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Abstract— We present a computational framework for iden-
tifying a set of initial states from which all trajectories of
a piecewise affine (PWA) system satisfy a Linear Temporal
Logic (LTL) formula over a set of linear predicates in its
state variables. Our approach is based on the construction and
refinement of finite abstractions of infinite systems. We derive
conditions guaranteeing the equivalence of an infinite system
and its finite abstraction with respect to a specific temporal logic
formula and propose methods aimed at the construction of such
formula-equivalent abstractions. We show that the proposed
procedure can be implemented using polyhedral operations and
analysis of finite graphs. While provably correct, the overall
method is conservative and expensive. The proposed algorithms
have been implemented as a software tool that is available for
download. An illustrative example for a PWA gene network
model is included.

I. INTRODUCTION

In control problems, trajectories of “complex” mathemat-

ical models of physical systems, such as systems of differ-

ential or difference equations, are usually checked against

“simple” specifications, such as stability of equilibria and set

invariance. In formal verification, “rich” specifications, such

as formulas of temporal logics, are checked against “simple”

models such as (finite) transition graphs and automata models

of software programs and digital circuits [8]. The study

of physical systems requires the development of theoretical

frameworks and computational tools for bridging in this

gap, and therefore allowing for specifying the properties

of continuous and hybrid systems in a rich language, with

automatic verification and controller synthesis. Recent re-

sults include temporal logics for systems with continuous

dynamics [9], control of linear systems from temporal logic

specifications [18], task specification and controller synthesis

in mobile robotics [10], and specification and analysis of

qualitative behavior of genetic circuits [3].

In this paper, we focus on piecewise affine systems (PWA)

that evolve along different discrete-time affine dynamics in

different polytopic regions of the (continuous) state space.

PWA systems are widely used as models in many areas.

They can approximate nonlinear dynamics with arbitrary
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accuracy, and are equivalent with other classes of hybrid

systems [13]. In addition, there exist several techniques for

the identification of such models from experimental data (see

[14] for a review).

We consider the following problem: given a PWA system

and an arbitrary LTL formula over a set of linear predicates

in its state variables, find the largest region of initial states

from which all trajectories of the system satisfy the formula.

Our approach to this problem is based on the construction

and iterative refinement of finite abstractions. The refinement

is guided by formula equivalence, i.e., we aim at constructing

a finite abstraction of the PWA system that satisfies exactly

the same formula. To this goal, we use ideas from LTL model

checking [8] and bisimulation - based refinement [4].

This work can be seen in the context of literature focused

on the construction of finite quotients of infinite systems,

and is related to [17], [18], [7]. The embedding of discrete-

time systems into transition systems is inspired from [17],

[18]. However, while the focus there is on characterizing

the existence of bisimulation quotients or developing control

strategies using such quotients for linear systems, in this

work we consider an analysis problem and focus on the

computation of finite, formula equivalent quotients.

The related idea of defining CTL formula specific equiva-

lences coarser than bisimulation has been explored in [1] in

the context of finite state systems. In contrast, we consider

infinite systems and LTL formulas. Relying on a temporal

logic formula to guide the refinement of an abstraction is also

part of CEGAR-based methods for verification [7]. Instead

of performing many model checking steps, in this work we

aim directly at the construction of formula equivalent finite

quotients. In addition, our approach yields more informative

results, since we obtain regions of initial conditions for

which the system satisfies the specification, instead of simple

Yes/No answers. The construction of the abstractions is

enabled by our previous results [20], where we showed

that finite quotients of PWA systems can be constructed by

using polyhedral operations only. Analysis of PWA systems

for properties such as invariance and reachability can be

performed more efficiently [15] but our method allows for

greater expressivity by considering specifications expressed

as LTL formulas.

The method presented in this paper was implemented in

MATLAB and is available at http://hyness.bu.edu/software.

II. DEFINITIONS AND PRELIMINARIES

Definition 1: A transition system is a tuple

T = (Q,→, O, o), where Q is a (possibly infinite) set of
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states, →⊆ Q × Q is a transition relation, O is a finite set

of observations, and o : Q→ O is an observation map.

A transition (x, x′) ∈→ is also denoted by x → x′. The

transition system T is finite if its set of states Q is finite and

infinite otherwise. The transition system T is deterministic
if, for all x ∈ Q, there exists at most one x′ ∈ Q such that

x → x′. Finally, T is called non-blocking if, for every state

x ∈ Q, there exists x′ ∈ Q such that x → x′. In this paper

only non-blocking transition systems are considered.

A trajectory or run of T starting from x0 is an infinite

sequence x0x1x2 . . . with the property that xi ∈ Q, and

xi → xi+1, for all i ≥ 0. A trajectory x0x1x2 . . . defines

a word o(x0)o(x1)o(x2) . . .. The set of all words generated

by the set of all trajectories starting at x ∈ Q is called the

language of T originating at x and is denoted by LT (x).
A subset X ⊆ Q is called a region of T . The set of all

trajectories originating in X is denoted by T (X) and the

set of all words generated by runs in T (X) is called the

language of T originating at X and is denoted by LT (X) =⋃
x∈X LT (x). For an arbitrary region X , we define the set

of states PreT (X) that reach X in one step as

PreT (X) = {x ∈ Q | ∃x′ ∈ X, x→ x′} (1)

The observation map o of a transition system T induces an

observational equivalence relation ∼ over the set of states Q.

We say that states x1, x2 ∈ Q are equivalent (written as

x1 ∼ x2) if and only if o(x1) = o(x2). The equiva-

lence relation naturally induces a quotient transition system
T/

∼
= (Q/

∼
,→

∼
, O, o

∼
). Q/

∼
is the quotient space (the

set of all equivalence classes). Given an equivalence class

X ∈ Q/
∼

1, we denote the set of all equivalent states in that

class by con(X) ⊆ Q (con stands for concretization map).

Since all states x ∈ Q in an equivalence class X ∈ Q/
∼

have the same observation, o
∼

(X) is well defined and given

by o
∼

(X) = o(x), x ∈ con(X). The transition relation →
∼

is defined as follows: for X1, X2 ∈ Q/
∼

, X1 →∼
X2 if and

only if there exist x1 ∈ con(X1) and x2 ∈ con(X2) such

that x1 → x2. It is easy to see that

∀X ∈ Q/
∼

,LT (con(X)) ⊆ LT/
∼

(X). (2)

The quotient transition system T/
∼

is said to simulate the

original system T .

Definition 2: The equivalence relation ∼ induced by the

observation map o is a bisimulation of a transition system

T = (Q,→, O, o) if, for all states x1, x2 ∈ Q, if x1 ∼ x2

and x1 → x′1, then there exist x′2 ∈ Q such that x2 → x′2
and x′1 ∼ x′2.

If ∼ is a bisimulation, then the quotient transition system

T/
∼

is called a bisimulation quotient of T , and the tran-

sition systems T and T/
∼

are called bisimilar, denoted as

T/
∼

� T . An immediate consequence of bisimulation is

language equivalence, i.e.,

∀X ∈ Q/
∼

,LT (con(X)) = LT/
∼

(X). (3)

1with a slight abuse of notation, we use symbol X to denote states of
T/

∼
(i.e. X ∈ Q/

∼
) and regions of T (i.e. X ⊆ Q) but the precise

meaning should be clear from the context

Using the PreT () operator defined in Equation (1), a

characterization of bisimulation can be given as follows: the

equivalence relation ∼ is a bisimulation if and only if for

all equivalence classes X ′ ∈ Q/
∼

, PreT (con(X ′)) is either

empty or a finite union of equivalence classes. Equivalently,

the bisimulation property (Def. 2) is violated at X ∈ Q/
∼

if there exists a state X ′ ∈ Q/
∼

, such that

∅ ⊂ con(X) ∩ PreT (con(X ′)) ⊂ con(X). (4)

This leads to an iterative procedure for the construction

of the coarsest bisimulation ∼, known as the ”bisimulation

algorithm” [4], which in general does not terminate but if it

does then T/
∼

is a finite bisimulation quotient.

To specify temporal logic properties for system trajecto-

ries, in this paper we use Linear Temporal Logic (LTL) for-

mulas [8]. LTL formulas are inductively defined over the set

of observations O, by using the standard Boolean operators

(i.e., ¬ (negation), ∨ (disjunction), ∧ (conjunction)) and the

temporal operators © (“next”), U (“until”), � (“always”),

♦ (“eventually”). Each LTL formula φ over an alphabet O
defines a language Lφ of words that satisfy φ. Given a finite

transition system T = (Q,→, O, o) and an LTL formula φ
over O, an off-the-shelf model checker, such as NuSMV [6]

or DiVinE [2], can be used to check whether the language

LT (x) satisfies φ, for all x ∈ Q. For a region X ⊆ Q, we

write T (X) � φ if all the words from LT (X) satisfy φ. Let

Xφ
T = {x ∈ Q | T (x) � φ}. (5)

Note that, Xφ
T is the largest region of T satisfying φ (i.e. if

x �∈ Xφ
T , then there exists a word in LT (x) that violates φ).

If T/
∼

is a quotient of T , then for any equivalence class

X ∈ Q/
∼

and formula φ, we have:

T/
∼

(X) � φ ⇒ T (con(X)) � φ (6)

In addition, if ∼ is a bisimulation, then

T/
∼

(X) � φ ⇔ T (con(X)) � φ (7)

Properties (6) and (7) (which follow immediately from (2)

and (3)) allow one to model check finite quotients and extend

the results to the (possibly infinite) original transition system.

Definition 3: A Büchi automaton is a tuple B =
(S, S0, O, δB, F ) where S is a finite set of states, S0 ⊆ S is

the set of initial states, O is the input alphabet, δB : S×O →
2S is a nondeterministic transition function and F ⊆ S is

the set of accepting (final) states.

The semantics of a Büchi automaton is defined over infinite

input words. A run of B over a word w = o1o2o3 . . . ∈
Oω is a sequence ρ = s0s1s2 . . . , where s0 ∈ S0 and

(si−1, oi, si) ∈ δB for all i ≥ 1. Let inf(ρ) denote the set of

states that appear in the run ρ infinitely often. A run ρ of B
is accepting if and only if inf(ρ)∩F �= ∅. In other words, an

input word w is accepted by B if and only if there exists at

least one run over w that visits F infinitely often. We denote

by LB the language accepted by B, i.e. the set of all words

accepted by B. An LTL formula φ can always be translated

into a Büchi automaton Bφ using off-the-shelf tools such as
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LTL2BA [12], such that LBφ
= Lφ. A Büchi automaton is

deterministic if S0 and δB(s, o) are singletons for all s ∈ S
and o ∈ O.

III. PROBLEM FORMULATION AND APPROACH

Let Xl, l ∈ L be a set of open polytopes in R
N , where L is

a finite index set, such that Xl1

⋂Xl2 = ∅ for all l1, l2 ∈ L,

l1 �= l2 and X = ∪l∈Lcl(Xl) is a closed full-dimensional

polytope in R
N (cl(Xl) denotes the closure of set Xl). A

discrete-time piecewise affine (PWA) system is defined as:

xk+1 = Alxk + bl, xk ∈ Xl, l ∈ L, k = 0, 1, 2, . . . . (8)

We assume that X is an invariant for all trajectories of

the system and matrix Al is nonsingular for all l ∈ L.

We are interested in properties of (8) specified in terms of

the polytopes from its definition. Informally, the semantics

of system (8) can be understood in the following sense: a

trajectory of the system x0x1x2 . . . produces an infinite word

l0l1l2 . . ., where li ∈ L is the index of the polytope visited

at step i (i.e. xi ∈ Xli). An LTL formula over L can then be

interpreted over trajectories of the system (see Sec. II). In

the following, we give a formal definition of the semantics

through an embedding into a transition system.

Definition 4: The embedding transition system Te =
(Qe,→e, Oe, oe) for the PWA system from Eqn. (8) is

defined as Qe = ∪l∈LXl, x →e x′ if and only if there exist

l ∈ L such that x ∈ Xl and x′ = Alx + bl, Oe = L, and

oe(x) = l if and only if x ∈ Xl.

Note that the embedding Te has an infinite number of

states and is always deterministic and non-blocking.

Definition 5: Given a subset X ⊆ Qe, we say that all

trajectories of system (8) originating in X satisfy formula φ
if and only if Te(X) satisfies φ.

Problem 1: Given a PWA system (8) and an LTL formula

φ over L, find the largest region of initial states, from which

all trajectories of the system satisfy φ.

The solution to Problem 1 amounts to the computation of

Xφ
Te

(see Eqn. (5)). Since Te has an infinite number of states,

it cannot be analyzed directly. Our approach is based on the

construction of a finite abstraction that is equivalent to the

initial system with respect to the satisfaction of a specific

temporal logic formula. We develop the notion of formula

equivalent quotients in Sec. IV and describe an algorithm for

their computation in Sec. V, where the results are valid for

general deterministic infinite transition systems. We describe

the construction of a formula equivalent finite quotient for

Te in Sec. VI, which leads to the solution of Problem 1. As it

will become clear later, our approach is conservative, in the

sense that, we can only “try” to find the formula equivalent

quotient of Te and the satisfying region Xφ
Te

but, in general,

we can only guarantee to obtain subsets of the latter.

IV. ANALYSIS OF INFINITE TRANSITION SYSTEMS

In this section, we consider the following problem:

Problem 2: Given an infinite transition system T (Def. 1)

and an LTL formula φ over its set of observations O, find

Xφ
T (Eqn. (5)).

o1

o2

o3 o1

o2

o3

X

X

X

Fig. 1: The transition system in (A) forms three equivalence classes
under observational equivalence and the resulting finite quotient
(B) is clearly not a bisimulation quotient (Eqn. (4) is violated at
state X1). However, the quotient is φ-equivalent for LTL formula
φ = ©(o2 ∨ o3) and can be equivalently used for model checking
φ instead of the original system.

We assume that, given the observational equivalence rela-

tion ∼ (see Sec. II), the finite quotient T/
∼

is computable

(its computation for Te is discussed in Sec. VI). Then, Xφ
T/

∼

can be computed by model checking T/
∼

from each state

X ∈ Q/
∼

. From Eqn. (6) it follows that con(Xφ
T/

∼

) ⊆ Q is

a satisfying region in T but, in general, con(Xφ
T/

∼

) ⊆ Xφ
T ,

so only a subset of the largest satisfying region is obtained.

If ∼ is a bisimulation of T then from Eqn. (7) it follows

that for any LTL formula φ

con(Xφ
T/

∼

) = Xφ
T . (9)

A solution to Problem 2 can then be obtained by computing

the coarsest bisimulation ∼ of T using the bisimulation

algorithm (see Sec. II) and model checking the bisimulation

quotient T/
∼

from each state to compute Xφ
T/

∼

. However,

such a procedure would only work for the particular case

when T admits a finite bisimulation quotient T/
∼

. Alter-

natively, the equivalence relation produced at each step of

the bisimulation algorithm can be used to construct finite

simulation quotients, which can then be model checked

against an LTL formula. A similar idea was used in [5] for the

universal fragment ACTL of CTL. We followed this approach

in [20], where we combined state refinement, inspired by the

bisimulation algorithm, with model checking in an iterative

procedure (see Remark 1 for additional details). At each step,

the set con(Xφ
T/

∼

) ⊆ Xφ
T provided an under-approximation

of the solution to Problem 2. This under-approximation could

be improved by performing additional iterations but the

termination of the algorithm with an exact solution could

not be guaranteed. In the following, we consider conditions

guaranteeing that Eqn. (9) holds and therefore an exact

solution to Problem 2 can be computed. As already stated,

bisimulation is one such condition, but as it will become

clear later, it is unnecessarily strong.

Definition 6: Given an (infinite) transition system T and

an LTL formula φ, an observation preserving equivalence

relation ∼ is a φ-equivalence of T if and only if for all states

x1, x2 ∈ Q such that x1 ∼ x2, T (x1) � φ⇔ T (x2) � φ
We denote a φ-equivalence relation as ∼φ and refer to the

quotient T/
∼φ

as φ-equivalent quotient. From Eqn. (7) it

follows that a bisimulation relation ∼ is a φ-equivalence for

all LTL formulas φ. Bisimulation is a sufficient condition

guaranteeing that Eqn. (9) holds but since we are interested

in the analysis of T for a specific LTL formula φ it can
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be too restrictive. An example where a formula equivalent

quotient is not a bisimulation quotient is shown in Fig. 1.

Proposition 1: Given a transition system T and an LTL

formula φ, Eqn. (9) holds iff ∼ is a φ-equivalence of T .

Prop. 1 shows that φ-equivalence is a necessary and sufficient

condition for Eqn. (9) and its proof is available in [21]. Then,

Problem 2 reduces to the computation of con(Xφ
T/

∼φ
), where

T/
∼φ

is a finite, φ-equivalent quotient for T . We discuss the

computation of formula equivalent quotients in Sec. V.

Remark 1: The method we presented in [20] involved

the iterative model checking and refinement of simulation

quotients of an infinite transition system. By model checking

with both an LTL formula and its negation we were able to

target refinement to the specific set of states from which some

but not all runs satisfied the formula. Although our method

was originally inspired by the bisimulation algorithm, this

optimization led to the construction of formula equivalent

quotients in the cases when the algorithm terminated. How-

ever, a large number of model checking and refinement

steps was required. As it will become clear in Sec. V our

current approach aims directly at the construction of formula

equivalent quotients and is more efficient.

V. FORMULA GUIDED REFINEMENT

In this section we develop an algorithm for the computa-

tion of φ-equivalent quotients of (possibly infinite) transitions

systems, leveraging ideas from the bisimulation algorithm

and automata-based model checking. We assume that given

a deterministic transition system T and the observational

equivalence relation ∼, the finite quotient T/
∼

is computable

(as will be the case for Te). For the sake of presentation

we also assume that LTL formula φ can be translated

into a deterministic Büchi automaton Bφ over the set of

observations O. Although this restricts the specification to

a fragment of LTL, our method can be easily modified to

handle full LTL expressivity by translating the specification

into a deterministic Rabin automaton instead. Since the

computation of φ-equivalent quotients is guided by formula

φ, it is most natural to perform the computation in the

product automata P = T/
∼
⊗ Bφ (Def. 7), where both the

structure of the system (T/
∼

) and the specification (Bφ) is

captured.

Definition 7: The product automaton P = T/
∼
⊗ Bφ

of a finite transition system T/
∼

= (Q/
∼

,→
∼

, O, o
∼

)
and a Büchi automaton Bφ = (S, S0, O, δBφ

, F ) accepting

the language Lφ for some LTL formula φ is defined as

P = (SP , SP0, δP , FP ). SP = Q/
∼
× S is the set of states

of P , SP0 = Q/
∼
× S0 is the set of initial states, and

FP = Q/
∼
×F is the set of accepting states. The transition

function is δP where for a (X, s) ∈ SP , δP ((X, s)) =
{(X ′, s′) ∈ SP | X →

∼
X ′ and s′ = δBφ

(s, o(X))}.
The product automaton is a nondeterministic Büchi au-

tomaton with input alphabet containing only one ele-

ment, which is therefore omitted. An accepting run rP =
(X1, s1)(X2, s2) . . . in P can be projected into a run rT/

∼

=
X1X2 . . . of T/

∼
, such that o(X1)o(X2) . . . is accepted

by Bφ [19] and therefore satisfies φ. Let us denote by

α : SP → Q/
∼

, α(X, s) = X , the projection of states

of product automaton P to the states of T/
∼

.

The set Xφ
T/

∼

can be computed as the projection α(SY ∩
SP0) ⊆ Q/

∼
where SY ⊆ SP is the set of states in P

from which all runs are accepting (see Sec. II). SY can be

efficiently computed following the method that we described

in [16]. Specifically, we first identify a subset FY ⊆ F of

accepting states, from which infinitely many revisits to F are

guaranteed. SY is then a set of states from which a visit to

FY is guaranteed in zero or more steps.

We can also easily identify a set of states SN ⊆ SP of P
from which no runs are accepting. The projection α(SN ∩
SP0) ⊆ Q/

∼
corresponds to X¬φ

T/
∼

(i.e. the largest set of

states of T/
∼

from which no runs satisfy φ).

Let S? ⊆ SP , S? = SP \ (SY ∪ SN ) be the set of states

from which some but not all runs are accepting in P . The

projection α(S?∩SP0) ⊆ Q/
∼

corresponds to states of T/
∼

where both runs satisfying φ and ¬φ originate and, therefore,

the φ-equivalence property (Def. 6) is violated at those states.

Proposition 2: The equivalence relation ∼ is a φ- equiv-

alence of a deterministic transition system T if and only if

(S? ∩ SP0) = ∅. Then, S? = ∅ guarantees that ∼ is a φ-

equivalence.

A proof for Prop. 2 is available in [21]. In general, the set S?

is nonempty but can be made empty if accepting and non-

accepting runs from each state (X, s) ∈ S? are separated

through refinement. Following from Prop. 2 and the discus-

sion presented in Sec. IV this provides a solution to Problem

2. Since the structure of P is completely determined by Bφ

and T/
∼

and Bφ is fixed, the only way to refine states in P
is through refinement of T/

∼
. We refine a state (X, s) ∈ S?

by applying the procedure REFINE (T/
∼

, α(X, s)), followed

by UPDATE (P, (X, s)), which simply projects changes made

during REFINE (T/
∼

, α(X, s)) into the product P .

Algorithm 1 REFINE(T/
∼

, X )

1: initialize Q̂/
∼

= Q/
∼
\X

2: for each state X ′ such that X →
∼

X ′ do
3: construct state Xnew such that

con(Xnew) = con(X) ∩ PreT (con(X ′))
4: add state Xnew to Q̂/

∼

5: end for
6: update →̂

∼
and ô

∼

7: return T̂ /
∼

= (Q̂/
∼

, →̂
∼

, O, ô
∼

)

The refinement procedure REFINE(T/
∼

, X) (Algorithm 1)

is inspired by the bisimulation algorithm (see Sec. II). Unlike

the bisimulation algorithm, which refines the equivalence

relation ∼ globally, REFINE(T/
∼

, X) refines the quotient

T/
∼

locally at a state X ∈ Q/
∼

. By considering all its

successors, state X ∈ Q/
∼

is partitioned so that each

resulting subset Xnew can make a transition to only one

of the original successor states X ′. An outgoing transi-

tion Xnew→̂∼
X ′ of a newly formed state Xnew, where

con(Xnew) = con(X) ∩ PreT (con(X ′)) is thus implicitly

induced. The incoming transitions of Xnew are updated
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as follows: each transition X ′ →
∼

X is replaced with

X ′→̂
∼

Xnew if con(X ′) ∩ PreT (con(Xnew)) �= ∅. All

subsets of a refined state inherit the observation of the parent

and, therefore, ô
∼

is easily updated.

The overall method discussed in this section is summa-

rized in Algorithm 2. Since the regions of T contain, in

general, an infinite number of states, the algorithm might

perform an infinite number of refinement steps. To ensure the

algorithm terminates, we refine a state only if it corresponds

to a “large enough” region of T (see Sec. VI for such a

measure for Te). This means that S? might be nonempty

when we force the algorithm to terminate, and we cannot

guarantee an exact solution to Problem 2.

It is important to note that if a state X is refined in

T̂ /
∼

, not every state (X, s) is necessarily refined in P̂ .

There is a one-to-many correspondence between the refined

product P̂ and the refined quotient T̂ /
∼

, and the projection

α is of the type α : SP̂ → 2Q̂/
∼φ . This might lead to

a major reduction in the computational complexity of the

solution: the product automaton P̂ after refinement might be

significantly smaller than the product automaton T̂ /
∼
⊗ B,

which we used for model checking in our old approach [20].

An example illustrating this idea is available in [21].

Algorithm 2 COMPUTE Xφ

T̂/
∼

1: Construct T/
∼

, such that ∼ is observational equivalence

2: Construct deterministic BA Bφ, such that LBφ
= Lφ

3: Build product automaton P = T/
∼
⊗ Bφ

4: Initialize T̂ /
∼

= T/
∼

, P̂ = P
5: repeat
6: Compute SY and SN in P̂
7: S? = SP̂ \ (SY ∪ SN )
8: for all (X, s) ∈ S? do
9: if X is large enough and not refined in T̂ /

∼
then

10: T̂ /
∼

=REFINE(T̂ /
∼

, X)
11: end if
12: if X is refined in T̂ /

∼
then

13: UPDATE(P̂ , (X, s))
14: end if
15: end for
16: until P̂ not updated during previous iteration

17: return Xφ

T̂/
∼

= α(SY ∩ SP0)

VI. FINITE QUOTIENTS OF PWA SYSTEMS

Through the embedding of the PWA system (Eqn. (8))

into an infinite transition system Te (Def. 4), we reduced

Problem 1 to Problem 2. In Sec. IV we developed the notion

of formula equivalent finite quotients of infinite systems

and showed that such quotients can be used to provide

the solution to Problem 2. Based on the assumptions that

finite quotients can be constructed and each step of the

refinement procedure can be implemented, we proposed an

algorithm for the refinement of such quotients in order to

obtain formula equivalence in Sec. V. In this section, we

Fig. 2: Schematic representations of the genetic toggle switch [11].

discuss the construction of the quotients, which completes

the solution to Problem 1. Note that this is a summary of

results from [20].

From the definitions of the observational equivalence

relation ∼, induced by the observation map o (Sec. II) and Te

(Def. 4), the initial set of states Qe/∼
, of the finite quotient

Te/∼
, is simply the set of observations Qe/∼

= Oe = L
and the observation map is identity. Given a state l ∈ Qe/∼

,

con(l) = Xl is a polytope from the system definition (Eqn.

(8)). In order to finish the construction of the quotient, we

need to find the set of transitions →e,∼. By the definition of

→
∼

(Sec.II) and Eqn. (1), given l, l′ ∈ Qe/∼
, we have:

l →e,∼ l′ ⇔ Xl ∩ PreTe
(Xl′) �= ∅ (10)

The transition relation →e,∼ can then be constructed using

polyhedral operations only, since

Xl ∩ PreTe
(Xl′) = Xl ∩A−1

l (Xl′ − bl). (11)

In order to implement REFINE(Te/∼
, l) we need to be

able to construct a state lnew, such that given l′ ∈ Qe/∼

where l →
∼

l′, con(lnew) = con(l) ∩ PreTe(con(l′)) (see

Algorithm 1), which is computable using Eqn. (11). Out-

going transitions of a refined state are implicitly induced as

discussed in Sec. V and the computation of Eqn. (10) can be

used to recompute incoming transitions whenever refinement

is applied. In order to decide if the region con(l) is large

enough to undergo additional refinement (as discussed in Sec.

V), we compute the radius of its inscribed sphere and apply

refinement if it is larger than a certain predefined limit ε.

VII. IMPLEMENTATION AND CASE STUDY

The method described in this paper was implemented in

MATLAB, where all polyhedral operations were performed

using routines from the MPT toolbox [15]. The tool takes

as input a PWA system (as defined in Eqn. (8)) and an LTL

formula and produces a set of satisfying initial regions. The

tool is made public and is available through our web site at

http://hyness.bu.edu/software.

We developed a PWA model for a network of two mutually

repressing genes (Fig. 2), inspired by the genetic toggle

switch [11]. Gene regulation is modeled by ramp functions,

which are piecewise affine functions defined by two threshold

values, inducing three regions of different dynamics. At low

repressor concentrations (below threshold 1) the regulated

gene is fully expressed, at high repressor concentrations

(above threshold 2) expression is only basal and the response

between the two thresholds is graded. The PWA model

captures the characteristic bistability of the system, allowing

only one of the genes to be expressed depending on initial

conditions (Fig. 3-A). Since there are two repressors, two

ramp functions are used in a two dimensional (N = 2)
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Fig. 3: A) Simulated trajectories of the toggle switch PWA model
go towards one of two stable equilibria located in regions X3

and X7 (initial states are marked by open circles). B) Results
from the analysis of the toggle switch PWA model indicate that
trajectories originating in the dark gray region are guaranteed to
satisfy specification φ1 = ♦3, while trajectories originating in the
light gray region are guaranteed to satisfy φ2 = ♦7.

PWA model and, therefore, the system has a total of nine

rectangular regions (denoted X1, . . . ,X9 with the set of

labels L = {1, . . . , 9}). Dynamics 3 and 7 have unique,

asymptotically stable equilibria inside rectangles X3 and

X7 (see Fig. 3-A). Biologically, the equilibria correspond

to the two modes of the system (each gene can be fully

expressed, while the other is expressed only basally). An

interesting problem is finding the regions of attraction for the

two equilibria. By exploiting convexity properties of affine

functions on polytopes, it can be shown that X3 and X7

are invariants for dynamics 3 and 7, respectively. From this,

we can immediately conclude that X3 and X7 are regions

of attraction for the two equilibria. Therefore, our problem

reduces to finding maximal regions satisfying LTL formulas

φ1 = ♦3 and φ2 = ♦7. In other words, we want to

find maximal sets of initial conditions guaranteeing that all

trajectories of the system eventually reach regions X3 or X7,

respectively.

The initial finite quotient included 9 states and its compu-

tation required under 1 sec. on a 3.4GHz machine with 1GB

of memory. A limit ε = 2 was imposed on the size of regions

that can undergo refinement as described in Sec. VI. The

refinement procedure for both specifications required under

20 sec. and terminated without returning a formula equivalent

quotient but satisfying regions were identified for both φ1

and φ2 and are shown in Fig. 3-B. It is important to note that

nothing can be guaranteed about trajectories originating in

the region shown in white in Fig. 3-B and satisfying regions

are given as unions of open polytopes, so boundaries are not

considered part of the satisfying set of initial conditions.

VIII. CONCLUSION

We described a computational framework for the identifi-

cation of initial sets from which all trajectories of a discrete-

time piecewise affine (PWA) system satisfy a specification

expressed as a Linear Temporal Logic (LTL) formula over

linear predicates. Our approach is based on the iterative

construction and refinement of abstractions. We showed that

existing methods for the refinement of such abstractions

might be too restrictive and proposed conditions guaranteeing

the equivalence of an infinite system and its finite abstrac-

tion with respect to a specific temporal logic formula. We

developed methods for the refinement of finite abstractions

aiming at the construction of formula equivalent systems and

demonstrated that our approach can be applied to the analysis

of small genetic networks.
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