IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

2031

Formal Verification and Synthesis for
Discrete-Time Stochastic Systems

Morteza Lahijanian, Member, IEEE, Sean B. Andersson, Senior Member, IEEE, and
Calin Belta, Senior Member, IEEE

Abstract—Formal methods are increasingly being used for con-
trol and verification of dynamic systems against complex specifica-
tions. In general, these methods rely on a relatively simple system
model, such as a transition graph, Markov chain, or Markov de-
cision process, and require abstraction of the original continuous-
state dynamics. It can be difficult or impossible, however, to find
a perfectly equivalent abstraction, particularly when the original
system is stochastic. Here we develop an abstraction procedure
that maps a discrete-time stochastic system to an Interval-valued
Markov Chain (IMC) and a switched discrete-time stochastic sys-
tem to a Bounded-parameter Markov Decision Process (BMDP).
We construct model checking algorithms for these models against
Probabilistic Computation Tree Logic (PCTL) formulas and a
synthesis procedure for BMDPs. Finally, we develop an efficient
refinement algorithm that reduces the uncertainty in the abstrac-
tion. The technique is illustrated through simulation.

Index Terms—Finite abstraction, formal synthesis, formal ver-
ification, Markov abstraction, model checking, PCTL, stochastic
systems, temporal logics.

I. INTRODUCTION

N classical analysis and control problems, “complex” mod-

els, such as systems of differential equations, are usually
checked against “simple” specifications. Examples include the
stability of an equilibrium, the invariance of a set, and proper-
ties such as controllability and observability. There is growing
interest, however, in using formal methods [2] to check the
behavior of a complex model against “rich” specifications that
include notions of safety (i.e., something bad never happens)
and liveness (i.e., something good eventually happens). The
mathematical foundations of these techniques contribute to
the reliability and robustness of a design. They have been
used successfully in practice to verify industrial designs (e.g.,
Rule-Base at IBM), and companies are beginning to market
commercial model checkers (e.g., Motorola VeriState-SM and

Manuscript received February 27, 2014; revised September 19, 2014; ac-
cepted January 18, 2015. Date of publication February 2, 2015; date of current
version July 24, 2015. This work was supported in part by NSF under grants
CNS-0834260 and CMMI-0928776, the ARO under W911NF-09-1-0088, the
AFOSR under FA9550-09-1-0209, and the ONR under ONR MURI N00014-
09-1051. This paper appeared in part in the IEEE Conference on Decision
and Control, Maui, HI, December 2012. Recommended by Associate Editor
H. S. Chang.

M. Lahijanian was with the Department of Mechanical Engineering,
Boston University, Boston, MA 02215 USA. He is now with the Department
of Computer Science, Rice University, Houston, TX 77005 USA (e-mail:
morteza@rice.edu).

S. B. Andersson and C. Belta are with the Department of Mechanical
Engineering and the Division of Systems Engineering, Boston University,
Boston, MA 02215 USA (e-mail: sanderss @bu.edu; cbelta@bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2015.2398883

I-Logix Statemate MAGNUM). In addition, these approaches
have found application in the synthesis of controls for dynamic
systems to ensure a given specification is met (e.g., [3], [4]).

In general, formal methods rely on a relatively simple input
model such as a (finite) transition graph. In order to apply these
techniques to continuous-domain dynamical systems, these
must be abstracted to appropriate finite models. By establishing
an equivalence between the system and its abstraction, the
satisfaction of the specification by the abstraction guarantees
the satisfaction by the original system [5], [6]. In general,
however, it can be difficult or impossible to find a perfectly
equivalent abstraction, especially when the original system has
stochastic dynamics.

In this paper, we consider the problem of formal verifi-
cation and synthesis of switching strategies for continuous-
domain discrete-time stochastic systems evolving in polytopic
domains with noise bounds given by polyhedral sets. We are
interested in specifications given as Probabilistic Computation
Tree Logic (PCTL) [7] formulas. We approach this problem by
first constructing an Interval-valued Markov Chain (IMC) [8],
[9] or Bounded-parameter Markov Decision Process (BMDP)
[10] abstraction of the continuous-domain stochastic system.
We interpret the abstraction as a generalized Markov Decision
Process (MDP), and model check it using an algorithm sim-
ilar to MDP model checking algorithms. Lastly, we employ
a refinement algorithm to iteratively reduce the uncertainty
introduced by the abstraction process.

There are four main contributions of this work. First, we
develop a method of creating a finite abstraction of a stochastic
dynamic system in a partitioned domain to an IMC or BMDP.
Second, we construct a model checking algorithm for IMCs
and BMDPs to find the sets of initial states that definitely,
possibly, and never satisfy a given specification. Third, we
develop an algorithm for BMDPs that synthesizes a policy that
maximizes the probability of satisfying a specification. Fourth,
we generate an adaptive refinement algorithm that exploits the
dynamics of the system and the geometry of the partition to
increase the precision of the solution. A preliminary version
of this work considering only abstractions to Markov chains
appeared in [1].

The remainder of the paper is organized as follows.
Section I-A contains related work. In Section II, we formulate
the verification and synthesis problems and outline our ap-
proach. In Section III, background material on IMCs, BMDPs,
and polyhedral operations is given. The abstraction procedure
is discussed in Section IV while our model checking algorithms
for IMCs and BMDPs are presented in Section V. Section VI

0018-9286 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
Authorized licensed useJFRITIP BB EFe5q-ORg DRI OB RaR Mty oI Plicakions/aahspsadey BT £9 M ¢ BHORRE XPiore. Restrictions apply.

2032

discusses the adaptive refinement procedure designed to increase
the precision of the solution. In Section VII, we introduce our
synthesis algorithms for BMDPs and discuss their conserva-
tiveness. Performance of the proposed framework is illustrated
through case studies in Section VIII. We conclude with final
remarks in Section IX.

A. Related Work

Much work has been done in the areas of abstraction, ver-
ification, and synthesis for stochastic systems from temporal
logic specifications. Existing methods are generally based on
Markov models such as Markov Chains (MCs) and MDPs in
which the transition probability distributions are assumed to be
known exactly (e.g., [11], [12]). An abstraction is typically ob-
tained using Monte Carlo simulation techniques to determine,
at least approximately, the transition probabilities between the
states and the state space is augmented if needed to achieve
Markovianity in the transitions [13], [14]. Recent works [15],
[16] developed a different approach in which stochastic hybrid
systems were abstracted to Markov chains with approximation
error, also known as Markov set-chains [15]. In [15]-[17], a
bound on that error was determined using a Lipschitz continuity
condition on the stochastic kernels of the underlying hybrid sys-
tem. An adaptive grid-based algorithm was employed to reduce
this error to any desired level. The technique, however, used a
conservative bound that in general leads to a higher cardinality
of the abstraction than is necessary to achieve the desired error
level. In our previous work, we followed a similar method to
construct a Markov chain abstraction for a stochastic linear
system with bounded noise [1]. The computational framework
allowed for the calculation of exact bounds on the approxima-
tion error but not for uncertainty in the abstraction itself.

To establish the equivalence relation between the original
stochastic system and its abstraction, the notions of exact
and approximate bisimulations have been developed for some
classes of stochastic hybrid systems [18]-[22]. The work in
[18] uses concepts from category theory to develop a notion
of exact bisimulation for general stochastic hybrid systems,
while in [19] the notion of exact bisimulation is generated
for communicating piecewise deterministic hybrid systems.
In [20], [21], the authors develop the notion of approximate
bisimulation for labeled Markov processes and probabilistic
transition systems by using a Hutchinson-like metric. This
metric measures the distance between two distributions of the
transition probability. The work in [22] generates a theory
of approximate bisimulation for a class of stochastic hybrid
automata by constructing a Lyapunov-like stochastic bisimu-
lation function. The relation between the continuous-domain
stochastic system and the abstraction model that we construct
for it in this paper is closer to the approximate bisimulation
concept introduced in [20], [21]. The abstraction model in our
study is either an IMC or a BMDP, which include a set of
distributions with well-defined bounds. The true distribution of
the continuous-domain stochastic system lies in this set. Thus,
an upper bound can be defined for the distance between the
distribution of the system and the boundaries of the set.

There are a variety of algorithms available for verification of
MCs and MDPs against temporal logics such as Linear Tempo-
ral Logic (LTL) [2] and PCTL specifications. These algorithms

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

are implemented in software tools such as PRISM [23] and
MRMC [24]. Formal synthesis tools for MDPs have also been
developed from PCTL [12] and Probabilistic LTL [25] speci-
fications. These verification and synthesis tools have been suc-
cessfully applied to numerous fields including robotics, systems
biology, hardware circuits, and software reliability analysis.

More recently, verification and synthesis methods have been
developed for uncertain systems with continuous state spaces.
The work in [6] constructed a framework for LTL verification
of affine systems under parameter uncertainty. The authors in
[11] introduced a PCTL model checking approach to discrete-
time Stochastic Hybrid Systems (DTSHS) through approxi-
mate MC abstraction. They also used the same abstraction
technique for the verification of DTSHS against probabilistic
linear-time objectives by constructing the synchronous product
of the approximate MC of the DTSHS and the automaton rep-
resenting the specification and then computing the probability
of the satisfying paths of the product automaton [26], [27]. One
of the benefits of these techniques is their use of existing model
checking and synthesis tools. However, there are a number of
disadvantages including the state explosion problem, which is
partly due to the current MC and MDP abstraction methods.

To overcome the state explosion problem, a number of
works have been developed in the field of model checking that
are based on a coarse and uncertain abstract of probabilistic
systems. The work in [28] introduces an IMC abstraction
technique for discrete-time MCs and proposes a model check-
ing algorithm for IMCs. The verification algorithm, however,
suffers from high computational cost for large systems. The
authors in [29], [30] extend the IMC abstraction framework
to continuous-time MCs and present an IMC model checking
algorithm with polynomial complexity. Nevertheless, the con-
sidered logics only support bounded-time temporal operators.
The complexity analysis of verifying IMCs against different
properties are studied in [31]-[33]. The work in [34] introduces
a game-based approach to generate coarse abstractions for
MDPs. For safety verification of continuous stochastic systems,
works [35], [36] propose similar abstraction techniques.

In this paper, we propose a complete formal verification and
synthesis framework that avoids the state explosion problem.
We use IMCs and BMDPs as abstraction models for stochastic
systems and quantify the exact bounds on the transition prob-
abilities by using the distribution of the stochastic system. We
then introduce computationally efficient verification and syn-
thesis algorithms for these models. Our algorithms compute the
probability bounds of satisfying the specification for each state
of the IMC or BMDP. Finally, we introduce a guided refine-
ment algorithm that increases the accuracy of the solution while
limiting the growth in the size of the state space by focusing on
those states with the largest satisfying probability intervals.

II. PROBLEM FORMULATION

We consider the following continuous-domain, discrete-time,
switched stochastic system:

Tl :}"a(xhwk), Tk GPCRn, W eW cCcR"? (1)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

Specitication
(PCTL formula)

-

Stochastic

Dynamics (

: IMC/ Verification/ o
—_—
Abstraction BMDP Synthesis p
Initial Partition S J) g

of State Space

I
Refinement

Fig. 1. Block diagram representation of the approach to Problems 1 and 2.
Qves, Q7, and Q™ are the sets of states that definitely, possibly, and never
satisfy the specification, respectively.

where a € I, = {1,2,---,m,}, Fo : P x W — P is a possi-
bly nonlinear function, P is a full dimensional polytope in
R", k € N° and wy, is a sample from a given probability
distribution over a polyhedral subset W of R”. The index set
1, labels the available dynamics of the system. Let IT be a set
of arbitrary strict linear predicates (linear inequalities) over the
state x. We are interested in developing a theoretical framework
and a computational tool for formal verification and formal
synthesis of switching policies for system (1) from temporal
logic specifications over 11.

We focus on specifications given as PCTL formulas (for-
mally defined in Section III-B) for their high expressivity and
low complexity in their verification algorithms. Some examples
of the system specifications that can be expressed in PCTL are
as follows.

Is the probability of reaching a bad state in less than ten
steps greater than 0.01?

Find a set of initial states that with probability 0.95 or
greater will eventually reach a goal state without visiting
a bad state.

Find a control policy that maximizes the probability
of reaching goal through the regions from which the
probability of hitting an obstacle is less than 0.05.

In this study, we consider the following two distinct but related
problems.

Problem 1 (Verification): Given a stochastic system of the
form (1) and a PCTL formula ¢ over 11, find a set of initial
states that satisfy ¢ under all switching policies.

Problem 2 (Synthesis): Given a stochastic system of the
form (1) and a PCTL formula ¢ over I1, find a switching policy
that maximizes the probability of satisfying ¢.

In these problems, the switching policy for system (1) is also
referred to as a control policy.

Our general approach to the above two problems includes a
finite abstraction process followed by verification or synthesis.
To create the abstraction, we model system (1) as a finite-state
discrete-time Markov model and use this model for analysis
and synthesis. As made clear below, this method introduces
conservatism. We reduce this conservatism and increase the
precision of the result through a refinement stage. The block
diagram of this approach is shown in Fig. 1.

In Problem 1 (verification), we assume that the number of
available dynamics for system (1) is greater than or equal
to one (i.e., my > 1) while, in Problem 2 (synthesis), it is
strictly greater than one (i.e., m, > 1). When m, =1, only

2033

one switching policy exists, and the abstraction is in the form
of an IMC. Informally, IMCs are MC models where the exact
transition probability for each state transition is known only
to lie within a given interval [8], [9]. When m, > 1, system
(1) is abstracted to a BMDP. A BMDP allows for inclusion
of actions (choice of dynamics) at each state in addition to
uncertainties over the transition probabilities [10].

To solve the problems defined above, we perform either mod-
el checking (Problem 1) or synthesis (Problem 2) on the finite
abstract model for formula ¢. The approaches to model check-
ing and synthesis for IMCs and BMDPs as well as the final re-
sults depend on the interpretation of these abstract models. There
are two semantic interpretations for IMCs, each with its own
notion of paths and probability measures. The first views an IMC
as a family of (possibly uncountably many) MCs [37], where
each member of the family has transition probabilities within the
interval ranges defined by the IMC. The second views IMCs
(and similarly BMDPs) as generalized MDPs in which the
uncertainty over the transition probabilities is resolved through
non-determinism. That is, a transition probability distribution
that respects the bounds is chosen every time a state is visited
and then the next transition is chosen from that distribution.

The model checking and synthesis techniques that we de-
velop are based on the MDP view of IMCs and BMDPs.
Our algorithms compute exact bounds of the probabilities of
satisfaction for each state of the IMC and BMDP at low com-
putational costs. If larger than desired, the distance between the
bounds is then reduced by a refinement process that specifically
targets the regions which cause large distances.

III. PRELIMINARIES
A. Markov Models

For a finite set (), we use |Q| and 29 to denote its cardinality
and power set, respectively.

Definition 1 (MDP): A Markov Decision Process (MDP) is
atuple D = (Q, qo, Act, Steps, 11, L), where:

e () is a finite set of states;

e o € Q is the initial state;

e Act is a finite set of actions;

o Steps : Q — 24*¥(Q) i a transition probability func-
tion, where 3(Q) is the set of all discrete probability
distributions over the set Q);

e Il is a finite set of atomic propositions;

o L:(Q — 2" is a labeling function assigning to each state
possibly several elements of II.

The set of actions available at ¢ € @) is denoted by A(q).
The function Steps is often represented as a matrix with |Q|

columns and Z‘fi’g " | A(g;)| rows. We denote the probability
of transitioning from state ¢; to state ¢; under action a €
A(g;) as 0% (¢;) and the corresponding probability distribution

as oli. A path w through an MDP is a sequence of states

(a0,009 (a1)) (a1,05% (a2))
W = qo Q1 <Gy dit1---
where each transition is induced by a choice of action at the
current step ¢ > 0. We denote the ith state of a path w by w(i)
and the set of all finite and infinite paths by Path/™ and Path,

respectively.

(5,008 (a541))

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2034

A control policy defines a choice of action at each state of
MDP. Its formal definition follows.

Definition 2 (Control Policy): A control policy . of an MDP
model D is a function mapping a finite path w/™ = qoq1¢2
... qn of D onto an action in A(g,). In other words, a policy
is a function y : Path/™ — Act that specifies for every finite
path, the next action to be applied. If a control policy depends
only on the last state of w/*", it is called a stationary policy.

For each policy f, a probability measure Prob,, over the set
of all paths (under) Path,, is induced by the resulting MC.

Definition 3 (IMC): An IMC is a tuple Z = (Q, qo, P, P,
IT, L), where @, qo, I1, and L are as in Def. 1, and

e P:Q xQ —[0,1] is a function, where P(q,q') defines
the lower bound of the transition probability from state ¢
to state ¢';

« P:QxQ—1[0,1] is a function, where P(q,¢') defines
the upper bound of the transition probability from state g
to state ¢';

For all ¢,¢' € Q, P and P satisfy P(q,q) < P(q,q’), and,

for all states with outgoing transitions, 4c0 1’5(q7 7d)<1<

Zq/EQ P(q,q). An IMC becomes a Markov chain (MC) when

P = P = P.1In this case, P(q, -) is the precise transition prob-
ability distribution of state g over Q).

With a small abuse of notation, we define the set Steps(q) of
probability distributions over () as

Steps(q) = {aq 1 Q — R Z dl(d)=1&
q'€Q

P(q,q) < 0%(q) < Pq.q')Vd € Q}-

In the MDP interpretation of an IMC, at every state ¢ € @, a
probability distribution o? is chosen nondeterministically from
the set Steps(q). A successor state ¢’ is then chosen according
to 07 over (). We assume that the nondeterministic choice of ¢4
is made by an adversary.

Definition 4 (Adversary): An adversary v of an IMC model
T is a function mapping a finite path w/™ = qoqi1qa . .. g of
7 onto an element of Steps(gy,). That is, an adversary is a
function v : Path/"™ — Steps that specifies for every finite
path, the next distribution to be applied.

From a game-theoretic point of view, an adversary is the
opponent’s strategy while a control policy is ours. Since there
is no choice of control in IMCs, an adversary v induces a
probability measure Prob, over the set of all paths (under v)
Path,,.

Example 1: A simple IMC is shown in Fig. 2(a) with
Q = {40, 91,92, 3} The labels are L(qp) = {Init}, L(q1) =
{R1}, L(q2) = {Ra}, and L(g3) = {R3}. The transition
probability bounds are

0 058 039 O
p_ 0 012 0.15 0.57
098 0 0 0
0 025 068 O
0 061 041 O
p_ 0 0.23 0.20 0.62
1.0 0 005 O

0 032 071 O

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

{Init}

Fig. 2. (a) A four-state IMC Z with the range of the transition probabilities
shown in brackets. (b) Fragment of infinite-state Markov chain Z,,, for adver-
sary v1. (a) IMC Z; (b) Fragment of MC Z,, .

An example of an adversary for this IMC is v, defined by
the mapping

(- qo0) = (0,0.60,0.40,0)"
v(---q1) =(0,0.20,0.20,0.60)"
(- go) = (1.0,0,0,0)7

(- -g3) =(0,0.30,0.70,0)T

where - - - ¢; denotes any finite path terminating in ¢;. The initial
fragment of the resulting MC is shown in Fig. 2(b). From this
fragment, it is easy to see that the probability of the finite path
909142 is Prob,, (qoq1q1) = 0.12.

An IMC that allows the inclusion of a finite set of actions at
each state is called a Bounded-parameter Markov Decision Pro-
cess (BMDP) [10]. Like MDPs, BMDPs provide a modeling
framework for decision making, and, like IMCs, they include
uncertainty over the transition probabilities. We formally define
a BMDP as follows.

Definition 5 (BMDP): A BMDP is a tuple B =
(Q, qo. Act, Steps, Steps, 1L, L), where Q. qo. Act, I,
and L are as in Def. 1, and

. % :Q X Act x @ = [0,1] is a function where

%(q, a,q’) gives the lower bound of the transition
probability from state g to state ¢’ under action a € A(q);
. @ :Q x Act x Q — [0,1] is a function where
%(q, a,q’) gives the upper bound of the transition
probability from state ¢ to state ¢’ under action a € A(q).

The functions % and ge?s can be represented as

matrices with |@| columns and Zglo_l | A(g;)| rows. More-
over, for all ¢, € Q@ and any a € A(g), they satisfy

Steps(q,a.q') < Steps(q,a,q'), and Y Steps(g,a.q') <
1< cqSteps(q,a.q’). A BMDP becomes an MDP if
M = S/tc% = Steps.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

To trace a path through a BMDP, a policy and an adversary
are needed since they determine the action and the correspond-
ing probability distribution at every state, respectively. Let n =
(,) denote a given policy u and adversary v. Analogous to
MDPs and IMCs, a probability measure Prob,, is induced over
the set of all paths of a BMDP under 7.

B. Probabilistic Computation Tree Logic (PCTL)

We use PCTL [7] to write specifications of IMCs and
BMDPs.

Definition 6 (Syntax of PCTL): Formulas in PCTL can be
recursively defined as follows:

¢ = truelm|=¢|g A ¢ Pogp[)]
) = X loU= ol U

where 7 € Il is an atomic proposition, — (negation) and A
(conjunction) are Boolean operators, <€ {<, <, > >}, p €
[0,1], k €N, and X (“next”), U=F (“bounded until”), and U
(“until”) are temporal operators.

State formulas ¢ are evaluated over the states of a BMDP
while path formulas ¢ are assessed over paths and only al-
lowed inside the Py, [1)] operator. Intuitively, a state ¢ satisfies
Poap[t] if the probability of all paths from ¢ satisfying) is in
the range > p.

Definition 7 (Semantics of PCTL): For any state ¢ € @, the
satisfaction relation |= is defined inductively as follows.

* ¢ = trueforall ¢ € Q;

*qEme e L)

* qE (01 Ad2) & (qFF é1) A (g = d2);

* g 9 S qFe;

* q F Puplt)] & pi o<1 p, where pf is the probability of all

the infinite paths that start from ¢ and satisfy ¢ under all
7, i.e., under all pairs of policies and adversaries.

Moreover, for any path w € Path:

cwkEXoewl)E g

c wkEnUTG & TFi <k, wi) F o2 Aw(l) | iV €

[0,4);
cwhE U= Ii>0, w(i) 2 Aw(l) F Vi€
[0,4).

We define the path formula operators »=F (“bounded even-

tually”) and <> (‘“eventually”) as

(state formulas)

(path formulas)

Poap[O=F O] = Pogpltrue USF], Poy[O] = Poy[true U]

respectively. Intuitively, $><*¢ means that ¢ is satisfied within
k time units. Similarly, {¢» means that ¢ is satisfied at some
point in the future.

C. Polytopes and Their Pre and Post Images

Let n € N and consider the n-dimensional Euclidean space
R™. A full dimensional polytope P is defined as the convex
hull of at least n + 1 affinely independent points in R™. The
set of vertices of P is the set of points v¥,... ,UELP cR",
mp > n+ 1, whose convex hull gives P and with the property

that, forany ¢ = 1, ..., mp, point vf is not in the convex hull of

2035
the remaining points v7,... v} |, vl ,... v}, . A polytope
is completely described by its set of vertices

P = conv (vf,...,vip) 2)

where conv denotes the convex hull. Alternatively, P can be
described as the intersection of at least n + 1 closed half spaces.
In other words, there existsat >n + 1, h; € R", and [; € R,
¢ =1,...,tsuch that

P={zeR"h z<l,i=1,...t}. 3)

The above definition can be written as the matrix inequality
Hx < L, where H € R™" and L € R!. Forms (2) and (3)
are referred to as V- and H-representations of the polytope,
respectively. Below, we formally define polyhedral operators
PRE, PRER, and POST that are used in our refinement algorithm
in Section VI.

Given stochastic system (1) in polytope P with a choice of
dynamics given by a € I,,, we define PRE(P|a) as the set of all
points that make a transition to P under dynamics a for some
values of w in one time step, i.e., all points that have a non-zero
transition probability to P

PRE(P|a) = {x € P|F,(z,w) € P forsome w € W}. (4)

Similarly, we define PRER (P|a) (robust PRE) to be the set of
all points that make a transition to P under dynamics a in one
step for all possible values of w, that is, all those points that
make a transition to P with probability 1

PRER(P|a) = {z € P|Fy(z,w) € Pforallw € W}. (5)

We define POST(P|a) as the set of points that can be reached
from P under dynamics a in one step for some value of w

PosT(Pla)={z € R"|z=F,(2', w) for some 2’ € P,we W}.
(6)

As an example, consider a linear system of the form
Trt1 = Azy + wg, with A € R™*™ invertible. For polytope

P = conv(vy,...,v},,) with matrix form Hz < L and poly-
tope W = conv(v}",..., v}V), the above sets are convex

polytopes that can be computed as [38]
PRE(P|a):com}({A*l(v},D —U;/V),l <i<mpl<j< mW})

POST(P|a):conv({Avf+vF/, 1<i<mp, 1§j§mw})
PRER(P|(I):{$GR”|HRIL‘§LR“Z.:1,...,mw} (7)

where Hr = HA and Ly, = L — Hv}V. Therefore, the com-
plexities of these operations on linear systems are polynomial
in time, i.e., O(t3m3;,) in the worst case.

IV. ABSTRACTION

In this section, we describe our method of generating an IMC
(when m, = 1) or a BMDP (when m, > 1) for the evolution
of system (1) in the polytopic domain P with a partition given
by a set of linear predicates. The abstraction method is inspired
by [11], [26], but instead of using approximate Markov models
and quantifying the error of abstraction conservatively by a
Lipschitz condition, we compute exact bounds for the transition

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2036

probabilities between the regions defined by the partition and
employ an IMC or a BMDP to incorporate the uncertainty in
the abstraction itself. The IMC and BMDP models capture all
the possible probability distributions between the regions, and
thus the true distribution of the original system is a member of
the distribution set represented by the abstraction model. As a
result, if a specification is satisfied by all the distributions of the
IMC or BMDP, it is also satisfied by the distribution of the un-
derlying stochastic system. Therefore, with these abstractions,
the problem of verification (and synthesis) of the infinite-state
system (1) with respect to a given specification is reduced to
verification (and synthesis) of the finite-state IMC (or BMDP).

A. IMC Abstraction

Here, we consider the abstraction of system (1) with only
one dynamics (m, = 1) into an IMC. We start by defining a
polytopic partition Q = {q1,q2,- -, Gme }»MQ € N, induced
by the linear predicates from the set II. The set () is the set of
states of the IMC. Through a small abuse of notation, we use
¢; to describe both the polytope and the symbol labeling that
polytope so that () represents also a set of discrete states for the
IMC. The exact meaning of g; should be clear from the context.

To compute the transition probability bounds for the IMC,
we assume that the stochastic system evolves in P with a Borel-
measurable stochastic kernel given by 7' : B(P) x P — [0, 1],
where B(P) is a class of Borel sets in P. The stochastic kernel
assigns to each point = € P a probability measure T'(-|z) on the
Borel space (P,B(P)) and is determined by (1).

We denote the one-step transition probability from point
x € g; to polytope ¢; by prs(g;|g;). This transition probability
depends on the kernel 7" and can be obtained by marginalizing
over each polytope in the set)

pr(gjlg;) = Prob(z' € gjlx € ¢;) = /T(dx’|a: €q;) 8
a4

where x,2’ € P are related by the system dynamics. Since

the probability depends on the initial point = € g;, there exist

possibly infinitely many transition probabilities from region

g; to region g;. Their values are bounded within the interval

[P(qi, q;), P(gi, q;)], where
Pas.a5) = min [T(de'}o € g ©)
TEqi
q;

P(gi,q;) = maX/T(dm'\x € qi).
’ TEQ;

a;

(10)

It should be noted that the bounds P(g;, g;) and P(g;, g;) are
achievable, that is, there exist states which exactly have these
transition probabilities. We use (9) and (10) to construct the
lower and upper bound transition probability matrices P and
]5, respectively, of the IMC Z.

The computability of the above probabilities depends on the
dynamics of the system, the distribution of noise, and the geom-
etry of regions ¢; and g;. For particular system dynamics and
noise distributions, closed-form solutions can be derived for
general convex regions. For instance, analytical solutions can
be derived in a straightforward manner for systems with linear

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

dynamics and unbounded normal noise distribution. However,
for linear systems with bounded noise distributions, the above
probabilities become highly sensitive on the geometries of ¢;,
¢j, and W. In the worst case, though, the stochastic kernels can
be computed using approximate methods such as particle filters,
and the integrals can be evaluated by numerical methods.

B. BMDP Abstraction

We now consider the abstraction of system (1) when there
are multiple available dynamics (m, > 1). As in the previous
case, we use () as the set of states for the BMDP. The set of dy-
namics labels I, becomes the set of actions of the BMDP. The
transition probability bounds under each action are constructed
as follows. For each « € P and action q;, the stochastic kernel
T(-|z,a;) is defined from the dynamics of system (1) as in the
single action case above. The one-step transition probability
from point & € g, to region ¢; under action q; is given by

pre(qilgi, ar) = Prob(z’ € qjlx € qi,a = a;)

= /T(dm’|x € qi,a) (11)

qj

where again x, 2’ € P are related by the system dynamics. The
range of transition probabilities from g; to ¢; is defined by

—

Steps(qi, ar,q5) = min/T(dw'|x € qi,ay)

xreq;
aj

—

Steps(qi, ar,q5) = meax/T(dx'|x € qi,ay).
Teqq

qj
V. VERIFICATION

As discussed above, the true distribution of the continuous-
domain stochastic system from any initial state x(is con-
tained within the corresponding interval defined by the IMC
or BMDP abstraction. Thus, if a specification is satisfied by
the distribution bounds of the abstraction model, it is also
satisfied by the distribution of the underlying stochastic system.
In this section we consider the model checking problem of the
abstraction model as formally stated below.

Problem 3 (IMC Model Checking): Given an IMC 7 and
a PCTL formula ¢ = Pup[t)], find the sets of states that
definitely (denoted as Q¥¢®), possibly (Q"), and never (Q™°)
satisfy ¢.

Problem 4 (BMDP Model Checking): Given a BMDP B
and a PCTL formula ¢, find the sets of states that definitely,
possibly, and never satisfy ¢ for all control policies.

The satisfaction of a path formula ¢ from a state of Z is
necessarily given as a probability range due to the transition
probability intervals. In model checking of Z, we need to check
whether this range satisfies the bound in the formula; that is
whether the probability p? (¢)) of all the paths that start from a
given state ¢; and satisfy the path formula ¢ satisfies the bound
> p for all adversaries. To do this, one needs to compute the
probability of satisfaction for the extreme scenarios. Thus, to
solve Problem 3, one needs to find the adversaries that give
rise to the minimum and maximum probability of satisfaction

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

of path formula ¢ from state ¢; € @, denoted by p?% (1)) and
p% (), respectively.

To solve Problem 4, one needs to compute the optimal
control policies in addition to the adversaries. Recall that under
a given control policy, a BMDP becomes an IMC. Thus, the
probability interval for satisfying ¢ depends on both the choice
of control policy and the adversary under the policy. For model
checking purposes, we need to verify that the range of the
probabilities of satisfaction of ¢ from each state of B respects
the bound in the formula under all policies and adversaries (i.e.,
Pk (1) > p for all n). Therefore, we seek the minimum lower-
bound (p};, denoting p with 7 = (fimin; Vmin)) and the max-
imum upper-bound (5%, denoting p* with 7 = (fmax; Vmax))
of these probabilities to determine Q¥°, Q°, and Q™° with
respect to the relational operator > p.

In the following subsections, we first describe a method that
can be used to find the minimizing and maximizing adversaries.
This method includes the computation of the true transition
probability functions for the states of Z (state-action pairs of
B) that is maximizing with respect to an ordering of the states
while respecting the probability bounds. Then, for each PCTL
temporal operator, we describe a model checking algorithm
which employs the order-maximizing transition probability
functions to compute the adversaries and control policies that
give rise to the minimum lower bound and maximum upper
bound of the probability of satisfaction of a path formula.
As in MDPs, model checking of IMCs and BMDPs against
nested formulas with multiple temporal operators is performed
through recursive calls of the corresponding algorithms. For
such formulas, satisfaction from the states in Q? is unclear,
and, for reasons described in Section VI, we treat these states
as not satisfying to provide a guarantee of satisfaction at the
user-specified degree of conservatism.

A. O-Maximizing Transition Probability Function

The minimizing and maximizing adversaries can be obtained
iteratively through an ordering of the states of Z [10], [39].
Recall that the number of true distributions captured by Z is in
general uncountable. Let O denote an ordering of all the states
in Q). The works in [10], [39] showed that there is a unique tran-
sition probability density that maximizes, for every state ¢ € @,
the expected “position in the ordering” of the state reached from
q. Conceptually, the true transition probability function that for
every q allocates as much probability mass as possible to the
states early in the ordering O is maximizing with respect to O.
This implies that by choosing O to be descending with respect
to the probability of satisfaction of a path formula), the tran-
sition probability function that is maximizing with respect to
satisfaction of ¢/ can be computed. Similarly, if O is ascending
with respect to the probability of satisfaction of v, the transition
probability function that is “¢)-minimizing” can be obtained.

Let O = 01,02, ...,0yq|, Where 0; € (), and ro be the index
1 < ro < |Q| which maximizes the following expression with-
out letting it exceed one:

To—l

Z P(q,ol) + Z P(Q701)

1=To

2037

Then, the O-maximizing transition probability function is
given by

P(q,0;) ifi<ro
Po(q.0;) = 4 2\@
o(a,0:) {P(q,oi) ifi>ro

n

Z PO(Qan)'

Jj=Llj#ro

PO (QaO’r'o) =1- (12)

Algorithmically, the O-maximizing distribution Pp(g,-) can
be computed iteratively over O. In each iteration, first the
remaining probability mass to be assigned, denoted by D¢,
is determined according to Prem = 1 — (Zf:ll Po(q,0:) +
Zlga P(q,0;)), where « is the iteration counter. Then,
Po(q,04) is set to P(q,oa) + Prem. In the case that
P(q,oa) + Drem exceeds the upper bound of the transition
probability, then Po(q,0,) = P(q, Ou)-

Example 2: To demonstrate this concept, consider the
IMC in Fig. 2(a) and the ordering O = qg, g1, q2,q3. The
O-maximizing transition probability distribution at ¢y is
Po(qo,+) = (00.610.390)T.

As mentioned above, if O is an ascending ordering of the
states of () with respect to the probability of satisfaction of
1, Po becomes minimizing with respect to the probability
of achieving 1. We denote this transition probability func-
tion by P*. Similarly, P' denotes the transition probabil-
ity function that is -maximizing. In the case of BMDPs,
O-maximizing transition probability functions can be com-
puted for each state-action pair. This can be achieved with the
same algorithm described above. We denote the ¢-minimizing
and -maximizing transition probability functions of BMDPs
by Stepst and Steps', respectively. Note that, these transition
probability functions, as with their counterparts (e.g., P in
MCs and Steps in MDPs), can be represented as matrices,
and the complexity of their computation is polynomial in
the size of the IMC/BMDP, ie., O(|Q|?) for IMCs and

O(1QI 295 | A(g;)]) for BMDPs,

B. Model Checking Algorithms

In this section, we present BMDP model checking algo-
rithms for each temporal operator. These algorithms can be also
used for model checking of IMCs since an IMC is a BMDP
with one action per state.

1) Next Operator—¢ = Puqp[X ¢1]: For this operator, we
need to compute the minimum lower bound and maximum
upper bound of the probabilities of satisfying ¢ = X ¢; at each
state. Let pX. (¢) and pii, (1) denote these satisfying prob-
ability bounds from ¢; € Q. For ¢ = X ¢, we can compute
these probabilities by considering only the one-step transitions
at each state-action pair. That is

Ponin(¥) = min o > o)
i) Oq eps(qi,a
qj€Sat(p)
pk (¥) = max max odi(q;
maac() acA(q;) agieSteps(qi,a)qug;((m) * (])
J

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2038

where Sat(¢py) is the set of states that satisfy ¢;. The
inner optimization problems can be solved by using the
1)-minimizing and v-maximizing transition probability func-
tions Stepst and Steps', respectively. Then, through a
minimization/maximization step over all actions, the outer
optimization problems can be decided.

Let us define a state-indexed vector ¢; with entries ¢, (¢;)
equal to 1 if ¢; = ¢1 and O otherwise. To compute p, (1)),
we first cast Steps*(g;,-) through an ascending state ordering
O with respect to the values of ¢, for each ¢; € Q). Then,
we multiply Stepst by ¢;. The result is a vector whose
entries are the lower-bound probabilities of satisfying X ¢,
where each row corresponds to a state-action pair. We select
the minimum probabilities at each state and save the corre-
sponding action. Similarly, we compute the upper bound for
the probabilities of satisfying X ¢, by multiplying the matrix
Steps! by ¢;. Then, we perform a maximization step for the
probabilities corresponding to each state. We determine QQ¥¢°,
Q’, and Q™° by comparing the optimal bounds with > p. If
Pl () <p < pl, (¥), then ¢; € Q7, indicating that there
may be a subregion of polytope g; that satisfies the formula.
If p & [, (1), B (1)), then g; belongs either to QU°* or
Q™. The complexity of this algorithm is two matrix-vector
multiplications followed by a one dimensional search in ad-
dition to the polynomial computations of Steps* and Steps'.
Therefore, the total computational complexity is polynomial for
this algorithm.

Example 3: To demonstrate this method, consider a four-
state BMDP with

qo; a1 0 0.05 0 0
qi;a 0 0.12 0.15 0.57
o qi5a2 0 0 0.50 0.44
Steps =il 00 1 0
q2;as | 0.98 0 0 0
q3; ay 0 0 0 1
go; a1 [0.05 1 0 0
q1; a1 0 0.23 0.20 0.62
T qisa2 0 0 0.56 0.50
Steps = gia1 | 0 0 1 0
g2; a2 1 0 0.05 0
qs; a1 0 0 0 1

and labels L(qp) = {Init}, L(q1) =0, L(g2) = {R=2}, and
L(q3) = {Rs3}. Let ¢ = P<g.40[XRz]. The property Ra is
satisfied at state go; thus, Rg = (0 0 1 0)”. Then, Steps* - Ry
and Steps' - Ry are, respectively, equal to

0 0
0.15 0.20
Steps' - Rg = @ . Steps' -Rgp = @
0 0.02
0 0

By performing a minimization on Steps* - Rz and a maxi-
mization on Steps' - Ry, we find the approximate probability

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

interval of satisfying X Ry from qq, q1, ¢, and g3 to be [0, 0],
[0.15, 0.56], [0, 1], and [0, O], respectively. The comparison of
these values with probability bound <0.40 indicated in ¢ results
in Q¥ = {qo, 3}, Q" = {q1,¢2}, and Q" = 0.

2) Bounded Until Operator—¢ = Puqp[¢p1U=F$o]: Here,
we are interested in probabilities pY. ($1U=F¢y) and
Pl (d1U=Fps). To do this, we first group the BMDP states
into three subsets: states that always satisfy the specification,

1 = Sat(¢s), states that never satisfy the specification Q° =
Q \ (Sat(¢1) U Sat(¢z)), and the remaining states Qf = Q \
(Q' U Q). Trivially, the probabilities of the states in Q' and
in Q° are 1 and O respectively. The lower bound probabilities
of the remaining states ¢; € Q' are defined recursively as
following:

1 if ¢; € Q*
» o 0 ifgeq°
Prnin (01U~ 2) = 0 ifgeQi&k=0

éﬁlin(qi) if qi € QT &k >0

where

min - min
acA(qi) olicSteps(qi,a)

> odi(q))

q;€Q1

Zr]:llin (Q'L) =

X P (U 0) + Y 08 (g)

q;€Q!

The upper bound probabilities can be formulated through a
similar system of equations where all the minimum operators
are replaced by maximum.

We calculate p?. (p1U=F¢ps) and pe, (01U=F¢ps) by k
matrix-vector multiplications, each similar to the algorithm
described for the Next operator (Section V-B1). After each
multiplication step, we replace the resultant vector entries cor-
responding to the states in @' and Q" with 1 and 0, respec-
tively. Moreover, in each iteration, the transition probabilities
in Steps* and Steps' need to be updated according to the
new state ordering induced by the satisfying probability bounds
computed in the previous step. With each optimization step,
we also obtain the optimal action at each state. It should be
noted that multiple actions might be attained for a state, each
corresponding to a unique time step. We discuss this in more
detail below and in Section VII. The computational complexity
of this algorithm is also polynomial.

Example 4: To illustrate this algorithm, again consider
the BMDP in Example 3 and the formula ¢ = P~.50
[~RsU<?Ry]. By inspection, we have Q' = {¢2}, Q" = {g3}.
and Q' = {qo, q1}. The first iteration of the above algorithm
results in the following: puin(-RsU='Rs2) = (0 0.15 1 0)7,
Prax("RaUSIR2) = (0 0.56 1 0)7. The second itera-
tion yields: Pmin(—RsU=*Rz) = (0.1425 0.1845 1 0)7,
Prax("RaU=?Rz) = (0.56 0.56 1 0)7. Only one state satis-
fies the formula in two steps or less, Q¥Y°® = {¢2}. The results
for g and ¢, are inconclusive and therefore Q° = {qo, 1} and

Q" = {gs}.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

3) Until Operator—¢ = Prqp[1U¢o]: Here, we are inter-
ested in finding probabilities pZi. (p1U¢p2) and pli, (p1Up2).
The problem formulation here is the same as the bounded until
problem formulation where k& — co. As in Section V-B2, we
approach this problem by grouping the states into three subsets
Q', Q°, and Q. The computation of the probability bounds for
the states in Q' is in fact the maximal reachability probability
problem and can be achieved by value iteration [39]. This
implies that the probability bounds are guaranteed to converge
to fixed values in a finite number of iterations, i.e., there exist
k1, ko < oo such that for all k7 > k1 and k), > ko

Plin(O1U2) =Pl (01U 62) = B, (6114 62)
ﬁ%ax(¢lu¢2) :ﬁ%ax((blung(bz) = ﬁ?ﬁax (¢1U3k5¢2)

Thus, the algorithm presented for bounded until in Section V-B2
can be used to calculate the values of pl. (p1U¢2) and
pdi (P1Uep2) and their corresponding optimal policies. Note
that the terminal condition of this algorithm is now the conver-
gence of the probabilities instead of the number of iterations.

The complexity of this algorithm is also polynomial [39].

VI. REDUCING CONSERVATISM THROUGH REFINEMENT

We complete our solution to Problem 1 by reducing the
conservatism of the model checking result by reducing the un-
certainty in the abstraction model through a refinement process
driven by the specification (see Fig. 1). This refinement scheme
is inspired by the algorithm in [6], in which the state space of
the continuous-domain system is refined locally. As a result,
the refinement is performed on specific regions, and only the
corresponding portion of the abstraction is updated instead of
recomputing the whole abstraction model.

A. Refinement for Systems With m, = 1

We focus on reducing the uncertainty by reducing the size of
the regions corresponding to @7, finding subregions that either
definitely or never satisfy the formula. This in turn reduces the
size of the intervals of the probability of satisfaction. We first
determine the regions that have the most effect on the interval
size of the probability of satisfaction from state ¢; € Q°. Then,
as described in Section VI-Al, we partition those regions
into smaller subregions according to a refinement algorithm
that exploits the dynamics of the system and the geometry
of the regions. This refinement affects not only the transition
probability of the target polytope but also those to which it has
a transition. After refinement, the transition probability bounds
are recomputed. In Section VI-A2, we discuss the relationship
between the transition probability intervals and the probability
of satisfaction interval and introduce two methods of targeting
regions for refinement.

The refinement strategy introduced here is similar to [40],
and the algorithm is based on the one in [6], which is de-
signed for systems with uncertain parameters whose ranges
are polytopic. That algorithm efficiently constructs a discrete
abstraction for such systems while maintaining the equivalence
(bisimulation) property through the use of the PRE operator.

2039

The stochastic systems considered in this paper can be viewed
as such uncertain systems with the extra knowledge of the
distribution over the polytopic domain of the uncertain pa-
rameter. Therefore, by adapting that algorithm, we inherit the
same properties and efficiency. However, since here the goal
of the refinement step is to reduce the transition probability
intervals in the abstraction model, we modify the algorithm in
[6] so that it first searches for the subregions that have transition
probability of one (interval of zero) as advocated by [40]. The
work in [40], however considers only discrete probabilistic
(transition) systems. Here, we provide the method of refinement
of an abstraction state that represents a continuous region using
polytopic operations on continuous-domain stochastic systems.
For further discussion on the properties of the algorithm see [6].

1) Refinement Algorithm: Our algorithm begins by select-
ing a target region for refinement and then identifying subre-
gions within it that have probability one transitions to adjacent
regions. The selection of the target region is decided by the
model checking results and transition probability interval size
as explained in Section VI-A2. To find the subregions with
probability one transitions, we perform the PRER operation
[see (5)] on the adjacent regions. The resulting subregions in
the selected target all have probability one transitions and are
included in the refinement. The POST [see (6)] of the new subre-
gions are then found and used to refine the adjacent regions; this
ensures all probability one transitions are maintained. Finally,
the remaining portions of the original regions are convexified.
If there are no subregions with probability one transitions (i.e.,
PRER of the adjacent regions returns an empty set), then the
algorithm calculates the PRE [see (4)] of the adjacent regions
and uses those to refine the target. Finally, if the PRE operation
of the adjacent regions returns the target itself, the target can be
refined by any refinement strategy (e.g., simple triangulation).
We employed Delaunay triangulation in the implementations.

Example 5: An illustration of this refinement method is
shown in Fig. 3. Fig. 3(a) shows the domain polytope P
partitioned into five subpolytopes. Subpolytope 5 is set as
the target region. Applying PRER to subpolytopes 2, 3 and
4 and intersecting the results with the target leads to the red
regions in Fig. 3(b). Applying the POST operation to these red
regions yields the blue regions. Fig. 3(c) shows the final result
after a convexification operation is performed to obtain convex
subpolytopes in regions 2, 3, and 4.

2) Interval Size: To close the abstraction and refinement
loop (see Fig. 1), we first establish the relationship between
the transition probability bounds and the size of the probability
of satisfaction interval. Then, we use this relationship together
with the refinement algorithm described in Section VI-Al to
design algorithms to reduce the size of the probability of
satisfaction intervals for the states in Q°.

Let us denote the largest transition probability interval of the
states in () by

¢ = max {max (P(q, q¢)— P(q, q')) } :

13
qeQ | d'€Q (13

We also use 1, to denote the path formula whose computation
of the probability of satisfaction takes k iterations of the cor-
responding model checking algorithm (e.g., ¥ = ¢1U=F o).

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2040 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

X

1
()

Fig. 3. Refinement example. (a) The initial partition with Region 5 the target for refinement. (b) Applying the PRER operator yields the subregions of Region 5
with probability one transitions (red regions). The regions these transition to are found using POST (blue regions). (c) Convexification of the regions ensures the

final refinement contains only convex subpolytopes.

We define the largest probability interval of satisfaction of path
formula 1y, from the states in) by

I, = max {01(Yx) — D1 (Yr) } -

The following theorem determines an upper-bound for the
growth of I}, over time.

Theorem 1: Consider an IMC Z and a PCTL path formula
1. The k-th step interval size of the probability of satisfaction
of the path formula from the states of Z is upper-bounded by

k
I < EZNi
=1

where N is the maximum number of outgoing transitions from
the states in .
Proof: We prove this theorem by induction. For k = 1

I = 151635({p? (Y1) = p* (Y1)}
< r&%qgl [P(q,q’) - P(q,q’)}

< o { e [Pla) - Placo)] N7(@))

(14)

(15)

A

where Q' is the set of states all of whose outgoing paths satisfy
the path formula v (see Section V-B2), and N%(Q') is the
number of outgoing transitions from ¢ to the states in Q'. Thus,
I; < eN. Next, we assume (15) and show that it holds for
k+ 1. Let ¢ € Sat(v) denote that there exists a path from ¢
that satisfies 1. From (14), it follows that:

Ipi1 = max {1 (Yrt1) — P (Yr41)}
S [Pla) () — Pla.d)i” (o)
q’'€Sat(r)

=max Y [(P(q, q) - P(q, q')) P ()

= q'€Sat(pr)

< max
qeQ

+Plq,q) (ﬁq/(%) - ﬁq/(%)”

k
< max {eNq (Sat(¢r)) + eN (Sat(yr)) Z N’}

k41
< GZNZ.
i=1

For a given specification ¢, define the size of the interval of
satisfaction for a state ¢; to be 1% = p%(¢) — p%(¢). In order
to reduce this size to a desired level I;, we use Theorem 1 to
develop two heuristic approaches.

a) Method 1: Inthis method, we first obtain the sets Q¥¢°,
Q’, and Q™° by performing the abstraction and model checking
steps on the initial system. Then, we repeatedly select and refine
the state with the largest transition interval in Q¥** U Q7 until

k
eZNi <1
=1

where € is the largest transition interval size and /V is the largest
number of outgoing transitions from the states in Q¥ U Q”.
Once this condition is met, Theorem 1 guarantees that 1% (¢) <
I, for all ¢; € Q7. A model checking step is then performed on
the refined regions to find the modified sets Q¥¢*, Q’, and Q"°.

The advantage of this method is that model checking is per-
formed only twice, once on the initial system and once on the
end-refined system. Moreover, the refinement and abstraction
steps are performed on the target and affected regions only, not
on the entire domain (i.e., the states in Q™° do not need to be
considered for refinement since they contain no subregion that
satisfies the specification). Since (15) is an over-approximation
of the upper-bound of the satisfying probability interval size,
Condition (16), however, might cause excessive refinements.

As a heuristic, the method is not guaranteed to work for every
temporal operator since the over-approximation grows expo-
nentially with the number of time steps k. Thus, it is possible
that (16) will not be satisfied. However, for the path formulas
with one time step (i.e., X and &/=') this method can be used
because the over-approximated bound is at its tightest value. In
this case, N remains the same while ¢ monotonically decreases
during refinement. The second approach that is described below
avoids this problem at the cost of requiring model checking
after each refinement step.

b) Method 2: This method is motivated by the fact that
as the size of the transition probability intervals of the states
that are on the satisfying paths from ¢; decreases, 1% (¢) also
decreases. The algorithm proceeds as follows. First, obtain
Qve*, @7, and Q™° by performing the abstraction and model
checking steps on the initial system. Then, select ¢; € Q7 with

(16)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

the largest 1% (¢). By a simple graph search, find the set of
states in Q¥°* U (Q” that can be reached from ¢; in k steps with
probability greater than zero. From this set, the state ¢; with
the largest transition probability interval is refined using the
algorithm in Section VI-Al. Abstraction and model checking
steps are then performed to find the modified sets of QQ¥¢*, Q7,
and Q"° and their intervals of satisfying probabilities. This loop
is repeated until 1% (¢) < I, forall ¢; € Q7.

This method guarantees that 1% (¢) < I, for all ¢; € Q" is
achieved in finite number of iterations. Since the refinement
algorithm monotonically decreases the transition probability
intervals, the reductions in the interval size of the probability
of satisfaction are monotonic. Therefore, for any nonzero I,
there is an iteration number such that 1% (¢) < I;. Even though
arbitrary small I; can be theoretically attained, realistically this
method could suffer from the curse of dimensionality as I; —
0. Moreover, to achieve small 1;, a large number of refinement
steps is required, escalating the size of the abstraction model.
As a result, the computation cost of model checking also
increases.

Note that in our method of verification for system (1), the
value of 1 — I; can be viewed as the desired confidence of
the model checking results for the states in Q°. Since the user
provides I, it is both reasonable and conservative to treat Q* as
unsatisfying states with confidence 1 — I; once the verification
algorithm terminates. This view enables us to perform verifi-
cation of system (1) against nested formulas. Nevertheless, we
acknowledge this method is conservative, and we leave the full
treatment of nested formulas for future work.

B. Refinement for Systems With m, > 1

Recall that in the case of a BMDP, the model checking
algorithm yields three sets of states, Q¥**, Q°, and Q™°, their
corresponding probabilities of satisfaction, and two optimal
policies (one corresponding to pi; and the other to pi,). As
in the single dynamics case, we are interested in reducing the
size of the satisfying probability intervals for the states in @’
to values less than or equal to 7;. To do this we first select an
optimal policy (described further below) such that each region
has a unique action assigned to it, converting the BMDP to
an IMC. We then use either of the two methods described in
Section VI-A to ensure [% (¢) < 1.

The choice of the optimal policy depends on the relational
operator > in the formula ¢ = P.p[1)], with the one corre-
sponding to p¥%_ . selected if € {<, <} and the one corre-
sponding to pi. - selected if e {>, >}. If the selected policy
is history dependent, that is if the action to select at a given state
is a function of the time step, we assign and fix the action that
becomes available first in the model checking process to each
region. That is because this action is optimal with respect to the

satisfaction of v in the one-step transition.

VII. SYNTHESIS

In this section we focus on Problem 2, namely the synthesis
of a control policy that maximizes the probability of satisfying
a given specification Ppax—2[¢]. (The procedure for Pryin—7[d]

2041

is essentially the same as the one described below with the
obvious adjustments for minimization). By the nature of the
synthesis problem, we assume system (1) has multiple dynam-
ics. Since our approach produces an interval of the probability
of satisfaction of the specification from each state, the goal of
synthesis is to find a policy that maximizes the lower bounds of
those intervals.

Synthesis is performed by using the algorithms for verifi-
cation developed in this paper and storing the optimal policy
they calculate. While these algorithms only include single next,
bounded-until, and until operators, more complex formulas
with nested specifications can be handled by techniques devel-
oped in our previous work [12], extended in a straightforward
manner to account for the interval-based description of the
transition probabilities. This synthesis algorithm returns the
optimal policy and the approximate maximum lower-bound
probability of satisfaction.

Once that policy is determined, the upper bound probabilities
of satisfaction for each state are calculated by model checking
the IMC induced by the policy. If the size of the probability
interval of satisfaction from a region is larger than desired, we
employ Method 2 of the refinement procedure introduced in
Section VI-A to reduce it. Note that Method 2 (Section VI-A2b)
is preferred because after each iteration of the algorithm the op-
timal control policy is updated. The end result is a set of initial
states, their intervals of optimal probability of satisfaction (with
size less than a desired value), and the corresponding control
policy.

Example 6: To illustrate this synthesis algorithm, con-
sider the BMDP in Example 3 and the PCTL formula ¢ =
Prmax=?["RaU=?Rs]. By inspection, Q' = {¢2}, Q° = {g3},
and Q" = {qo, q1 }. We are interested in p%__forall ¢; € @ and
the corresponding policy, defined by the choice of action in ¢;.
To find these values, we compute the following:

qo; a1 0

0 qi;ar | 0.15

0 qi;az | 0.50

tepst - = 1b el
Steps 1 q2; a1 1
0 q2; a2 0
q3; a1 0

ThllS, pmax(_\R3u§1R2) = (0 0.501 O)T and ,urlnax(ql) = a.
Similarly, to find ppax(~RaU/=?Rz), we compute the product
of Steps* - Pmax ("Ra3USRz) followed by a max step. We ob-
tain, ﬁmax<ﬁR3uS2R2) = (048 0.501 O)T, and /,L?nax((h) =
as. To calculate the upper bound probability values under this
policy, we first construct the following lower-bound and upper-
bound transition probability matrices from % and %,
respectively, using policy fimax:

0 005 0 0
5 _ |0 0 050 044
mec =00 10

0o 0 0 1

0.05 1 0 0
; 0 0 056 0.50
P =10 0 1 0

0 0 0 1

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2042

15 Obs

0.5 Obs

Obs

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

2
0.5 0 0.5 1 15 2 2 -1.5 -1 -0.5

X.

(a) Domain Polytope P

(b) Satisfaction of ¢;.

0 0.5 1

-1 -05 0 0.5 1

X
1

(c) Satisfaction of ¢2.

Fig. 4. Formal verification of the stochastic linear system presented in Section VIII-A with the partitioned polytopic domain P shown in (a) against (b) ¢1 and
(c) ¢2 before uncertainty reduction. The initial states that definitely, possibly, and never satisfy the specification are shown in green, yellow, and red, respectively.

The upper bound probabilities are then

ﬁﬂmax(_‘RSUSIRz) = P;m (0010)"

ax

=(00.5610)",
Drimar ("R3UR2) =P P, (-RslU~'Ry)
=(0.56 0.56 1 0)".

The probability of satisfaction intervals under the optimal pol-
icy for qg and ¢ are [0.48, 0.56] and [0.50,0.56], respectively.
The probability of satisfaction for g5 is 1 and for g3 is 0.

VIII. CASE STUDIES
A. Case Study 1: Verification

To demonstrate our solution to Problem 1, which includes the
execution of the abstraction, model checking, and refinement
algorithms presented in Sections IV-VI, we considered the
square domain P shown in Fig. 4(a). The region has a length of
four units per side, is centered at the origin, and is partitioned
by the six linear predicates x1 > 1, 1 > 0, z1 > —1, x5 > 1,
x2 > 0, and z9 > —1, resulting in 16 subpolytopes. The prop-
erties of interest in these regions were defined to be Obstacles
(Obs) and Destinations (Des).

The stochastic system was taken to be xp+1 = Ajxy + wy,
wy € W, where

04 0.1
A= (0 0.5)

w=cons (|03] [ot [03] [o])-

The random variable wy, was defined by the truncated normal
density function

£(y;0,0.091)

fo(z;0,0.0QJI)dz ifyeWw

g(y; W,0,0.041) = {
Otherwise

where T is the identity matrix. Here f(-;0,0.09T) is a zero
mean Gaussian distribution with covariance 0.091, yielding a
zero mean truncated distribution g with covariance of 0.041.

We considered the following specifications:

Specification I: “Find a set of initial states from which the
probability of converging to a region with Obstacle is less
than 0.05.”

Specification 2: “Find a set of initial states that with probability
0.90 or greater will reach Destination without colliding
with an Obstacle.”

Specification 3: “Find a set of initial states that with probability
0.90 or greater will reach Destination through the regions
that are not Obstacles and that have a probability of less
than 0.05 to converge to a region with an Obstacle.”

These specifications translate naturally to the PCTL formu-
las ¢1, ¢2, and ¢3 where

1 =P<0.05| X Obs]
¢2 = ’Pz(),g() [—'ObS u Des]
$3 = P>0.00 [(~Obs A P—g.05|X Obs]) UDes] .

An IMC abstraction of the system was generated by setting
the states to be the initial partition of P. The transition proba-
bility bounds were computed by discretizing each subpolytope
to a set of points with 0.01 unit length distance and numerical
evaluation of (9) and (10). The stochastic kernel for this sys-
tem is T'(-|x) = g(-; W, Az, 0.041). The set of properties II =
{Obs, Des} of the IMC were assigned to the states according
to the labels of the corresponding regions. The maximum
allowable size of the interval of satisfying probabilities for the
possibly satisfying states was set to I; = 0.05.

We performed a model checking step on the states of the
IMC to find Q¥°%, Q°, Q™°, and their satisfying probability
intervals for each formula ¢, and ¢-, shown in Fig. 4(b) and
(c) where green, yellow, and red correspond to the states in
Qves, 7, and Q™°, respectively. Then, for each specification,
we performed refinement according to Method 2. The loop
of refinement-abstraction-model checking was executed until
all the satisfying interval sizes of the states in Q7 were less
than I;. The final results for ¢;, ¢, are shown in Fig. 5(a)
and (b), respectively. For ¢3, we began with the final partition
generated for ¢o. Applying the algorithm showed that this
partition already led to the maximum size of the probability of
satisfaction interval to be less than I;. The results are shown in
Fig. 5(c). The final IMCs corresponding to ¢; had 310 states

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS

2043

-0.5 0 0.5 1 4 & =1 0.5
3

(a) Final partition for ¢;.

Fig. 5.

0 0.5 1
X Rt

(b) Final partition for ¢-.

(c) Final partition for ¢s.

Formal verification of the stochastic linear system presented in Section VIII-A against (a) ¢1, (b) ¢2, and (c) ¢3 after uncertainty reduction. The initial

states that definitely, possibly, and never satisfy the specification are shown in green, yellow, and red, respectively.

and was obtained by 88 refinement iterations while those of ¢5
and ¢3 had 1,163 states resulted from 371 iterations.

All the computations for this case study were performed in
MATLAB on an Ubuntu 12.04 machine with AMD FX 4100
Quad-Core Processor and 16 GB of memory. The total com-
putation time for generating final results for ¢; was 4.8 hours,
while it took 51.4 hours for ¢o and ¢3. Most of these times
were spent on the numerical evaluation of the integrals in (9)
and (10).

B. Case Study 2: Synthesis

For the synthesis case study, we considered the switched
stochastic system z11 = A;xp + wy, ¢ = {1,2,3}, where A4,
P, W, and II were taken as in case study 1. The additional
dynamics were given by

0.4 0.5 04 0
Az = < 0 0.5)’ A = <0.5 0.5)'
Here, wyj, was sampled uniformly from W. We performed
our BMDP abstraction and then synthesis algorithms to find
the policy that maximizes the lower probability bound of
satisfaction of ¢ for the above system. The resulting QQ¥¢®,
Q’, and Q™° are shown in Fig. 6(a) with green, yellow, and
red, respectively. Then, we performed refinement according to
Method 2 to reduce the uncertainty in Q" to less than I; = 0.05.
The results are shown in Fig. 6(b). The final BMDP was ob-
tained after 609 refinement iterations and had 4,489 states. The
total computation times for abstraction and refinement were

114.8 hours and 252.6 hours, respectively, while it was only
2.2 hours for synthesis for the BMDP.

IX. CONCLUSION

We presented a computational framework for formal verifica-
tion and formal synthesis for discrete-time stochastic systems
with polyhedral noise domains in a full-dimensional convex
polytope from PCTL specifications. In this framework, we first
abstract the evolution of the stochastic system in its polytopic
domain to either an IMC or to a BMDP. Next, we model
check this IMC or BMDP using algorithms similar to standard
Markov chain model checking algorithms. For synthesis, we

Fig. 6. Formal synthesis of the policy that maximizes the lower-bound
probability of satisfaction of ¢2 for the switched stochastic system presented
in Section VIII-B (a) before and (b) after uncertainty reduction. Initial states
that definitely, possibly, and never satisfy ¢ are shown in green, yellow, and
red, respectively. (a) Initial partition for ¢o-Synthesis. (b) Final partition for
¢2-Synthesis.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

2044

developed an algorithm for BMDPs that was inspired by our
MDP synthesis algorithm presented in [12]. Lastly, we intro-
duced two methods for refinement of the model to reduce the
uncertainty in the solution to a desired value.

The main contributions of this work are a Markovian ab-
straction method which finds the exact bounds for the transi-
tion probabilities, model checking algorithms for IMCs and
BMDPs with low computational cost, a synthesis algorithm
for BMDPs, and an expression for the probability interval size
growth over time. For linear dynamics and linear predicates,
we also introduced a refinement algorithm that exploits the
dynamics of the system and the geometry of the partition.

REFERENCES

[1] M. Lahijanian, S. B. Andersson, and C. Belta, “Approximate Markovian
abstractions for linear stochastic systems,” in Proc. IEEE Conf. Decision
Control, Maui, HI, USA, Dec. 2012, pp. 5966-5971.

[2] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,
MA, USA: MIT Press, 1999.

[3] P. Tabuada and G. J. Pappas, “Linear time logic control of discrete-time
linear systems,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp. 1862—
1877, Dec. 2006.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Trans. Autom.
Control, vol. 53, no. 1, pp. 287-297, Feb. 2008.

[5] R. Alur, T. A. Henzinger, G. Lafferriere, George, and J. Pappas, “Discrete
abstractions of hybrid systems,” in Proc. IEEE, 2000, vol. 88, pp. 971-984.

[6] B. Yordanov and C. Belta, “Formal analysis of discrete-time piecewise
affine systems,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2834—
2840, Dec. 2010.

[7]1 H. Hansson and B. Jonsson, “A logic for reasoning about time and relia-
bility,” Formal Aspects of Computing, vol. 6, pp. 102—111, 1994.

[8] L. V. Utkin and I. Kozine, “Computing system reliability given interval-
valued characteristics of the components,” Reliable Computing, vol. 11,
no. 1, pp. 19-34, 2005.

[9] D. Skulj (2009, Sep.). Discrete time Markov chains with interval prob-
abilities. Int. J. Approximate Reasoning [Online]. 50(8), pp. 1314-1329.
Available: http://dx.doi.org/10.1016/j.ijar.2009.06.007

[10] R. Givan, S. Leach, and T. Dean, “Bounded-parameter Markov decision
processes,” Artif. Intell., vol. 122, pp. 71-109, 2000.

[11] A. Abate, J. Katoen, J. Lygeros, and M. Prandini, “Approximate model
checking of stochastic hybrid systems,” Eur. J. Control, vol. 16, no. 6,
pp. 624-641, 2010.

[12] M. Lahijanian, S. B. Andersson, and C. Belta, “Temporal logic motion
planning and control with probabilistic satisfaction guarantees,” IEEE
Trans. Robotics, vol. 28, no. 2, pp. 396409, Apr. 2012.

[13] M. Lahijanian, S. B. Andersson, and C. Belta, “A probabilistic approach
for control of a stochastic system from LTL specifications,” in Proc. 48th
IEEE Conf. Decision Control, Shanghai, China, 2009.

[14] E. Vanden-Eijndena and M. Venturoli, “Markovian milestoning with
Voronoi tessellations,” J. Chem. Phys., vol. 130, no. 19, pp. 194 101-1-
194 101-13, May 2009.

[15] A. Abate, A. D’Innocenzo, M. D. Benedetto, and S. Sastry, “Markov
set-chains as abstractions of stochastic hybrid systems,” in Hybrid Syst.:
Comput. Control. Berlin, Germany: Springer Verlag, 2008, pp. 1-15.

[16] A. Abate, A. D’Innocenzo, and M. D. Benedetto, “Approximate abstrac-
tions of stochastic hybrid systems,” IEEE Trans. Autom. Control, vol. 56,
no. 10, 2011.

[17] S. E. Z. Soudjani and A. Abate, “Adaptive gridding for abstraction and
verification of stochastic hybrid systems,” in Proc. Int. Conf. Quantitative
Eval. Syst., 2011, pp. 59-69.

[18] M. L. Bujorianu, J. Lygeros, and M. C. Bujorianu, “Bisimulation for
general stochastic hybrid systems,” in Hybrid Systems: Computation and
Control. New York, NY, USA: Springer, 2005, pp. 198-214.

[19] S. Strubbe and A. Van Der Schaft, “Bisimulation for communicating
piecewise deterministic Markov processes (CPDPs),” in Hybrid Sys-
tems: Computation and Control. New York, NY, USA: Springer, 2005,
pp. 623-639.

[20] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden, “Metrics for
labelled Markov processes,” Theor. Comp. Sci., vol. 318, no. 3, pp. 323—
354,2004.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 8, AUGUST 2015

[21] F. van Breugel and J. Worrell, “An algorithm for quantitative verification
of probabilistic transition systems,” in Concurrency Theory. New York,
NY, USA: Springer, 2001, pp. 336-350.

[22] A. Julius and G. J. Pappas, “Approximations of stochastic hybrid sys-
tems,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp. 1193-1203,
Jun. 2009.

[23] M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” Int. J. Softw. Tools
Technol. Transfer (STTT), vol. 6, no. 2, pp. 128-142, 2004.

[24] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen,
“The ins and outs of the probabilistic model checker MRMC,” in Proc.
Int. Conf. Quantitative Eval. Syst., 2009, pp. 167-176.

[25] X. Ding, S. Smith, C. Belta, and D. Rus, “MDP optimal control under
temporal logic constraints,” in Proc. [IEEE Conf. Decision Control & Eur.
Control Conf. (CDC-ECC’11), 2011, pp. 532-538.

[26] A. Abate, J.-P. Katoen, and A. Mereacre, “Quantitative automata model
checking of autonomous stochastic hybrid systems,” in Proc. Int. Conf.
Hybrid Syst.: Comput. Control, 2011, pp. 83-92.

[27] 1. Tkachev and A. Abate, “Formula-free finite abstractions for linear
temporal verification of stochastic hybrid systems,” in Proc. Int. Conf.
Hybrid Syst.: Comput. Control, 2013, pp. 283-292.

[28] H. Fecher, M. Leucker, and V. Wolf, “Don’t know in probabilistic sys-
tems,” in Model Checking Software. New York, NY, USA: Springer,
2006, pp. 71-88.

[29] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-valued abstrac-
tion for continuous-time Markov chains,” in Computer Aided Verification.
New York, NY, USA: Springer, 2007, pp. 311-324.

[30] J.-P. Katoen, D. Klink, M. Leucker, and V. Wolf, “Three-valued abstrac-
tion for probabilistic systems,” J. Logic Algebraic Programming, vol. 81,
no. 4, pp. 356-389, May 2012.

[31] K. Sen, M. Viswanathan, and G. Agha, “Model-checking Markov chains
in the presence of uncertainties,” in Proc. Int. Conf. Tools Alg. Const.
Anal. Sys., 2006, pp. 394-410.

[32] K. Chatterjee, K. Sen, and T. A. Henzinger, “Model-checking w-regular
properties of interval Markov chains,” in Proc. Theor. Prac. Soft., Conf.
Found. Soft. Sci. Compu. Str., 2008, pp. 302-317.

[33] T. Chen, T. Han, and M. Kwiatkowska, “On the complexity of model
checking interval-valued discrete time markov chains,” Inform. Process-
ing Lett., vol. 113, no. 7, pp. 210-216, Apr. 2013.

[34] M. Kattenbelt, M. Kwiatkowska, G. Norman, and D. Parker, “A game-
based abstraction-refinement framework for Markov decision processes,”
Formal Methods Syst. Design, vol. 36, no. 3, pp. 246280, Sep. 2010.

[35] E. M. Hahn, G. Norman, D. Parker, B. Wachter, and L. Zhang, “Game-
based abstraction and controller synthesis for probabilistic hybrid sys-
tems,” in Proc. Int. Conf. Quantitative Eval. Syst., 2011, pp. 69-78.

[36] L. Zhang, Z. She, S. Ratschan, H. Hermanns, and E. M. Hahn, “Safety
verification for probabilistic hybrid systems,” Eur. J. Control, vol. 18,
no. 6, pp. 572-587, Jan. 2012.

[37] B.Jonsson and K. G. Larsen, “Specification and refinement of probabilis-
tic processes,” in Proc. LICS’91, 1991, pp. 266-277.

[38] B. Yordanov and C. Belta, “Formal analysis of piecewise affine systems
under parameter uncertainty with application to gene networks,” in Proc.
Amer. Control Conf. (ACC), 11-13, 2008, pp. 2767-2772.

[39] D. Wu and X. Koutsoukos, “Reachability analysis of uncertain sys-
tems using bounded-parameter Markov decision processes,” Artif. Intell.,
vol. 172, no. 8, pp. 945-954, May 2008.

[40] P.R.D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen, “Reachability
analysis of probabilistic systems by successive refinements,” in Process
Algebra and Probabilistic Methods. Performance Modelling and Verifi-
cation, vol. 2165. New York, NY, USA: Springer, 2001, ser. Lecture
Notes in Computer Science, pp. 39-56.

Morteza Lahijanian (M’12) received the B.S.
degree in bioengineering from the University of
California, Berkeley, CA, USA in 2004 and the
Ph.D. degree in mechanical engineering from Boston
University, Boston, MA, USA, in 2012.

He is currently a Postdoctoral Researcher in the
Department of Computer Science, Rice University,
Houston, TX, USA. His research interests include
dynamics, control theory, systems, and formal meth-
ods with applications in robotics and systems biol-
ogy, particularly, motion planning, finite abstraction,
formal synthesis, and hybrid systems.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

LAHIJANIAN et al.: FORMAL VERIFICATION AND SYNTHESIS FOR DISCRETE-TIME STOCHASTIC SYSTEMS 2045

Sean B. Andersson (SM’13) received the B.S. de-
gree in engineering and applied physics from Cornell
University, Ithaca, NY, USA, in 1994, the M.S. de-
gree in mechanical engineering from Stanford Uni-
versity, Stanford, CA, USA, in 1995, and the Ph.D.
degree in electrical and computer engineering from
the University of Maryland, College Park, MD, USA,
in 2003.

He has worked at AlliedSignal Aerospace and
Aerovironment, Inc. and is currently an Associate
Professor of mechanical engineering and of systems
engineering with Boston University, Boston, MA, USA. His research interests
include systems and control theory with applications in scanning probe mi-
croscopy, dynamics in molecular systems, and robotics.

Calin Belta (SM’11) received the B.Sc. and M.Sc.
degrees in control engineering from the Techni-
cal University of Iasi, Splai Bahlui, Tasi, Romania
and the M.Sc. and Ph.D. degrees in mechanical
engineering from the University of Pennsylvania,
Philadelphia, PA, USA.

He is currently a Professor in the Department of
Mechanical Engineering, Department of Electrical
and Computer Engineering, and the Division of Sys-
tems Engineering, Boston University, Boston, MA,
USA, where he is also affiliated with the Center for
Information and Systems Engineering (CISE) and the Bioinformatics Program.
His research focuses on dynamics and control theory, with particular emphasis
on hybrid and cyber-physical systems, formal synthesis and verification, and
applications in robotics and systems biology.

Dr. Belta is an Associate Editor for the IEEE TRANSACTIONS OF AUTO-
MATIC CONTROL. He received the Air Force Office of Scientific Research
Young Investigator Award and the National Science Foundation CAREER
Award.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 14:52:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

