
Grid-Based Temporal Logic Inference

Prashant Vaidyanathan, Rachael Ivison, Giuseppe Bombara, Nicholas A. DeLateur,

Ron Weiss, Douglas Densmore, and Calin Belta

Abstract— This paper introduces a new algorithm to infer
temporal logic properties of a system from data consisting of
a set of finite time system traces. We propose an algorithm
that generates a Signal Temporal Logic formula by discretizing
the entire domain and codomain of the system traces. Unlike
many popular inference algorithms which require labeled data
that represents whether a trace exhibits a desired behavior
(positive) or not (negative), this approach only requires positive
traces to infer temporal logic properties. We present two case
studies to illustrate the efficiency and accuracy of the proposed
algorithm. The first is a biological network consisting of a
genetic logic circuit in a bacterial cell. The second is a fault
detection problem in automotive powertrain systems. We also
compare the performance of the algorithm with an existing
inference algorithm.

I. INTRODUCTION

Testing and verification are very important steps in de-

signing complex systems. Many verification techniques use

a formal specification that describes admissible behaviors of

a system during its execution in a mathematically unambigu-

ous manner [1]. For this reason, specifications are expressed

using appropriate logics, and Signal Temporal Logic (STL)

has emerged as a rich specification language for describing

continuous-time systems [2]. Traditionally, specifications are

formulated by expert designers in a tedious and error-prone

process. More recent methods involve learning the specifica-

tions directly from the execution traces of systems.

This challenge of inferring temporal logic properties from

data procured from a system has been approached in many

ways, including mining parameters for a given formula struc-

ture [3], and temporal logic inference (TLI), that is construct-

ing both the formula structure and its parameters [4], [5]. In

literature, the latter approach was cast within a two-class

classification problem where a formula should distinguish

and categorize a trace that belongs to one of two classes. In

this setting, the learning is supervised, and the two classes

are positive or negative. Positive traces represent normal

working conditions, expected behaviors, or desired behaviors

of a system, while negative traces indicate anomalies or non-

conforming patterns of a system [5], [6].

This work was supported by the National Science Foundation under grant
CPS Frontier 1446607.

Prashant Vaidyanathan (prash@bu.edu), Giuseppe Bombara (gbom-
bara@bu.edu), and Douglas Densmore (dougd@bu.edu) are with the Electri-
cal & Computer Engineering Department, Rachael Ivison (rivison@bu.edu)
is with the Bioinformatics Program, and Calin Belta (cbelta@bu.edu) is
with the Department of Mechanical Engineering at Boston University,
Boston, MA, USA. Nicholas A. DeLateur (delateur@mit.edu) is with
the Department of Chemistry and Ron Weiss (rweiss@mit.edu) is with
the Department of Biological Engineering at Massachusetts Institute of
Technology, Cambridge, MA, USA.

For some cases in which TLI would be useful, labeled

data is difficult or impossible to procure. One such case

is in complex biological systems, such as synthetic genetic

circuits, where the ability to describe biological networks’

behaviors over time would represent a powerful move for-

ward in building complex and robust genetic circuits. The

synthetic biology field currently relies on manual design of

genetic circuits, sometimes aided by simulations. While the

biological network construction paradigms [7], [8] allow for

rapid genetic circuit assembly, they make no statement or

guarantee to the behavior of the assembled DNA. Instead,

these behaviors are captured empirically and describe spe-

cific properties of the genetic circuit in precise biochemical

environments. While these environments could be varied

to identify negative behaviors, the negative conditions for

biological systems are so diverse that it is impractical to

generate negative traces. In such situations, the two-class

classification approach cannot be applied.

In this paper, we propose a grid-based approach, GridTLI,
where we discretize the space of the finite-time system traces

in the dataset, infer temporal properties, and express them as

a formula in STL [2]. The proposed algorithm has some ad-

vantages over conventional two-class TLI approaches. First,

GridTLI only requires positive traces and can guarantee zero

false negatives for any trace in the training dataset. Second,

the input parameters of the algorithm can be used to tune

the complexity of the formula to fit the context of the data.

II. RELATED WORK

Two major tracks can be identified in the field of tem-

poral logic inference. The first track addresses the so-called

Parameter Mining problem [3], [9]: given a formula template

and a set of traces generated by a normally-behaving system,

find the optimal parameters for the template such that the

resulting formula satisfies the input traces. Generally, the

parameters are the time intervals for the temporal operators

and the thresholds for the inequality predicates in the tem-

plate formula. The approaches in these references differ in

the way the underlying optimization problem is formulated

and solved. It is also worth mentioning that the parameter

optimization problem is cast within a more general active

learning framework, where the original system is queried

for new traces when deemed necessary.

The second track is focused on constructing a formula–

both the structure and its parameters–within the context of

the supervised two-class classification problem [4], [5], [10],

[11]. In this setting, given a set of labeled traces, e.g., either

normal or anomalous, the goal is to build a formula that

2017 IEEE 56th Annual Conference on Decision and Control (CDC)
December 12-15, 2017, Melbourne, Australia

978-1-5090-2873-3/17/$31.00 ©2017 IEEE 5354

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

can distinguish between them. In [4], [10], the formula is

constructed by exploring a fragment of STL that admits

a partial ordering, whereas the parameter optimization is

performed using an SVM-like (Support Vector Machine)

optimization. [11] also tackled this problem by first building

two generative probabilistic models, one for each class, and

later obtaining a discriminative classifier by searching for a

formula that maximizes the odds of being true for the first

model and false for the other model. The formula structure is

constructed through heuristics, while the parameter space is

explored through Statistical Model Checking. Recently, [5]

proposed a decision-tree based approach to solve the two-

class problem. In this approach, a binary tree is constructed

with simple formulae at each node, called primitives. The

optimal primitives, along with their parameters, are chosen

by optimizing some impurity measures which quantify how

well a primitive partitions the traces by class at each node.

A tree with this structure is in a one-to-one mapping with

an STL formula, which can be used for classification of new

traces or other purposes.

III. SIGNAL TEMPORAL LOGIC

For t ∈ R, we write the interval [t,∞) as R≥t. We

represent the set of all continuous n-dimensional param-

eterized curves by S = {s : R≥0 → R
n} for n ∈ N, and

we call an element s ∈ S a signal. The parameter of

s is interpreted as time. The components of a signal

s are denoted by sx, x ∈ {1, . . . , n}, and the projection

operators from s to its components are represented by

F =
{
fx : Rn → R, fx(s) = sx, x ∈ {1, . . . , n}}.

The syntax of STL is defined in [2] as

φ ::= � | pf(y)≤μ | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2 ,

where � is the Boolean true constant (⊥ for false); pf(y)≤μ

is a predicate over R
n parameterized by f ∈ F and μ ∈ R

such that pf(y)≤μ = f(y) ≤ μ; ¬ and ∧ are the negation

and conjunction Boolean operators, respectively; and U[a,b) is

the bounded temporal operator until. The temporal operators

eventually and globally are defined as F[a,b)φ ≡ �U[a,b)φ
and G[a,b)φ ≡ ¬F[a,b)¬φ, respectively.

A signal s is said to satisfy an STL formula φ if and

only if s |= φ. The quantitative semantics of STL formally

characterizes the degree of robustness [12] of a signal with

respect to an STL formula. A signal is said to satisfy φ (in

Boolean semantics) if and only if its robustness has a positive

value. 1

IV. PROBLEM DESCRIPTION

Given a training set of finite time signals S, which

represents the desired behaviors of the system, we aim to

find an STL formula φ such that all the signals in S satisfy

the formula. The STL formula should fit the signals, and the

fit should be neither too tight nor too loose. A loose fit results

in an STL formula that is not very useful, since it might not

grasp the peculiar characteristics of the signals. In contrast,

1For definitions of the semantics of STL defined over signals and the
robustness degree of a signal with respect to an STL formula, see [12].

a tight fit results in a long STL formula that is excessively

specific to the training signals. Ideally, the granularity of

the fit of the STL formula must be tunable based on the

requirements and properties of the system.

V. GRID-BASED TEMPORAL LOGIC INFERENCE

Grid-based temporal logic inference, or GridTLI 2, is an

algorithm that generates an STL formula from a given set of

training signals. The algorithm uses three thresholds which

affect the tightness of the produced formula to the training

data. GridTLI operates on one-dimensional signals, for multi-

dimensional signals the algorithm should be executed on

each dimension separately (see Remark 3).

A. Notation and Definitions

R is a closed rectangular region in the 2-dimensional

Euclidean space R × R≥0 given by the value codomain

and time domain of one-dimensional signals. The re-

gion R is bounded by [xmin, xmax]× [0, tmax], where

xmin, xmax ∈ R, xmin < xmax, and tmax ∈ R>0. We will

partition this region R into a grid made of rectangular cells.

A cell g is a rectangular bounding box in R× R≥0 repre-

sented with a tuple (x, t, xinc, tinc), where (x, t) ∈ R× R≥0

is the Cartesian coordinate of the bottom left corner of the

box, and xinc ∈ R>0 and tinc ∈ R>0 are the lengths of the

sides of the box along the value and time dimensions, respec-

tively. Therefore, a cell g is bounded between [x, x+ xinc]
along the value dimension and between [t, t+ tinc] along the

time dimension. A set of cells is indicated with Γ.

We use the object oriented dot notation (“.”) to reference

the properties of the region and the cells. The properties of

the region R are its bounding values, which are R.xmin and

R.xmax for the value dimension and R.tmax for the time

dimension. The properties of a cell g are the elements of

the tuple, which are g.x, g.t, g.xinc, g.tinc, and g.IT which

indicates the time interval [t, t+ tinc] of g.

Given a cell g and a set of signals S, we define a Boolean

function ĝ(S) such that ĝ(S) = � if and only if at least one

signal in s ∈ S has a non-empty intersection with g. Such a

cell is informally referred as covered by S.

GridTLI uses three thresholds xt, tt, and ct, to determine

its fitting and clustering behavior. Specifically, xt is the

signal threshold and defines the minimum value of g.xinc

for any cell; tt is the temporal threshold and defines the

minimum value of g.tinc for any cell; ct is the cluster
threshold and is used to determine the number of clusters.

B. Algorithm

GridTLI produces an STL φ formula from a set S,

made of one-dimensional positive-only signals, and the three

thresholds xt, tt, and ct. The formula is generated in four

major steps: 1) the signal space is partitioned with a grid; 2)

the signals are distributed into separate clusters; 3) simple

STL primitives are fit to each cluster; and 4) the clusters are

then mapped to the final STL formula. A high level overview

of the algorithm is reported in Alg. 1.

2Code available at: https://github.com/CIDARLAB/GridTLI

5355

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Sample grid with
cells and clusters. The five
signals in this grid are split
into two clusters (shaded in
green and purple) based on
the cluster threshold.

Algorithm 1: GRID-TLI

input : S, xt, tt, ct
output: φ

1: Γ = ConstructGrid(S, xt, tt)
2: (S1, . . . , Sk) := ClusterSignals(S, ct)
3: Γi := FindCoveredCells(Γ, Si), i = 1, . . . , k
4: φi := ClusterToFormula(Γi), i = 1, . . . , k

φ :=
∨k

i=1 φi

Algorithm 2: ConstructGrid()

input : S, xt , tt
output: Γ

1: R := FindBoundingRegion(S)

2: for i:=0 to R.tmax step tt do
for j:=0 to R.xmax step xt do

Γ.addCell((i, j, xt, tt))

for j:=0 to R.xmin step −xt do
Γ.addCell((i, j, xt, tt))

3: return Γ

The first step is implemented by ConstructGrid() in

Alg. 2. This function first derives the bounds xmin, xmax,

and tmax of the region of interest R from the location of the

signals in S in the space R× R≥0. 3 The region R is then

partitioned into a set of cells Γ using a 2D orthogonal grid

with a granularity prescribed by thresholds xt and tt.
In the second step, the function ClusterSignals()

uses the cluster threshold ct to cluster the signals in S
into k subsets (S1, S2, . . . , Sk), where k is at most | S |.
Two signals si, sj ∈ S are in the same cluster if for all

t ∈ [0, tmax], there exist gp and gq , such that t ∈ gp.IT and

ĝp(si) = �; t ∈ gq.IT and ĝq(sj) = �; and{
gp.x− (gq.x+ gq.xinc) ≤ ct if gp.x ≥ gq.x,

gq.x− (gp.x+ gp.xinc) ≤ ct if gq.x > gp.x.
(1)

The function FindCoveredCells(), simply maps ev-

ery cluster Si with a set of cells Γi that are covered by the

signals in Si, that is, for all g ∈ Γi, ĝ(Si) = �.

3The values of xmin and xmax are approximated to multiples of xt.
The value of tmax is approximated to a multiple of tt.

In the fourth step, the function ClusterToFormula()
maps each set of cells Γi to an STL formula φi. The

formula is constructed by finding the top-most and bottom-

most covered cells at each time step t, going from 0 to

tmax in increments of tt. This process is described in

Alg. 3. Some simplifications to the formula are applied

during this transformation process (see Example 1). Finally,

the complete formula is assembled by disjunction of the

formulae obtained for each cluster: φ = φ1 ∨ φ2 ∨ . . . ∨ φk.

Algorithm 3: ClusterToFormula()

input : Γi

output: STL formula (φi)
1: φi := �
2: for i:=0 to tmax step tt do

find gm s.t. ∀g ∈ Γi where g.t, gm.t = i, gm.x ≥ g.x
φi := φi ∧G[i,i+gm.tinc)(x ≤ (gm.x+ gm.xinc))
find gn s.t. ∀g ∈ Γi where g.t, gn.t = i, gn.x ≤ g.x
φi := φi ∧G[i,i+gn.tinc)(x ≥ gn.x)

3: return φi

Example 1: Consider the clusters in Fig. 1. In the cluster

shaded in green for t ∈ [0, 1], the covered cell with the mini-

mum x value is g(0, 0, 1, 1). The covered cell with the max-

imum x value is g(1, 0, 1, 1). These two cells provide lower

and upper bounds for the satisfaction region of the signals in

the green cluster for t ∈ [0, 1]. This is formally represented

in STL as φa = G[0,1](x > 0) ∧G[0,1](x ≤ 2). Similarly,

the STL formula is φb = G[1,2](x > 1) ∧G[0,1](x ≤ 2) for

t ∈ [1, 2]. Thus, for t ∈ [0, 2], the STL formula for the green

cluster is φa ∧ φb.
To simplify and reduce the length of the formula

for a cluster, the temporal operators with adjacent time

horizons and similar linear predicates can be combined. For

example, G[0,1](x ≤ 2) ∧G[1,2](x ≤ 2) can be transformed

to G[0,2](x ≤ 2). The STL formula φ1 for the green cluster is

G[0,7](x ≤ 2) ∧G[0,1](x > 0) ∧G[1,5](x > 1) ∧G[5,7](x > 0).
Remark 2: The clustering of signals can only be as

precise as xt. In fact, for any z ∈ N and for any

ct ∈
[
(z − 1)xt, zxt

)
, all other c′t ∈

[
(z − 1)xt, zxt

)
will

result in the same clustering as that for ct.
Remark 3: Algorithm 1 operates on one-dimensional sig-

nals. If the training set S contains multi-dimensional signals

with dimensionality n, we derive the sets Sx, x ∈ 1, . . . , n,

5356

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

from S by considering only the component sx of each signal.

For each set Sx, we use GridTLI to obtain a formula φx and

the final formula φ is constructed by conjunction of all φx,

that is φ = φ1 ∧ φ2 ∧ · · · ∧ φn.

C. Properties of the Algorithm
The formula φ for S constructed using xt, tt, and ct, will

have the following properties:
Lemma 1: ∀s ∈ S, s |= φ.
Lemma 2: For any subformula φa in φ, where

φa ∈ {G[t1,t2)pf(x)≤μ1
,G[t1,t2)pf(x)>μ1

}, then t2−t1 ≥ tt.
Lemma 3: For any two subformulae φa and φb

within an STL formula φi for a cluster of cells

Γi, if φa ∈ {G[t1,t2)pf(x)≤μ1
,G[t1,t2)pf(x)>μ1

}
and φb ∈ {G[t1,t2)pf(x)≤μ2

,G[t1,t2)pf(x)>μ2
}, then

| μ1 − μ2 | ≥ xt.
Lemma 4: For any two signals si, sj ∈ S such that si |=

φ1 and sj |= φ2, where φ1 and φ2 are STL formulae for two

separate clusters, then there exists t ∈ [0, tmax] such that no

gp, gq satisfy Eq. 1.

D. Complexity
In this section, we discuss the worst-case complexity to

construct φ for a set of one-dimensional signals S using

GridTLI. Since the steps of the algorithm are sequential, the

overall asymptotic complexity can be obtained as the sum of

the complexities of each step.
The complexity of ConstructGrid() is the same as

the number of elements in Γ, that is:

| Γ |= (tmax/tt) ·
(
(xmax − xmin) /xt

)
(2)

For the second step (function ClusterSignals()), the

complexity is | Γ | · | S | since the clustering condition is

checked for all signals and for all cells. The worst case com-

plexity of the third step (function FindCoveredCells())

is | Γ | · | S |, since all the cells in Γ could be covered and

there can be at most | S | clusters. The worst case complexity

of the final step (function ClusterToFormula()) is | S |
since, each signal could form a unique cluster if the signals

in S are too diverse or if ct is too conservative.
The worst-case complexity of algorithm overall is(
(| Γ |) + (| Γ | · | S |) + (| Γ | · | S |) + (| S |)) (3)

which can be simplified to (| Γ | · | S |), since this value

dwarfs the other terms in Eq. 3. Using Eq. 2, we can rewrite

the worst-case complexity as

O
(
xmax − xmin

xt
· tmax

tt
· | S |

)
. (4)

VI. CASE STUDIES

We present two case studies for GridTLI. Case study VI-

A involves measurements of fluorescence from a synthetic

genetic circuit in biological experiments with Escherichia
coli. Case study VI-B is related to a fault detection problem

in a fuel control system for a gasoline engine. The dataset

corresponding to VI-B was developed and first investigated

in [5] using their decision tree-based algorithm. Therefore,

some comparisons will be made.

A. Biological Network

Fig. 2. SBOL Visual representation [13] of a genetic transcriptional unit
capable of producing a protein in the presence of a protein complex formed
by the small molecule AHL and protein LasR. We consider this protein
complex to be the input for this genetic circuit and the produced protein,
which can be any gene, the output. In this case, we used mCherry, a gene
encoding for a red fluorescent protein, for the output. By varying the initial
concentrations of AHL and LasR, various output traces can be generated
for the expression of pLas. Experiments were conducted over several hours,
and cells were harvested for measuring at regular intervals. Traces were
generated by repeatedly sampling from the fluorescence measurements and
calculating their geometric mean. Initial conditions of the inputs were varied
to obtain a spectrum of potential expression levels.

In this case study, we wish to characterize the levels

of protein expression for a biological network, such as

the one seen in Fig. 2, over time using STL. However,

two-class classification cannot be performed in this context

because we do not have negative traces. This is largely

because there is no practical way to define what data

should be labeled as negative. Many biological networks

have similar, or overlapping, behaviors, so we cannot,

while characterizing one circuit, define the behavior of all

other circuits as negative. The utility of GridTLI comes

from its lack of reliance on negatively labeled data. We

perform GridTLI on these data using a variety of values

for the thresholds (xt, tt, ct). We restrict their values using

to the following intervals obtained from the data’s region:

xt ∈
(
0, xmax−xmin

2

]
, tt ∈

(
0, tmax−tmin

2

]
, ct ∈

[
0, xmax−xmin

2

]
.

For these data, xmax−xmin

2 = 1843.5 and tmax−tmin

2 = 3.45,

and we sample every 10% from these intervals for xt and

tt. The values for ct are chosen based on the given value for

xt, following from Remark 2. For convenience, we choose

the lower bound of each interval
[
(z − 1)xt, zxt

)
:

ct ∈
{
(z − 1)xt : z ∈ N and z ≤ xt + 1843.5

xt

}
.

In order to test the STL output from GridTLI, we employ

k-fold cross-validation (CV), with k = 10. Since traces in

this dataset were gathered from physically different ex-

periments, using different initial conditions, we perform a

stratified cross-validation by partitioning the data from each

experiment evenly among the folds. The complete dataset

contains 960 traces, so each training set has 894 traces, while

the corresponding testing sets contain the remaining 96.

After fitting the training data, each trace in the dataset

will either satisfy or not satisfy the STL formula. By design,

every trace in the training set of a given formula will satisfy

that formula. Since we only have positive traces, each trace

in the testing set will either be a true positive (TP) or a false
negative (FN), respective of whether it satisfies the formula

or not. We use the false negative rate (FNR) and robustness

5357

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

degree of testing traces to assess the quality of our STL

formulae. The FNR is defined as

FNR =
| FN |

| TP | + | FN | .

The FNR over all chosen thresholds is between 0 and 0.0115.

We compare the mean robustness values of the false

negative traces against the number of operators for each set of

thresholds with the aim of identifying ideal threshold values.

One of the primary challenges of fitting an STL formula to a

dataset with only positive traces is that it is hard to quantify

the quality of the fit. When very large thresholds are chosen,

the entire region might be marked covered. This leads to an

STL formula with fewer operators, higher robustness values,

and a lower FNR for the testing set. Yet the formula might

not specify any useful information about the characteristics

of the behavior of the system that can be captured from the

traces. In contrast, very conservative threshold values result

in a tight fit, which leads to a higher FNR, lower robustness

values, and a larger number of operators in the formula.

0 10 20 30 40 50
Mean No. of Temporal Operators

-100

-80

-60

-40

-20

0

M
ea

n
R

ob
us

tn
es

s
of

 F
N

 T
ra

ce
s

Fig. 3. Scatter plot of mean
robustness of false nega-
tive traces against average
number of operators in the
STL formula generated by
GridTLI for the biological
traces. The data circled in
red correspond to the cross-
validation sets showcased in
Fig. 4.

Fig. 3 shows a scatter plot of the mean robustness

values against the number of temporal operators of the

STL formula for the different threshold values used in

this case study. The left most point marked in red cor-

responds to the STL formula with the fewest number of

temporal operators (shortest formula) and highest mean

robustness value. The threshold values for this point were

(xt = 1843.5, tt = 3.45, ct = 1843.5), which are the high-

est threshold values used in this case study. Fig. 4a

shows an execution of GridTLI using these threshold val-

ues on a training set. The STL formula generated was:

G[0,6.9](x ≤ 3687) ∧G[0,6.9](x ≥ 0). The testing dataset

yielded 0 false negative rates (and the highest robustness)

as illustrated in Fig. 4c. This STL formula does not convey

any useful information about the system though. It merely

states the upper and lower bounds of the traces over time.

Similarly, for the rightmost point marked in red in Fig.3

which corresponds to the STL formula with the high-

est number of temporal operators (longest formula) and

lowest mean robustness value, the threshold values cor-

respond to the smallest values used in the case study:

(xt = 184.35, tt = 0.345, ct = 0). Fig. 4b shows an exe-

cution of GridTLI using these low threshold values. It is

evident that the covered cells in the region form a very

tight fit. However, this leads to a longer STL formula and

low robustness values for some signals in the testing set (as

shown by the red trace in Fig. 4d.

(a) Large Thresholds - Training (b) Small Thresholds - Training

(c) Large Thresholds - Testing (d) Small Thresholds - Testing

Fig. 4. 4a & 4b show covered cells for different thresholds using GridTLI
on the same training data of pLas Expression. 4c & 4d show cross-validation
for the testing data. The trace colored red in 4d violates the STL formula
learned from the training set in 4b.

B. Fuel Control System

This dataset (composed of 1200 traces, with 600 nor-

mal traces and 600 anomalous traces) was constructed by

modifying a built-in model from Simulink for the fuel

control system of a gasoline engine. Every trace contains

200 samples from two sensors, and examples of traces are

shown in Fig. 5.

0 10 20 30 40 50
Time

-2

0

2

4

E
G

O
 s

en
so

r

(a) Trajectories from EGO sensor

0 10 20 30 40 50
Time

-2

0

2

4

M
A

P
 s

en
so

r

(b) Trajectories from MAP sensor

Fig. 5. Example testing set for case study VI-B. Two core sensors provide
the feedback information necessary to control the system: the EGO sensor,
which reports the amount of residual oxygen present in the exhaust, and
the MAP sensor, which reports the (intake) manifold absolute pressure. The
normal traces were obtained while the system was operating properly, and
the anomalous traces were obtained when a fault was artificially injected
into one or both sensors. Every trace in the set consists of a trajectory in
(a) and a corresponding trajectory in (b). Trajectories colored green are
positively labeled traces, and all trajectories in red are labeled negative.

As in the first case study, we use 10-fold CV to evaluate

the output of GridTLI. We use stratified sampling to insure

each partition contains an equal number of positive and

negative traces. Although the training sets contain negatively

labeled traces, GridTLI uses only the positive traces. The

negative traces in the training sets will be used for training

in the comparison. Each training set has 1080 traces with

a corresponding testing set of 120 traces. Since these traces

5358

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

have two dimensions, GridTLI is run once for each. The

resulting STL formula has the form φ = φEGO ∧ φMAP.
Each subformula, φEGO and φMAP, is found us-

ing its own set of threshold values, (xEGO
t , tEGO

t , cEGO
t)

and (xMAP
t , tMAP

t , cMAP
t), respectively. We again restrict

the possible values for the thresholds using the data:

xEGO
t ∈ (0, 0.5512], tEGO

t ∈ (0, 29.85], cEGO
t ∈ [0, 0.5512],

xMAP
t ∈ (0, 0.3537], tMAP

t ∈ (0, 29.85], cMAP
t ∈ [0, 0.3537],

and sample uniformly from these intervals in the same

fashion as the first case study.

Traces in the testing set will now have four possible

characterizations: TP or FP (false positive), for positive or

negative traces, respectively, that satisfy the formula; or

FN or TN (true negative), for positive or negative traces,

respectively, that do not satisfy the formula. This also allows

us to use the misclassification rate (MCR) of testing traces

to evaluate our STL formulae. The MCR is defined as:

MCR =
| FP | + | FN |

| TP | + | FP | + | FN | + | TN | .

The MCR over all chosen thresholds is between 0.0183

and 0.0342. Fig. 6 shows all MCRs against the number of

temporal operators in the corresponding formula.

0 20 40 60

Mean No. of Temporal Operators

0.015

0.02

0.025

0.03

0.035

M
ea

n
M

is
cl

as
si

ca
tio

n
R

at
e

Fig. 6. Scatter plot of mean
MCR against mean number
of operators in the STL for-
mula generated by GridTLI
for the fuel control system
data.

In an attempt to find threshold values that can give

formulae with acceptable number of operators and effective

MCR values, we investigate the threshold values associated

with the lowest MCRs and smallest number of temporal

operators. In this case, we arbitrarily chose to limit the

number of operators to 15 and MCR to 0.05. There are 323

points from Fig. 6 within these limits. The average threshold

values for these points are (xEGO
t = 0.2211, xMAP

t = 0.1419,
tEGO
t = 18.22, tMAP

t = 18.22, cEGO
t = 0.2514, cMAP

t = 0.1613).
We use these threshold values and compare the results

of GridTLI with a previous approach. Decision Tree TLI

TABLE I

COMPARISON OF GRIDTLI AND DECISION TREE TLI [5]

Testing MCR Operators Runtime (seconds)
Grid-based 0.0242 (0.0186) 7.1 (0.32) 0.12 (0.015)
Decision tree 0.0217 (0.0131) 4.40 (0.70) 379.80 (33.17)

from [5] was used to learn STL formulae for the same

10-fold CV training/testing sets. Table I shows statistics–in

the form ‘mean (std)’–used for comparison. Training FPR
is the false positive rate over all training sets. These are

interesting numbers to consider since GridTLI is guaranteed

to have zero false negatives among the traces in the training

set but provides no guarantee or bound on false positives.

Testing MCR is the mean MCR over all testing sets, and

while the mean MCR for the testing sets of the STL

formulae from GridTLI is higher than that of Decision Tree

TLI, it is still reasonably low. Operators is the mean number

of temporal operators over all learned STL formulae, which

is significantly higher in GridTLI than in Decision Tree

TLI. Runtime is the mean algorithm runtime in seconds

over all training sets, where we see that GridTLI drastically

outperforms Decision Tree TLI.

VII. CONCLUSION

This paper presents two case studies, a biological network

(where only positive traces were available) and a fuel con-

trol system (where both positive and negative traces were

available). GridTLI generated efficient STL formulae with

acceptable misclassification rates for the testing data. We

showed that GridTLI is an effective algorithm that works

well, especially when only positive data is available, and

is fast (over 3000 times faster than a previous two-class

approach) with results comparable to an inference algorithm

that uses a decision-tree approach.

Future work includes optimizing, and automating, the

choice of threshold values by dividing available data into

two sets: one for optimization and another for testing.

REFERENCES

[1] C. Baier et al., Principles of Model Checking. MIT press, 2008.
[2] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-

uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[3] X. Jin et al., “Mining Requirements from Closed-Loop Control
Models,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. PP, no. 99, pp. 1–1, 2015.

[4] Z. Kong et al., “Temporal Logic Inference for Classification and
Prediction from Data,” in Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC
’14. New York, NY, USA: ACM, 2014, pp. 273–282.

[5] G. Bombara et al., “A Decision Tree Approach to Data Classification
Using Signal Temporal Logic,” in Proceedings of the 19th Interna-
tional Conference on Hybrid Systems: Computation and Control, ser.
HSCC ’16. New York, NY, USA: ACM, 2016, pp. 1–10.

[6] V. Chandola et al., “Anomaly detection: A survey,” ACM computing
surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[7] T. Knight, “Idempotent vector design for standard assembly of bio-
bricks,” DTIC Document, Tech. Rep., 2003.

[8] E. Weber et al., “A modular cloning system for standardized assembly
of multigene constructs,” PloS one, vol. 6, no. 2, p. e16765, 2011.

[9] B. Hoxha et al., “Mining parametric temporal logic properties in
model-based design for cyber-physical systems,” International Journal
on Software Tools for Technology Transfer, pp. 1–15, Feb. 2017.

[10] A. Jones et al., “Anomaly detection in cyber-physical systems: A
formal methods approach,” in Decision and Control (CDC), 2014
IEEE 53rd Annual Conference On. IEEE, 2014, pp. 848–853.

[11] E. Bartocci et al., “Data-driven statistical learning of temporal logic
properties,” in Formal Modeling and Analysis of Timed Systems.
Springer, 2014, pp. 23–37.

[12] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[13] J. Quinn et al., “Synthetic biology open language visual (SBOL
Visual), version 1.0. 0,” Tech. Rep., 2013.

5359

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 19:52:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

