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Abstract— We develop a hierarchical framework for planning
and control of arbitrarily large groups of fully actuated robots
with polyhedral velocity bounds (swarm) moving in polygonal
environments with polygonal obstacles. At the first level of
hierarchy, we aggregate the high dimensional control system of
the swarm into a small dimensional control system capturing
its essential features. These features describe the position of
the swarm in the world and its size. At the second level, we
reduce the problem of controlling the essential features of the
swarm to a model checking problem. In the obtained hierarchical
framework, high level specifications given in natural language
such as Linear Temporal Logic formulas over linear predicates
in the essential features are automatically mapped to provably
correct robot control laws.

I. INTRODUCTION

The starting point for this paper is the observation that

tasks for large groups of robots are ”qualitatively” specified.

This notion has a dual meaning. First, a swarm is naturally

described in terms of a small set of ”features”, such as shape,

size, and position of the region in plane or space occupied

by the robots, while the exact position or trajectory of each

robot is not of interest. Second, the accomplishment of a

swarming mission usually does not require exact values for

swarm features, but rather their inclusion in certain sets. For

example, in the planar case, if the robots are constrained to

stay inside an ellipse, there is a whole set of values for the pose

and semi-axes of the ellipse which guarantees that the swarm

will not collide with an obstacle of given geometry. Moreover,

specifications for mobile robots are usually temporal, even

though time is not necessarily captured explicitly. For example,

a swarm might be required to reach a certain position and

shape ”eventually”, or maintain a size smaller than a specified

value ”until” a final desired value is achieved. Collision

avoidance among robots, obstacle avoidance, and cohesion are

required ”always”. In a surveillance mission, a certain area

should be visited ”infinitely often”.

Motivated by the above ideas, in this paper we present

a computational method for planning and control of robotic

swarms based on abstractions. Our framework is hierarchical.

At the first level, we construct a continuous abstraction by

extracting a small set of features of interest of the swarm. Even

though the treatment in this paper is quite general, the focus

is on a three-dimensional abstraction consisting of the mean

and variance of the team, which lead to a description of the

swarm position and size. At the second level of hierarchy, we

map arbitrary LTL−X formulas over linear predicates in the

abstract variables to a control strategy in the abstract space,

which is eventually projected back to the individual robots.

We show that, for this particular abstraction, and under the

assumption that the environment and the obstacles are polyg-

onal, containment in the environment, swarm cohesion, and

inter-robot and obstacle collision avoidance translate naturally

to LTL−X formulas over linear predicates in the continuous

abstraction space. We also note that the semantics of LTL−X

over linear predicates in the abstract space is rich enough to

capture temporal specifications such as the examples at the end

of the previous paragraph. Our framework therefore allows for

a rich spectrum of swarm specifications.

The continuous abstraction defined in this paper is inspired

from [1], and inherits its invariance properties. One of the

contributions of the present work is defining and proving its

consistency. This paper also relates to results on reducing the

dimension of control systems, such as the ones reported in

[11], [15]. However, as opposed to [11], where the approach

is time-abstract, our notion of consistency is stronger, and

captures time explicitly. The problem of explicitly computing

a timed trajectory for a control system from a trajectory of a

lower dimensional (abstract) control system is considered in

[15]. While focusing on simpler control systems, we generate

trajectories for whole equivalence classes produced by the

abstraction map, rather than one particular trajectory. From

this point of view, our aggregation produces a bisimulation

quotient, and relates to using foliations for constructing quo-

tients as in [2]. The discrete abstraction of this paper is an

application of results from [8], and it also relates to [14].

Recent works advocating the use of temporal logic in mobile

robotics include [9], [12], [4]. One of the main contributions

of this work is to show that a large class of robotic swarm

specifications translate naturally to linear temporal logic, and

a fully automated framework for generation of robot control

laws can be constructed.

II. PRELIMINARIES

Let Π = {π1, π2, . . . , πK} be a finite set of atomic

propositions. A linear temporal logic LTL−X formula over

Π is recursively defined as follows ([3]): (1) every atomic

proposition πi, i = 1, . . . ,K is a formula, and (2) if φ1 and

φ2 are formulas, then φ1∨φ2, ¬φ1, φ1Uφ2 are also formulas.

The semantics of LTL−X formulas are given over ω -

words w = w(1)w(2)w(3) . . ., where w(i) ∈ 2Π, i ≥ 1.

Specifically, the satisfaction of formula φ at position i ∈ N
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of word w, denoted by w(i) � φ, is defined recursively as

follows: (1) w(i) � π if π ∈ w(i), (2) w(i) � ¬φ if w(i) � φ,

(3) w(i) � φ1 ∨ φ2 if w(i) � φ1 or w(i) � φ2, and (4)

w(i) � φ1Uφ2 if there exist a j ≥ i such that w(j) � φ2 and

for all i ≤ k < j we have w(k) � φ1. A word w satisfies an

LTL−X formula φ, written as w � φ, if w(1) � φ.

The symbols ¬ and ∨ stand for negation and disjunction.

The boolean constants � and ⊥ are defined as � = π ∨ ¬π
and ⊥ = ¬�. The other Boolean connectors ∧ (conjunction),

⇒ (implication), and ⇔ (equivalence) are defined from ¬
and ∨ in the usual way. The temporal operator U is called

the until operator. Formula φ1Uφ2 intuitively means that

(over a word) φ2 will eventually become true and φ1 is true

until this happens. Two useful additional temporal operators,

”eventually” and ”always” can be defined as ♦φ = �Uφ
and �φ = φU⊥, respectively. Formula ♦φ means that φ
becomes eventually true, whereas �φ indicates that φ is true

at all positions of w. More expressiveness can be achieved by

combining the temporal operators. Examples include �♦φ (φ
is true infinitely often) and ♦�φ (φ becomes eventually true

and stays true forever).

Let us now assume that the propositions πi in Π are strict

linear inequalities in R
n, n ≥ 2, i.e., Π is given by

Π = {πi |πi : cT
i x + di < 0, i = 1, . . . ,K}, (1)

where ci ∈ R
n and di ∈ R. Let a : R+ → R

n be a (possibly

non-smooth) continuous curve in R
n (a is allowed to have

self-intersections). We also assume that cT
i ā + di = 0 and

cT
i a(0)+di = 0 for all i = 1, . . . ,K, where ā = limt→∞ a(t)

(if it exists). The semantics of an LTL−X formula in Π
over a continuous curve a follows naturally from the above

definitions [8]. A word generated by a is a sequence wa =
w(1)w(2)w(3) . . ., w(i) ∈ 2Π, i ≥ 1 obeying the following

rules: (1) w(1) is the set of all atomic propositions satisfied

by a(0), (2) A symbol w(i) = w(i− 1), i ≥ 2 is added to wa

if there exist t1, t2, 0 ≤ t1 < t2 so that a(t1) satisfies all the

propositions in w(i− 1), a(t2) satisfies all the propositions in

w(i), and a(t) satisfies only propositions from w(i−1)∪w(i),
for all t1 ≤ t ≤ t2, (3) An infinite number of symbols w(i),
i ≥ 1 is added to wa if the region represented by w(i) is

a ”sink” for trajectory a, in the following sense: ∃τ > 0
such that all and only propositions in w(i) are satisfied by

a(t), ∀t ≥ τ . A trajectory a : R+ → R
n satisfies φ, written

as a � φ if and only if wa � φ (as defined above). Intuitively,

a word produced by trajectory a is an enumeration of the sets

of propositions from Π satisfied by a(t) while time evolves.

III. PROBLEM FORMULATION AND APPROACH

Consider a set of N identical planar fully-actuated point-like

robots described by

ṙi = ui, ri ∈ P, ui ∈ U, i = 1, . . . , N, (2)

where ri ∈ R
2 is the position vector of robot i in a world frame

{F} and ui is its velocity, which can be directly controlled.

U ⊆ R
2 is a polyhedral set capturing the control constraints

and P is a polygonal environment. Assume that P contains a

set of polygonal obstacles Oj , j = 1, . . . , o. When necessary,

and as it will become clear from the context, we also use P
and Oj to denote the propositional logic formulas describing

the polygonal environment and the obstacles, respectively

(they consist of conjunctions and disjunctions over linear

inequalities in R
2).

We collect all the robot states in r = [rT
1 , . . . , rT

N ]T ∈ R
2N

(referred to as the configuration of the ”swarm”) and the

robot controls in u = [uT
1 , . . . , uT

N ]T ∈ R
2N . To recover

the individual states and controls, we define the canonical

projection πi(r) = ri, πi(u) = ui, i = 1, . . . , N . Eqns. (2)

can therefore be written as:

ṙ = u, πi(r) ∈ P, πi(u) ∈ U, i = 1, . . . , N, (3)

Swarming tasks are specified in high level language in

terms of a small set of properties to be satisfied by the

swarm. Examples of such properties include containment of

motion inside the environment P , avoidance of obstacles Oj ,

j = 1, . . . , o, cohesion (i.e., all pairwise distances smaller

than a maximum predefined value), and inter-robot collision
avoidance (i.e., all pairwise distances larger than a minimum

predefined value). In addition to these, the motion tasks are

usually given in terms of temporal and logical specifications

over a small set a ∈ R
n, n << N of essential features, while

the exact values of r are not of interest. The essential features

usually include information about the position, orientation,

size, and shape of the region in plane spanned by the swarm.

For example, assume that a = (μ, s) ∈ R
3, where μ ∈ R

2

gives the centroid of a square swarm and s ∈ R is its

size (e.g., area). If it is desired that the swarm converges to

a configuration in which its centroid belongs to a polygon

P d ⊂ P and with a size smaller than sd, this can be written

more formally as ”eventually always (μ ∈ P d and s < sd)”. If

during the convergence to the final desired configuration it is

necessary that the swarm visits a position μ̄ with a size s̄, then

the specification becomes ”eventually ((μ = μ̄ and s = s̄) and

(eventually always (μ ∈ P d and s < sd)))”. If in addition it is

required that the size s is smaller than s̄ for all times before s̄
is reached, the specification changes to ”s < s̄ until ((μ = μ̄
and s = s̄) and (eventually always (μ ∈ P d and s < sd)))”.

The starting point for this work is the observation that

such specifications translate naturally to LTL−X formulas

over linear predicates interpreted over trajectories of essen-

tial features a (as defined in Section II). For example, the

last specification in the above paragraph corresponds to the

formula (s < s̄)U(μ = μ̄∧ s = s̄)∧ (♦�(μ ∈ P d ∧ s < sd)).
In this paper we consider the following problem:

Problem 1: Identify a set of features a describing the region

spanned by the swarm, and construct robot control strategies

ui ∈ U , i = 1, . . . , N so that:

(i) containment, obstacle avoidance, inter-robot collision

avoidance, and cohesion are achieved, and

(ii) arbitrary LTL−X formulas over arbitrary linear predi-

cates in a are satisfied by all produced trajectories a(t),
t ≥ 0.
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To provide a solution to Problem 1, we propose a hierar-
chical abstraction approach. In the first level of abstraction,

called continuous abstraction, we extract the essential features

of the swarm by building a smooth surjective map

h : R
2N → R

n, h(r) = a, (4)

where h is called the (continuous) abstraction, or aggregation,

or quotient map, and a is denoted as the abstract state of

the swarm. In addition to providing a description of the

swarm position, size, and shape, we will require h to perform

a correct aggregation of the large dimensional state space

R
2N of the swarm (see Section IV). If the state is correctly

aggregated, then any trajectory a(t) ∈ R
n can be produced by

the swarm. In the second level of abstraction, called discrete
abstraction, we employ the method from [8] to generate

control strategies in R
n so that arbitrary LTL−X formulas

over arbitrary linear predicates in R
n are satisfied by the

abstract trajectories a(t). A description of this method is given

in Section V.

IV. CONTINUOUS ABSTRACTION

Let u ∈ TR
2N and w ∈ TR

n be two vector fields giving

the full dynamics of the swarm

ṙ = u(r) (5)

and its abstracted dynamics

ȧ = w(a), (6)

respectively, where a = h(r). Let dh(r) : TrR
2N → Th(r)R

n

denote the differential (tangent) map of h at point r. If h =
(h1, . . . , hn), then dh(r) is a n× 2N real matrix whose rows

are dhi, i = 1, . . . , n.

Definition 1 (h-related vector fields [13]): The vector

fields u ∈ TR
2N and w ∈ TR

n are called h-related (h is the

smooth surjection from Eqn. (4)) if

w(h(r)) = dh(r)u(r), ∀r ∈ R
2N (7)

and the following matching condition is satisfied

dh(r)u(r) = dh(r′)u(r′), ∀r, r′ with h(r) = h(r′). (8)

In the above definition, dh(r) denotes the differential (tan-

gent) of the map h at point r. The h - relation is an extension

of the more used notion of push - forward, which is only

defined when h is a diffeomorphism [13].

Definition 2 (Correct aggregation): The map (4) and the

vector field (5) define a correct aggregation of the swarm if

the following three properties are satisfied:

(i) Consistency: h(r(t)) = h(r′(t)), ∀t ≥ 0, for all trajecto-

ries r(t) and r′(t) of (5) with h(r(0)) = h(r′(0));
(ii) Actuation: The linear map dh(r) : TrR

2N → Th(r)R
n is

surjective for all r ∈ R
2N ;

(iii) Detectability: u(r) = 0 if and only if w(h(r)) = 0, for

all r ∈ R
2N .

In other words, consistency means that swarm configu-

rations which are equivalent with respect to the quotient

produced by h remain equivalent for all times under the flow

(5). This condition is necessary and sufficient to reduce system

(5) to system (6), if the specifications for the trajectories of

(5) are given in terms of a = h(r), rather than explicitly in

terms of r. Actuation guarantees that any velocity w(a) (and

therefore any motion) in the abstract space R
n can be achieved

by the swarm. The detectability condition (iii) guarantees that

the swarm does not spend energy in ”uninteresting” motions.

Indeed, u(r) = 0 and w(h(r)) = 0 would correspond to a

motion of the swarm resulting in no change in the abstract

state a ∈ R
n, which captures the features of interest of the

swarm.

Proposition 1: Given a vector field (5) and a map (4), the

consistency condition (i) from Definition 2 is equivalent with

the matching condition (8).

The proof of the above proposition is omitted for brevity and

can be found in [7]. The actuation condition (ii) is equivalent

to requiring that h be a submersion. In other words, hi, i =
1, . . . , n are functionally independent, or equivalently, dhi are

linearly independent for all r, which again is equivalent to dh
is full row rank for all r. Indeed, it is well known that a linear

map is surjective if and only if it is full row rank.

The submersion h determines an orthogonal decomposition

of TrR
2N in N (dh(r)) (of dimension 2N−n) and R(dhT (r))

(of dimension n), where N and R denote the null space

and range of a matrix, respectively. With this observation,

the detectability condition (iii) is equivalent to restricting

u(r) ∈ R(dhT (r)) 1. We can now collect all these results

in the following Theorem:

Theorem 1: [Correct aggregation] The smooth surjection

(4) and the vector field (5) define a correct aggregation of

the swarm if and only if

(i) The matching condition (8) is satisfied,

(ii) h is a submersion, and

(iii) u(r) ∈ R(dhT (r)).
If the conditions of Theorem 1 are satisfied, then arbitrary

”abstract” vector fields w(a) (a = h(r)) in R
n can be

produced by ”swarm” vector fields u(r) using Eqn. (7), which

is well defined since the aggregation is consistent. A particular

solution of this equation is the minimum (Euclidean) norm

solution

u(r) = dhT (r)(dh(r)dhT (r))−1w(a), ∀r ∈ h−1(a), (9)

where h−1(a) is the equivalence class of a, or explicitly

h−1(a) = {r ∈ R
2N |h(r) = a}. Note that dh(r)dhT (r)−1

is invertible for all r since h is a submersion. It is obvious

that u(r) given by (9) satisfies condition (iii) of Theorem 1.

It also satisfies condition (i) since dh(r)u(r) = w(a), for

all r ∈ h−1(a). This result is summarized in the following

Corollary of Theorem 1:

Corollary 1: If w(a) is an arbitrary vector field in R
n and

h is a submersion, then u(r) from (9) and h define a correct

aggregation of the swarm.

1There is a slight abuse of notation in this equation. dhi are differential
forms and their span is a co-distribution. However, when written in coordi-
nates, they can be treated as vector fields, when their span is a distribution.
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Remark 1: There is an interesting connection between con-

sistency (Definition 2 (i)) and bisimilar quotients of continuous

systems: the quotient system produced by the equivalence

classes determined by h in R
2N is a bisimilarity quotient if and

only if the aggregation is consistent. The interested reader is

referred to [10] for general definitions of bisimilarity relations.
Finally, note that, if in addition to being linearly indepen-

dent, dhi, i = 1, . . . , n are orthogonal (in Euclidean metric),

then Eqn. (9) assumes a particularly simple form

u(r) =

n∑
i=1

wi(a)

dhi(r)dhT
i (r)

dhT
i (r) (10)

V. DISCRETE ABSTRACTION

Once the large dimensional state of the swarm is correctly

aggregated by properly choosing the aggregation map and the

robot control laws, we have the freedom to assign arbitrary

vector fields (6) in the abstract space R
n. To provide a solution

to Problem 1, the produced trajectories should satisfy arbitrary

LTL−X formulas over linear predicates in R
n. To this goal,

we use the computational framework for control of linear

systems from LTL−X specifications over linear predicates

from [8]. In this section, we very briefly outline this procedure.
Let φ denote an arbitrary LTL−X formula over linear

predicates in R
n and let Π (Eqn. 1) be the set of all linear

predicates appearing in φ. The framework described in [8]

consists of two main steps. In the first, a finite state transition

system is constructed. This construction starts with a proposi-

tion preserving partition of R
n into polytopes determined by

feasible combinations of linear predicates from Π. The states

of the transition system are the equivalence classes produced

by the partition. Its transitions are determined by adjacency of

polytopes and existence of affine feedback controllers making

such polytopes invariant or driving all states in a polytope to

an adjacent polytope through a common facet. The second step

consists of producing runs of the transition system that satisfy

formula φ. This is in essence a model checking problem. The

algorithms in [8] return a set of initial states in the form of

a union of polytopes in R
n and a feedback control strategy

for (6) induced by the runs found using model checking.

All trajectories a(t) of the closed loop system satisfy φ as

defined in Section II. The feedback controllers w can have

different values at different times at the same state a. The

produced trajectories are in general non-smooth, can have self-

intersections, and are continuous in time. Arbitrary polyhedral

control constraints W ⊂ R
n can be accommodated.

VI. HIERARCHICAL ABSTRACTION BASED ON MEAN AND

VARIANCE

In this section, we focus on a particular abstraction map

h : R
2N → R

3 (n = 3 in Eqn. (4)) given by

h(r) = a, a = (μ, σ), μ =
1

N

N∑
i=1

ri,

σ =

√√√√ 1

N

N∑
i=1

(ri − μ)T (ri − μ). (11)

It is easy to see that h is smooth everywhere in R
2N except

for the set r1 = r2 = . . . = rN , which corresponds to

σ = 0 (all the robots coincide). In what follows, we exclude

this degenerate case.We will show that this choice of an

abstraction provides a useful and fully automatic solution to

Problem 1. We first need to design robot control laws to

make sure that the state of the swarm is correctly aggregated

as described in Definition 2. By calculating the differential

dh(r) of h, it can be seen that h is a submersion (under the

initial assumption that σ = 0). Moreover, dhi, i = 1, 2, 3 are

mutually orthogonal and dhdhT = 1
N

I3. Using Eqn. (9) and

by canonical projection, we obtain the control laws for each

robot in the form:

ui(ri, a) =
[

I2
ri−μ

σ

]
w(a), i = 1, . . . , N, (12)

where w(a) is an arbitrary vector field in the abstract space

R
3. According to Corollary 1, the control laws (12) and the

abstraction map (11) define a correct aggregation of the swarm.

Note that the control ui of robot i depends on its own

state ri and on the abstract state a. A careful examination of

(12) shows that all position vectors ri, i = 1, . . . , N undergo

the same affine transformation parameterized by the abstract

variables μ and σ. By integration, Eqn. (12) leads to

ui(ri(0), a(0), a) =
[

I2
ri(0)−μ(0)

σ(0)

]
w(a), (13)

i = 1, . . . , N , where we emphasize that the control law ui

depends on the initial state of the robot, the initial value of

the abstract state, and the current value of the abstract state

(as opposed to the equivalent form in Eqn. (12) where the

dependence was on the current state of the robot and of the

abstract state).

A. Description of the region spanned by the swarm

Let V ⊆ {1, . . . , N} denote the set of indices of robots

which are at the vertices of the convex hull of the swarm.

Since the controls (12) determine an affine transformation,

then V does not change in time. At time 0, we convert from

the vertex to the hyperplane representation of the convex hull

of the swarm:

P0 = conv{ri(0), i ∈ V } =

{x ∈ R
2 | aT

i (x − μ(0)) + bi ≤ 0, i ∈ V },

where ai ∈ R
2 are the unit outer normals to the facets of the

polytope and −bi are the distances from μ(0) to the facets,

i ∈ V (note that bi ≤ 0). Since (12) correspond to a particular

affine transformation consisting of translating and scaling by

the same factor, the convex hull of the swarm at time t will

be described by

P = {x ∈ R
2 | aT

i (x − μ(t)) +
σ(t)

σ(0)
bi ≤ 0, i ∈ V }. (14)

It is important to note that description (14) of the region

spanned by the swarm at time t is a conjunction of linear

inequalities in the abstract variables a(t) = (μ(t), σ(t)). The

coefficients ai, bi, and σ(0) are all determined at time 0 and

constant during the motion.
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B. Containment and obstacle avoidance

Recall from Section III that the polygonal environment and

the obstacles are described by propositional logic formulas P
and Oj , j = 1, . . . , o over linear predicates in the plane. Using

description (14) of the area spanned by the swarm, contain-

ment and obstacle avoidance is guaranteed if the following

first order formula is true:

∀x : P ⇒ (P

o∧
j=1

¬Oj) (15)

Since P is linear in x and a, and P , Oj are linear in x, (15)

is a formula in the logic of the reals with addition and compar-

ison. Informally, the formulas of this first-order logic consist

of linear inequalities with rational coefficients connected by

logical and quantification operators. A basic computational

feature of this logic is that any formula is equivalent to a

quantifier-free formula, which can be effectively computed

[16]. Let Pco denote a quantifier-free formula equivalent to

(15), which is of course linear in the free variables μ and σ.

Since containment in the environment and obstacle avoidance

is desired for all times during a task, this leads to the following

LTL−X formula over linear predicates in μ and σ:

containment and obstacle avoidance : �Pco (16)

C. Cohesion and inter-robot collision avoidance

Since all pairwise distances scale by the same factor

σ(t)/σ(0) under the affine transformation (12), the initial

maximum and minimum pairwise distances remain maximum

and minimum at any time. This leads to simple conditions

for guaranteeing maximum and minimum distances between

robots for all times, which we call cohesion and inter-robot

collision avoidance, respectively. Let dmin and dmax denote

specified minimum and maximum pairwise distances. Let

d0
min ≥ dmin and d0

max ≤ dmax denote the minimum and

maximum pairwise distances at the initial time t = 0. Then

the predicate

Pd :
dminσ(0)

d0
min

≤ σ(t) ≤
dmaxσ(0)

d0
max

(17)

guarantees that at time t all pairwise distances are between

dmin and dmax. The specification that cohesion and inter-

robot collision avoidance are required for all times becomes

an LTL−X formula over two linear predicates in the abstract

variable σ:

cohesion and inter − robot collision avoidance : �Pd

(18)
Remark 2: Due to technical reasons that go beyond the

scope of this paper, the LTL−X control algorithm from [8]

is restricted to formulas over strict inequalities as in Eqn. 1.

Therefore, with the price of adding a bit of conservatism, we

assume that the inequalities from Pco and Pd are strict. We also

restrict the additional specifications (Problem 1 (ii)) to be given

in terms of LTL−X formulas over strict linear inequalities in

μ and σ. From an application point of view, this assumption

makes sense, since it is unreasonable to assume that a sensor

could detect equality constraints.

Fig. 1. Initial deployment of a swarm consisting of 30 robots in a rectangular
environment P with two obstacles O1 and O2.

D. Robot control bounds

We now map the robot control constraints to constraints

for the control of the abstract state. In other words, for an

arbitrary polyhedral set U ⊂ R
2, we construct a polyhedral set

W ⊂ R
3 with the property that w ∈ W guarantees ui ∈ U ,

i = 1, . . . , N , where w is the velocity in the abstract space

and ui is the control of robot i, which are related by the linear

map (13). Assume U is given in the hyperplane representation:

U = {u ∈ R
2 | fT

k u + gk < 0, k ∈ C}, (19)

where fk ∈ R
2, gk ∈ R, and C is some index set. Let us also

denote by Ai ∈ R
2×3, i = 1, . . . , N the matrix from Eqn.

(13). Then it is easy to see that ui ∈ U if and only if w ∈ Wi,

where

Wi = {w ∈ R
3 | fT

k Aiw + gk < 0, k ∈ C} + N (Ai), (20)

and N denotes the null space of a matrix. Since the swarm

undergoes an affine transformation, it can be proved that

ui ∈ U, ∀i = 1, . . . , N ⇔ w ∈ W =
⋂
j∈V

Wj . (21)

E. Case study

Consider a swarm consisting of N = 30 robots moving in

a rectangular environment P with two obstacles O1 and O2

as shown in Fig. 1. The initial configuration of the swarm

is described by mean μ(0) = [−3.5, 4.5]T and variance

σ(0) = 0.903. The convex hull of the swarm is initially the

square of center μ(0) and side 2 shown in the top left corner

of Fig. 1. The cohesion requirement is given in terms of a

maximum pairwise distance dmax = 3.5, while the inter-robot

collision avoidance imposes dmin = 0.01. The control bounds

for robots are captured by the set U = [−2, 2] × [−2, 2].
The corresponding constraint set W as in Eqn. (21) is an

octahedron in R
3 with vertices (0,0,-2), (-2,-2,0), (-2,2,0),

(2,2,0), (2,-2,0), (0,0,2). Let R1 and R2 be two square regions

as shown in Fig. 1.

Consider the following swarming task given in natural

language: Always respect containment, obstacle avoidance,
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Fig. 2. Trace of the spanning polytope P (yellow) and trajectory of centroid
μ (blue).

cohesion and inter-robot collision avoidance. In addition, the
centroid μ must eventually visit region R1. Until then, the
minimum pairwise distance must be greater than 0.03. After
R1 is visited, the swarm must reach such a configuration that
its centroid is in region R2 and the spanned area is greater
than the initial one, and remain in this configuration forever.

This task translates to the following LTL−X formula over

linear predicates in μ and σ:

φ = �(Pco ∧ Pd) ∧ {(σ > 0.54)U [(μ ∈ R1)

∧ � �((μ ∈ R2) ∧ (σ > σ(0)))]}, (22)

where Pco and Pd were defined in Sections VI-B and VI-C,

respectively, and σ > 0.54 corresponds to pairwise distance

greater than 0.03. After eliminating the quantifier from formula

(15), Pco consists of 27 occurences of 19 different linear

predicates in μ and σ. By running the algorithms from [8],

we conclude that there exists a trajectory in the abstract space

R
3 satisfying the formula from the initial values of μ and σ.

i.e., the task can be accomplished by the swarm. The trace of

the spanning polytope P is given in Fig. 2, from which it can

be seen that the specified task was accomplished.

F. Implementation

We developed a program for planning and control of robotic

swarms in Matlab. Through a graphical interface, the package

takes as input the polygonal environment P , the obstacles Oj ,

j = 1, . . . , o, the control constraint set U , the initial positions

of the robots, and an LTL−X formula φ over linear predicates

in the mean and variance of the swarm. The program tests the

feasibility of the task, computes a control strategy, and displays

the produced motion. From a computational point of view,

four main steps are involved: (a) Quantifier elimination for

calculation of formula Pco from Section VI-B. (b) Generation

of the transition system from Section V. (c) Model checking

of the transition system against the LTL−X formula, and (d)

Calculation of abstract controllers and generation of individual

robot controllers. For (a), we used Redlog [16]. Steps (b) and

(d) involve polyhedral set operations and triangulations for

which we used CDD [5]. For (c) we used LTL2BA [6] and

the well known Dijkstra’s algorithm. However, the use of all

these is transparent to the user, who interacts with the Matlab

interface only. Due to space constraints, we omit a discussion

on complexity issues, and refer the reader to [7].

VII. CONCLUSION

We proposed a fully automated framework for deployment

of arbitrarily large swarms of fully actuated robots. Our

approach is hierarchical. In the first level of the hierarchy,

we aggregate the large dimensional state space of the swarm

into a small dimensional continuous abstract space which

captures essential features of the swarm. In the second level,

we control the continuous abstraction so that specifications

given in Linear Temporal Logic over linear predicates in the

essential features are satisfied. Individual robot control laws

are generated by projection. For planar robots with polyhedral

control constraints moving in polygonal environments with

polygonal obstacles, and a 3D continuous abstraction con-

sisting of mean and variance, we show that a large class of

specifications is captured.
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H. Comon G. Berry and A. Finkel, editors, Proceedings of the 13th
Conference on Computer Aided Verification (CAV’01), number 2102,
pages 53–65, 2001.

[7] M. Kloetzer and C. Belta. Linear temporal logic planning and control of
robotic swarms. Technical Report CISE 2005-IR-0080, Boston Univer-
sity, 2005. http://www.bu.edu/systems/research/publications/2005/2005-
IR-0080.pdf.

[8] M. Kloetzer and C. Belta. A fully automated framework for control
of linear systems from LTL specifications. In The 9th International
Workshop on Hybrid Systems: Computation and Control, Santa Barbara,
CA, 2006. to appear.

[9] S. G. Loizou and K. J. Kyriakopoulos. Automatic synthesis of multiagent
motion tasks based on LTL specifications. In 43rd IEEE Conference on
Decision and Control, December 2004.

[10] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[11] G. J. Pappas and S. Simic. Consistent abstractions of affine control

systems. IEEE Trans. on Automatic Control, 47(5):745–756, 2002.
[12] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi. Multi-robot motion

planning: A timed automata approach. In Proceedings of the 2004 IEEE
Int. Conf. on Rob. and Aut., page 44174422, New Orleans, LA, 2004.

[13] M. Spivak. A Comprehensive Introduction to Differential Geometry.
Publish or Perish, 1979.

[14] P. Tabuada and G. Pappas. Model checking LTL over controllable
linear systems is decidable. volume 2623 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[15] P. Tabuada and G. J. Pappas. Hierarchical trajectory generation for a
class of nonlinear systems. Automatica, 41(4):701–708, 2005.

[16] V. Weispfenning. A new approach to quantifier elimination for real
algebra. Technical Report MIP-9305, Universität Passau, Germany,
1993.

957Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 28,2023 at 12:34:38 UTC from IEEE Xplore.  Restrictions apply. 




