed-point algorithm [17], which is computationally

intractable for hybrid systems and does not guarantee termination

in �nite steps.

Piecewise a�ne systems can be transformed into a set of mixed-

integer linear equations [13]. Temporal logic constraints character-

izing LRS(Φ) can also be translated into mixed-integer constraints

[25]. Finally, the terminal condition s∗T � s∗
0

is a linear constraint.

The details of the procedures are not explained in this paper as they

are well documented in the mentioned works. The conditions in

Theorem 5.9 becomes equivalent to �nding a feasible solution to

a MILP problem. Note that even though the computational com-

plexity of solving a MILP is NP-hard in general, �nding a feasible

solution is signi�cantly faster than �nding an optimal solution.

In order to compute an RCIS, we start fromT = 1 and implement

T ← T + 1 until the MILP for Theorem 5.9 becomes feasible. In

[29], we showed that computing RCISs using a simpli�ed version

of Theorem 5.9 is almost complete. That is to say, as T becomes

larger, a feasible solution should exist if there exists any non-empty

RCIS. However, the same result does not hold here as we are also

considering predicates over controls.

Example 5.10. We formulated the conditions in Theorem 5.9 for

the network in Fig. 1. We have φ =
∧

4

i=1 φi , where φi ’s are given

in Example 3.3. Note that h(φ) = 6. The smallest T for which a

feasible solution exists is T = 6. The corresponding MILP has 5981

variables (1236 binary) and 2902 constraints. It takes 8.6 seconds

on a dual core 3.0 GHz MacBook Pro to �nd a feasible solution and

hence an RCIS in LRS(Φ), which lies in R420+ × {0, 1}384.

Proposition 5.11. A control policy satisfying Φдlobal starting
from x0 exists if x0 ∈ XΩ

0
, where

XΩ
0

:=
{
x0 ∈ X

���∃i ∈ {0, · · · ,T − 1},x0 ≤ XS (s
∗
i )

}
. (22)

The set of admissible initial conditions are characterized by the

computed RCIS. In order to �nd the set of all admissible initial condi-

tions, one has to compute the maximal RCIS, which is unfortunately

not possible beyond few dimensions.

Proposition 5.12. [28] If v∗
0
,v∗

1
, · · · ,v∗T−1 is a s-sequence corre-

sponding to s∗
0
, s∗
1
, · · · , s∗T−1, then for all initial conditions inL(XS (s

∗
0
)),

applying the following open-loop control sequence:

uopen-loop := v∗
0
,v∗

1
, · · · ,v∗T−1 (23)

guarantees satisfaction of Φдlobal for all allowable w.

Therefore, an open-loop solution to Problem 1 is obtained but

without any optimality considerations.

5.5 Contracts
Now we explain how to extract contracts from a feasible solution for

the constraints in Theorem 5.9. We denote s , s∗ andS corresponding

to subnetwork N i
by si , s∗,i and Si , respectively.

De�nition 5.13. The global clock is de�ned asG : N→ {0, 1, · · · ,T−
1}, where Gt is its value at time t .

As mentioned earlier, we assume that all the local controllers

have the knowledge of the global clock. The “natural" evolution of

the global clock is such that if Gt = τ , then Gt+1 = (τ + 1) mod T .

However, in case local controllers share information, we allow the

value of the global clock to be determined by the local controllers.

The details are explained in Sec. 6.2.

Proposition 5.14. Suppose the global clock value at time t is τ
and the extended state is st , where st �S s∗τ . Then we havey

i
t �+ y

∗,i
τ ,

where y∗,iτ = Gi (x∗,iτ ,u
∗,i
τ ), x∗,iτ = XS (s

∗
τ ),u

∗,i
τ = US (s

∗
τ ).
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Therefore, we have

wi,max (l ,τ ) = wmax (l ,τ ) +
∑

N j ∈Up (N i ),l ∈L j,out

y
∗, j
l,τ . (24)

Proposition 5.15. We have st �S s∗τ if and only if sit �Si s
∗,i
τ ,

i = 1, · · · ,N .

Considering these, the contracts are given as:

ψ i→j =

T−1∧
τ=0

(
(τ = Gt ) ⇒ (y

i→j
t ≤ y

∗,i→j
τ )

)
. (25)

This contract synthesis process ensures that there exists at least one

local control policy for each subnetwork such that the contracts are

maintained alongside with the local speci�cations. One such local

policy is the open-loop control sequence in (23), which can be im-

plemented in a decentralized way. Often other local control policies

also exist from which an optimal one can be selected considering a

cost function, as discussed in the next section.

6 CONTROL SYNTHESIS
In this section, we explain how to �nd controls optimally. The cost

function in (10) can be written as:

J :=
N∑
i=1

J i , J i (x i
0
, µi ,wi ) =

∞∑
t=0

∑
l ∈Li,out

γ t (x il,t − f il,t ). (26)

It is worth to note that when the system is in the congestion-free

set, fl,t only depends on the state and control of link l . Thus the

decomposition of the cost as (26) is valid. We wish to �nd an opti-

mal control policy µi for each subnetwork N i
such that its local

speci�cation and contracts to downstream neighbors are satis�ed:

minimize max

wi
J i ((x i

0
, µi ,wi ))

subject to σ i
0
(ζ i (x i

0
, µi ,wi )) |=

(
G
[0,∞)Φ

i∧∧
j ∈Down (N i ) ψ

i→j
)
, ∀wi .

We �nd controls optimally using a decentralized MPC approach.

In this setting, local controllers do not exchange any information

and the pre-designed contracts are the only global provision. Next,

we explain how to extend the decentralizing framework into a

simple cooperative MPC algorithm where the local controllers deter-

mine the value of the global clock by exchanging some information.

6.1 Decentralized Model Predictive Control
Given an MPC prediction horizonH , we denoteui,Ht := ui

0 |t , · · · ,u
i
H |t .

The length H is determined by the user but as explained later, we

recommend H > h(Φ). Given wi,H
t = wi

0 |t , · · · ,w
i
H−1 |t , the H -

length prediction of the system state and output are denoted by

x i,Ht = x i
0 |t , · · · ,x

i
H |t and yi,Ht = yi

0 |t , · · · ,y
i
H |t , respectively. At

each time, we optimizeui,Ht , implementui
0 |t and solve the optimiza-

tion problem at next time. The global clock at time t is supposed

to be a known value. The MPC optimization problem at time t is

given as follows:

ui,Ht = argmin

H∑
k=0

∑
l ∈Li,out

γk (x il,k |t − f il,k |t )

subject to sik−h (Φ) |t ∈ LRS(Φi )

σt (ζ
i→j
k |t ) |= G

[t,t+H ]
ψ i→j , j ∈ Down(N i ),

siH−h (Φ) |t ∈ L(s
∗
τ+H−h (Φ) ),

x ik+1 |t = F (x ik |t ,u
i
k |t ,w

i,max

k |t ),

Gt+k = (τ + k ) mod T ,k = 0, · · · ,H .
(27)

There are �ve lines of constraints that are explained as follows.

The �rst is indicating that the all the H -length predictions of the

extended states are in the language realization set, hence the spec-

i�cation is not violated in �nite time. Due to the MTL temporal

operators, the time window of constraints is shifted by h(Φ) [27].

It is worth to note that we require the knowledge of the recent

h(Φ)-length history of the controls and states. For time t = 0, we

assume that all the previous propositions from this history are true

[27]. The second line stands for the constraints of the contracts

for downstream subnetworks. The third line states that the last

predicted extended state has to lie inside the projection of RCIS Ω
on Si , which provides a su�cient condition for establishing recur-

sive feasibility (see Theorem 6.1 below). Since the partial ordering

�Si has equality constraints on controls, the length of the MPC

horizon with free decision variables is H − h(Φ). Therefore, we

need H > h(Φ). Otherwise, there exists only one feasible solution

to (27). The fourth line is stating that the predictions are computed

using the largest values of disturbances, which due to monotonicity,

corresponds to the worst-case scenario. Thus, the MPC algorithm is

robust in the sense that all constraints are satis�ed for all allowable

disturbances. The �fth line stands for the natural evolution of the

global clock and the range of indices of predictions.

Theorem 6.1. The MPC optimization problem (27) is recursively
feasible in the sense that if it is feasible at time t and a valid control
decision is implemented, then it is guaranteed to be feasible at time
t + 1.

Proposition 6.2. The global speci�cation (9) is satis�ed if (27) is
recursively feasible for all subnetworks.

It should be noted that the solutions obtained from MPC are

optimal only over the �nite prediction horizon. Therefore, solu-

tions can be suboptimal compared to the global optimum in (11).

We also note that contracts can introduce conservativeness since

subnetworks assume maximum allowable disturbances from the

upstream neighbors. To mitigate this conservativeness, we desire

that the number of subnetworks - and interconnections - be as

small as possible. A very long prediction horizon can also cause

conservativeness since the worst-case values at far future times are

considered in the optimization problem. This issue can be alleviated

by using an appropriate discount factor in the cost function. In the

case when the state knowledge is noisy, the values for states in

(27) have to be replaced by their upper-bound estimates. Due to

monotonicity, this ensures that the correctness of the speci�cation

and the contracts are maintained for all possible state values. How-

ever, one may get infeasibility for (27) because of unrealistic state
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measurements, even though feasibility is guaranteed for the true

state values. In this case, one has to relax the constraints. A less

conservative treatment of noisy data may require a probabilistic

framework, which is out of the scope of this paper.

6.2 Cooperative Model Predictive Control
Here we assume that the local controllers are able to communicate

with each other. In order to improve optimality, we introduce a sim-

ple modi�cation for the decentralized MPC algorithm as follows. At

each time, the controllers implement (27) for all allowable values of

the global clock. Therefore, we de�ne Jopt,i = {J
opt,i
τ }τ ∈{0, · · · ,T−1} ,

Jopt,i ∈ RT+ , where J
opt,i
τ is the optimal cost of MPC for subnet-

workN i
, i = 1, · · · ,N , obtained from setting the clock variable Gt

to τ . If an MPC optimization problem is infeasible, we set its cost

to∞. Next, we choose the best global clock value as follows:

τ ∗ = min

τ ∈{0, · · · ,T }

N∑
i=1

J
opt,i
τ . (28)

Note that recursive feasibility guarantees that for at least one clock

variable the sum of costs is �nite. Distributed computation of (28)

can be accomplished using a distributed average consensus algo-

rithm [8], assuming that the controllers of the subnetworks com-

municate on a connected graph. Then, each controller implements

the controls which correspond to the minimum cost in the average

1

N
∑N
i=1 J

opt,i
. We note that our cooperative MPC technique is still

preliminary and there are many open directions to improve this

approach.

7 SIMULATION RESULTS
In this section, we present numerical results of applying our meth-

ods to the network shown in Fig. 1. Motivated by time scales of

real tra�c networks, we consider a time step of 20 seconds in all

simulations.

7.1 Macroscopic Simulation
We used the model in (4), which is “macroscopic" in the sense that

it describes the aggregated vehicular dynamics instead of modeling

each vehicle. The speci�cation is given as in Example 5.10. For all

MPC algorithms, we use H = 11 and γ = 0.5. We simulate the

system for 45 time steps. The total delay accumulated over the

network during this time frame is

∑
45

t=0
∑
l ∈Lint (xl,t − fl,t ). All

the computation times are given for implementations on a dual-

core 3.0GHz Macbook Pro. The software for implementations are

available in [1] for download. In the following implementations,

the values for the exogenous demand for the network are drawn

from a uniform distribution over L(wmax), with the exception of

links from subnetworkN 1
, where we set their exogenous demands

to their largest admissible values.

Open-loop (OL). We implemented the control sequence from

(23). This control policy is not tra�c-responsive but ensures the

satisfaction of the global speci�cation (9). The total accumulated

delay was 4786 [vehicles×time-step]. The implementation does not

require any online computation e�ort or measurement of the state.

Centralized MPC (CeMPC). We implemented the MPC algo-

rithm (27) for the complete networkN . We do not need the contract

Table 1: Computation Time per Time Step and Accumulated
Delay for Di�erent Control Policies

OL CeMPC DeMPC CoMPC

Max. Comp. Time (s) - 1762 0.93 7.09

Avg. Comp. Time (s) - 86.7 0.17 1.21

Accumulated Delay 4786 2878 3216 3112

Figure 3: Simulation Results

constraints as the network is undivided in this setup. Therefore,

there is no conservativeness induced by the contracts. The accumu-

lated delay was 2878, which indicates about 40% decrease compared

to the OL policy. However, the computation time for each time

step is very large (see Table 1), which indicates that CeMPC is not

suitable for real time tra�c management.

DecentralizedMPC (DeMPC).Here we implemented the MPC

algorithm (27) for each subnetwork individually. The accumulated

delay was 3216, which is a bit larger than the one for the CeMPC

but still signi�cantly smaller than the one for the OL policy. The

computation times were less than a second (see Table 1). Therefore,

DeMPC is appropriate for real time tra�c management.

CooperativeMPC (CoMPC).Here we implemented the method

from Sec. 6.2. During the simulation, the natural evolution of the

global clock was overridden for 7 times, mainly in order to prior-

itize the heavy tra�c in subnetwork N 1
. The accumulated delay

was 3112, which is slightly smaller than the one for DeMPC. The

computation times are longer due to solving multiple MILPs (T = 6

in this case), but the computations can be performed in parallel.

It is observed that the speci�cation is satis�ed by each imple-

mentation (which is also implied by the the fact that all the MPC

problems were feasible). The trajectories always remain in the

congestion-free set and all the sub-speci�cations in Example 3.3

are always met. For instance, the tra�c lights corresponding to the

sub-speci�cations φ1,φ2, and the vehicular volumes over time are

shown in Fig. 3 (using DeMPC with all exogenous demands set to

their maximum). It is also observed that the number of vehicles on

the eastern bridge never exceeds 100 (sub-speci�cation φ3). For the

only case when the volume on link 73 exceeded 5, its tra�c light

turned green immediately (sub-speci�cation φ4).

7.2 Microscopic Simulation
Here we show some preliminary results on implementing our meth-

ods on microscopic tra�c simulators. We used the PTV VISSIM
4

4
http://vision-tra�c.ptvgroup.com/products/ptv-vissim
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microscopic tra�c simulator, which is a widely used, highly real-

istic simulator that incorporates many aspects of tra�c such as

driver models, vehicle classes, priorities, con�icts, etc. A screenshot

of the VISSIM implementation of the tra�c network in Fig. 1 is

shown in Fig. 4. The simulator was used in a closed-loop setup:

the controller has access to the tra�c volumes and the tra�c light

settings via a MATLAB interface. The length of each link is set to

300 meters. The maximal speed of the vehicles was set to 15 m/s

with an acceleration pro�le of a normal passenger car. The sample

time is 20 seconds. We simulate the system for 15 minutes (equiva-

lent to 45 time steps). We observe that a naive (centralized) MPC

controller with no feasibility guarantees leads to congestion in the

network after about 25 time steps. However, using the methods in

this paper we were able to to avoid congestion and satisfy all the

speci�cations. The results are shown in Fig. 3. The video of our

VISSIM implementation is included in [1].

The macroscopic model (4) used for control synthesis does not

necessarily capture all the behaviors in the VISSIM model. There-

fore, we are unable to formally guarantee that the speci�cation

is always satis�ed by the VISSIM model. However, in our simula-

tions we observed that the VISSIM simulations always satisfy the

speci�cation using the controls we found for (4). We leave further

investigation of the relation between macroscopic and microscopic

models from a formal methods perspective to our future work.
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