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Abstract—We approach the problem of stabilizing a dynamical
system while optimizing a cost and satisfying safety constraints
and control limitations. For (nonlinear) affine control systems and
quadratic costs, it has been shown that control barrier functions
(CBFs) guaranteeing safety and control Lyapunov functions (CLFs)
enforcing convergence can be used to (conservatively) reduce
the optimal control problem to a sequence of quadratic programs
(QPs). Existing works in this category have two main limitations.
First, with one exception, they are based on the assumption that
the relative degree of the system with respect to a function en-
forcing a safety constraint is one. Second, the QPs can easily
become infeasible, in particular for problems with many safety
constraints and tight control limitations. We propose high-order
CBFs (HOCBFs), which can accommodate systems of arbitrary
relative degrees. For each safety constraint, by using Lyapunov-
like conditions, we construct a set of controls that renders the
intersection of a set of sets forward invariant, which implies the
satisfaction of the original constraint. We formulate optimal control
problems with constraints given by HOCBF and CLF, and pro-
pose two methods—the penalty method and the parameterization
method—to address the feasibility problem. Finally, we show how
our methodology can be extended for safe navigation in unknown
environments with long-term feasibility. We illustrate the proposed
framework on adaptive cruise control and robot control problems.

Index Terms—Lyapunov methods, safety-critical control.

I. INTRODUCTION

The problem of driving a dynamical system to a desired configuration
while minimizing its control effort and satisfying safety constraints and
control limitations received a lot of attention in recent years [2]–[5].
Recent works propose the use of control barrier functions (CBFs) [2] to
enforce safety and control Lyapunov functions (CLFs) [6]–[8] to ensure
convergence to desired states.

Barrier functions (BFs) are Lyapunov-like functions [9], whose use
can be traced back to optimization problems [10]. More recently, they
have been employed in verification and control, e.g., to prove set
invariance [11]–[14] and for multiobjective control [15]. CBFs are
extensions of BFs for control systems. There are many versions of
CBF in the literature. The CBF defined in [2] is allowed to decrease
when far away from the boundary of the set. Simpler versions of CBFs,
which can approach zero inside the corresponding sets, were proposed
in [4] and [5]. Time-varying CBFs were defined and used to enforce
the satisfaction of signal temporal logic (STL) formulas in [5].

Most of the works using the CBF-CLF approach are based on the
assumption that the (nonlinear) control system is affine in controls and
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the cost is quadratic in controls. The time domain is discretized, and the
state is assumed to be constant in each time interval (at its value at the
beginning of the interval). The original optimal control problem (OCP)
is reduced to a (possibly large) number of quadratic programs (QPs)—
one for each interval [16]. This approach is related to and arguably
computationally more efficient than traditional model predictive control
(MPC) [17].

While this approach provides a good compromise between the com-
putational effort necessary to compute a solution and its optimality [2],
it has two main limitations. First, it is based on the assumption that
the relative degree of the system with respect to the function enforcing
the safety constraints is one. A backstepping approach was introduced
in [18], and it was shown to work for relative degree two. A CBF
method for position-based constraints with relative degree two was also
proposed in [19]. A more general form, which works for arbitrarily high
relative degree constraints, was proposed in [3] and [20]. The method
in [3] employs input–output linearization and finds a pole placement
controller with negative poles to stabilize the BF to zero. The resulting
BF is exponential. The authors in [21] proposed an approach to define
another function that is with relative degree one from the original high
relative degree constraint. This approach does not include all the states
in the definition of a CBF, which may decrease the problem feasibility.

Second, the QPs mentioned earlier could be infeasible, i.e., it is
hard to find valid CBFs that do not conflict with the control bounds,
in particular for problems with many safety constraints. For the ACC
problem defined in [2], the minimum braking distance is used to
simplify the process of finding a valid CBF, and these results in an
additional complex constraint. However, this conflict is hard to address
for high-dimensional systems. The approach in [20] tried to address
conflict between CBF constraints using control-sharing BFs, without
considering the control bounds.

In this article, we define a novel notion of high-order CBF (HOCBF),
which is simpler and more general than the one from Nguyen and
Sreenath [3]. Our HOCBFs are not restricted to exponential functions,
and are determined by a set of class K functions for high relative degree
constraints. As a generalization of the main result from Ames et al. [2], a
safety set is guaranteed to be forward invariant if the HOCBF constraint
is satisfied. In order to find a valid HOCBF, we exploit the definitions
of the class K functions, and develop a methodology, called the penalty
method, to guarantee the feasibility of the QPs. We also propose a
parameterization method to deal with the feasibility problem when the
penalty method fails. We provide a framework to control a system to
safely navigate in an unknown environment while ensuring long-term
feasibility.

We illustrate the proposed method on adaptive cruise control (ACC)
and robot control problems. The simulations show the effectiveness of
the proposed HOCBF method with feasibility guarantee. For the robot
problem, we illustrate the feasibility of the solution for unknown envi-
ronments cluttered with obstacles of similar shape but different sizes.

This article is a significant extension of our recent conference
paper [1]. Specifically, in addition to including the technical details
related to the general definition of an HOCBF, here we introduce the
penalty and the parameterization methods. The penalty method simply
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adds weights (penalties) for the class K functions in the definition of
the HOCBF from [1]. We provide conditions that guarantee problem
feasibility for this method. When these conditions are not satisfied, we
apply the alternative parameterization method, in which the class K
functions are power functions multiplied by penalties. We determine
penalties and powers in the HOCBF such that the QPs are always fea-
sible and that minimize the HOCBF value for which the corresponding
constraint becomes active. This can improve the problem feasibility in
an unknown environment, and we illustrate it in robot navigation.

II. PRELIMINARIES

Definition 1 (Class K function [22]): A Lipschitz continuous func-
tionα : [0, a) → [0,∞), a > 0 is said to belong to classK if it is strictly
increasing and α(0) = 0.

Lemma 1 (Lemma 4.4 in [22] and Lemma 2 in [4]): Let b : [t0, tf ] →
R be a continuously differentiable function. If ḃ(t) ≥ −α(b(t)) ∀t ∈
[t0, tf ], where α is a class K function of its argument, and b(t0) ≥ 0,
then b(t) ≥ 0 ∀t ∈ [t0, tf ].

Consider a system of the form

ẋ = f(x) (1)

with x ∈ X ∈ Rn (X denotes a closed-state constraint set) and f :
Rn → Rn globally Lipschitz. Solutions x(t) of (1), starting at x(t0),
t ≥ t0, are forward complete.

We also consider affine control systems in the form

ẋ = f(x) + g(x)u (2)

where g : Rn → Rn×q is globally Lipschitz, and u ∈ U ⊂ Rq (U
denotes a closed-control constraint set). Solutions x(t) of (2), starting
at x(t0), t ≥ t0, are forward complete.

Definition 2 (Forward invariant set): A set C ⊂ Rn is forward
invariant for system (1) [or (2)] if its solutions starting at anyx(t0) ∈ C
satisfy x(t) ∈ C for ∀t ≥ t0.

For a continuously differentiable function b : Rn → R, let

C := {x ∈ Rn : b(x) ≥ 0}. (3)

Definition 3 (BF [2], [4], [5]): The function b : Rn → R is a
candidate BF for system (1) if there exists a class K function α such
that

ḃ(x) + α(b(x)) ≥ 0 ∀x ∈ C. (4)

Theorem 1: (see[4] and [5]) Given a set C as in (3), if there exist a
BF b : C → R, then C is forward invariant for system (1).

Definition 4 (CBF [2], [4], [5]): Given a set C as in (3), b(x) is a
candidate CBF for system (2) if there exists a class K function α s.t.

sup
u∈U

[Lf b(x) + Lgb(x)u+ α(b(x))] ≥ 0 ∀x ∈ C (5)

whereLf andLg denote the Lie derivatives1 alongf andg, respectively.
We call the CBF in Definition 4 a candidate becauseα(·) is not fixed.

In this article, we show how to define a class K function α(·) such that
there exists a control u ∈ U that satisfies (5). A CBF is completely
defined when α(·) is specified. This applies to Definition 3 as well.

Theorem 2 (see[4] and [5]): Given a CBF b with the associated
set C from (3), any Lipschitz continuous controller u(t) ∀t ≥ t0 that
satisfies (5) renders the set C forward invariant for (2).

Definition 5 (CLF [8]): A continuously differentiable function V :
Rn → R is a globally and exponentially stabilizing CLF for system (2)

1The Lie derivative of a function along a vector field captures the change in
the value of the function along the vector field (see, e.g., [22]).

if there exist constants c1 > 0, c2 > 0, c3 > 0, and c1||x||2 ≤ V (x) ≤
c2||x||2 such that, for ∀x ∈ Rn

inf
u∈U

[LfV (x) + LgV (x)u+ c3V (x)] ≤ 0. (6)

Definition 6 (Relative degree [22]): The relative degree of a (suffi-
ciently) differentiable function b : Rn → R with respect to system (2)
is the number of times we need to differentiate it along the dynamics
of (2) until the control u explicitly shows.

In this article, since function b is used to define a constraint b(x) ≥ 0,
we will also refer to the relative degree of b as the relative degree of the
constraint.

Many existing works [2], [3], [5] combine CBF and CLF with
quadratic costs to form optimization problems. The CLF constraint
is always slacked (i.e., a slack variable is added to relax the constraint,
and minimized by adding it to the cost) when combined with CBF
to make the problem feasible; however, state convergence may not
be guaranteed. Time is discretized, and an optimization problem with
constraints given by CBF and CLF is solved at each time step. The
resulting problem is a sequence of QPs. The control from solving the
QP is held constant and is applied at the current time step. The dynamics
(2) is updated, and the procedure is repeated. It is important to note that
this method works conditioned upon the fact that the control input shows
up in (5), i.e., Lgb(x) 	= 0, ∃x ∈ X and the QPs are all feasible.

III. HIGH-ORDER CBFS

In this section, we define high-order BFs (HOBFs) and HOCBFs.
Example: ACC: Consider the ACC problem [2] with vehicle dynam-

ics

v̇(t) = u(t), ż(t) = v0 − v(t) (7)

where v(t) denotes the velocity of the ego vehicle along its lane, z(t)
denotes the distance between the ego and the preceding vehicles, v0 > 0
denotes the speed of the preceding vehicle, and u(t) is the control input
of the ego vehicle.

We require that the distance z(t) between the ego vehicle and its
immediately preceding vehicle be greater than a constant δ > 0 for all
the times, i.e.,

z(t) ≥ δ ∀t ≥ t0. (8)

Let x(t) := (v(t), z(t)) and b(x(t)) = z(t)− δ. With α(·) in Def-
inition 4 chosen as the identity function, according to (5), in order to
ensure safety, we need to have

v0 − v(t)︸ ︷︷ ︸
Lf b(x(t))

+ 0︸︷︷︸
Lgb(x(t))

×u(t) + z(t)− δ︸ ︷︷ ︸
b(x(t))

≥ 0. (9)

Note that Lgb(x(t)) = 0 in (9), i.e., u(t) does not show up. There-
fore, we cannot use this CBF to formulate an optimization problem, as
described at the end of Section II.

A. High-Order BF

As in [5], we consider a time-varying function to define an invariant
set for system (1). For a mth-order differentiable function b : Rn ×
[t0,∞) → R, we define a sequence of functions ψi : Rn × [t0,∞) →
R, i ∈ {1, . . . ,m} in the form

ψi(x, t) = ψ̇i−1(x, t)+αi(ψi−1(x, t)), i ∈ {1, . . . ,m} (10)

whereαi(·), i ∈ {1, . . . ,m} denote classK functions of their argument
and ψ0(x, t) = b(x, t).
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We further define a sequence of sets Ci(t), i ∈ {1, . . . ,m} associ-
ated with (10) in the form

Ci(t) = {x ∈ Rn : ψi−1(x, t) ≥ 0}, i ∈ {1, . . . ,m}. (11)

Definition 7: Let Ci(t), i ∈ {1, . . . ,m} be defined by (11) and
ψi(x, t), i ∈ {1, . . . ,m} be defined by (10). A function b : Rn ×
[t0,∞) → R is a candidate HOBF for (1) if it is mth-order differen-
tiable and there exist differentiable class K functions αi, i∈{1,. . .m}
s.t.

ψm(x, t) ≥ 0 (12)

for all (x, t) ∈ C1(t)∩, . . . ,∩Cm(t)× [t0,∞).
Similar to Definition 4, an HOBF is defined when αi(·), i ∈

{1, . . . ,m} are found.
Theorem 3: The set C1(t)∩, . . . ,∩Cm(t) is forward invariant for

system (1) if b(x, t) is an HOBF.
Proof: If b(x(t), t) is an HOBF, then ψm(x(t), t) ≥ 0 for

∀t ∈ [t0,∞), i.e., ψ̇m−1(x(t), t) + αm(ψm−1(x(t), t)) ≥ 0. By
Lemma 1, since x(t0) ∈ Cm(t0) (i.e., ψm−1(x(t0), t0)) ≥ 0, and
ψm−1(x(t), t) is an explicit form ofψm−1(t)), then ψm−1(x(t), t)) ≥
0 ∀t ∈ [t0,∞), i.e., ψ̇m−2(x(t), t) + αm−1(ψm−2(x(t), t)) ≥ 0.
Again, by Lemma 1, since x(t0) ∈ Cm−1(t0), we also have
ψm−2(x(t), t)) ≥ 0 ∀t ∈ [t0,∞). Iteratively, we can get
x(t) ∈ Ci(t) ∀i ∈ {1, . . . ,m} ∀t ∈ [t0,∞). Therefore, the set
C1(t)∩, . . . ,∩Cm(t) is forward invariant. �

Remark 1: The setsCi(t), i ∈ {1, . . . ,m} should have a nonempty
intersection at t0 in order to satisfy the forward invariance con-
dition starting from t0 in Theorem 3. If b(x(t0), t0) ≥ 0, we
can always choose proper class K functions αi(·), i ∈ {1, . . . ,m}
to make ψi(x(t0), t0) ≥ 0 ∀i ∈ {1, . . . ,m− 1}. There are some
extreme cases, however, when this is not possible. For exam-
ple, if ψ0(x(t0), t0) = 0 and ψ̇0(x(t0), t0) < 0, then ψ1(x(t0), t0)
is always negative no matter how we choose α1(·). Similarly,
if ψ0(x(t0), t0) = 0, ψ̇0(x(t0), t0) = 0, and ψ̇1(x(t0), t0) < 0,
ψ2(x(t0), t0) is also always negative, etc. To deal with such extreme
cases (as with the case when b(x(t0), t0) < 0), we would need a
feasibility enforcement method, which is beyond the scope of this
article.

B. High-Order CBF

Definition 8: Let Ci(t), i ∈ {1, . . . ,m} be defined by (11) and
ψi(x, t), i ∈ {1, . . . ,m} be defined by (10). A function b : Rn ×
[t0,∞) → R is a candidate HOCBF of relative degree m for system
(2) if there exist differentiable classK functionsαi, i ∈ {1, . . . ,m} s.t.

sup
u∈U

[Lmf b(x, t) + LgLm−1
f b(x, t)u+

∂mb(x, t)

∂tm

+O(b(x, t)) + αm(ψm−1(x, t))] ≥ 0 (13)

for all (x, t) ∈ C1(t)∩, . . . ,∩Cm(t)× [t0,∞). Lf and Lg denote the
partial Lie derivatives w.r.t. x along f and g, respectively.

Similar to Definition 4, an HOCBF is defined when αi(·), i ∈
{1, . . . ,m} are specified. In this article, we show how to find such
functions. In the aforementioned equation, O(·) is given by

O(b(x, t)) =

m−1∑
i=1

Lif (αm−i ◦ ψm−i−1)(x, t)

+
∂i(αm−i ◦ ψm−i−1)(x, t)

∂ti
.

Given an HOCBF b, we define the set of control that satisfies

Khocbf(x, t) = {u ∈ U : Lmf b(x, t)+LgLm−1
f b(x, t)u

+
∂mb(x, t)

∂tm
+O(b(x, t)) + αm(ψm−1(x, t)) ≥ 0}.

(14)

Theorem 4: Given an HOCBF b(x, t) from Definition 8 with the
associated sets Ci(t), i ∈ {1, . . . ,m} defined by (11), if x(t0) ∈
C1(t0)∩, . . . ,∩Cm(t0), then any Lipschitz continuous controller
u(t) ∈ Khocbf(x(t), t) ∀t ≥ t0 renders the set C1(t)∩, . . . ,∩Cm(t)
forward invariant for system (2).

Proof: Since u(t) is Lipschitz continuous and u(t) only shows up
in the last equation of (10) when we take Lie derivative on (10), we
have that ψm(x, t) is also Lipschitz continuous. The system states in
(2) are all continuously differentiable, so ψi(x, t), i ∈ {1, . . . ,m} are
also continuously differentiable. Therefore, the HOCBF has the same
property as the HOBF in Definition 7, and the proof is the same as
Theorem 3. �

Remark 2: The general, time-varying HOCBF introduced in Defi-
nition 8, can be used for general, time-varying constraints (e.g., STL
specifications [5]) and systems. However, many problems, such as the
ACC and robot control problems that we consider in this article, have
time-invariant system dynamics and constraints. Therefore, in the rest
of this article, we focus on time-invariant versions for simplicity.

Remark 3 (Relationship between time-invariant HOCBF and ex-
ponential CBF in [3]): In Definition 7, if we set class K functions
α1, α2 . . . αm to be linear functions with positive coefficients, then we
can get exactly the same formulation as in [3] that is obtained through
input–output linearization, i.e.,

ψi(x) = ψ̇i−1(x) + kiψi−1(x), i ∈ {1, . . . ,m} (15)

where ki > 0, i ∈ {1, . . . ,m}. Therefore, the time-invariant version
HOCBF defined in this article is a generalization of the exponential
CBF introduced in [3].

Remark 4 (Comparison between HOCBF and MPC): In an MPC
approach [17], the optimization is defined over a receding horizon.
Compared to the myopic HOCBF method considered in this article
(i.e., the optimization is over one step), the MPC optimization is more
likely to be feasible. However, it is more difficult, as it is, in general
a nonlinear program. On the other hand, the HOCBF approach can
handle nonlinear (affine) dynamics, and the corresponding optimization
problems are easy to solve. The myopia of an HOCBF is significantly
improved if a valid HOCBF is found offline, as shown in Section IV-A.
This offline computation is hard to be performed in an MPC approach.

Example revisited: For the ACC problem introduced at the beginning
of Section III, the relative degree of the constraint from (8) is 2.
Therefore, we need an HOCBF withm = 2. We choose quadratic class
K functions for bothα1(·) andα2(·), i.e.,α1(b(x(t))) = b2(x(t)) and
α2(ψ1(x(t))) = ψ2

1(x(t)). In order for b(x(t)) := z(t)− δ to be an
HOCBF for (7), a control input u(t) should satisfy

L2
f b(x(t)) + LgLfb(x(t))u(t) + 2b(x(t))Lf b(x(t))

+(Lf b(x(t)))
2 + 2b2(x(t))Lfb(x(t)) + b4(x(t)) ≥ 0. (16)

Note that LgLfb(x(t)) 	= 0 in (16) and the initial conditions are
b(x(t0)) ≥ 0 and ḃ(x(t0)) + b2(x(t0)) ≥ 0.
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IV. OPTIMAL CONTROL WITH TIME-INVARIANT HOCBF

In this section, we show how to find a valid HOCBF. Consider an
OCP for system (2) with the cost defined as

J(u(t)) =

∫ tf

t0

C(||u(t)||)dt (17)

where || · || denotes the two-norm of a vector. t0 and tf denote the
initial and final times, respectively, and C(·) is a strictly increasing
function of its argument (such as the energy consumption function
C(||u(t)||) = ||u(t)||2). Assume a time-invariant (safety) constraint
b(x) ≥ 0with relative degreem has to be satisfied by system (2). Then,
the control input u should satisfy the time-invariant HOCBF version
of the constraint from (13)

Lmf b(x) + LgL
m−1
f b(x)u+O(b(x)) + αm(ψm−1(x)) ≥ 0 (18)

for all x ∈ C1∩, . . . ,∩Cm (Ci, i ∈ {1, . . . ,m} denotes the
time-invariant version of Ci(t)), where O(b(x)) =

∑m−1
i=1

Lif (αm−i ◦ ψm−i−1)(x).
If convergence to a given state is required in addition to optimality

and safety, then, as in [2], HOCBF can be combined with CLF. Suppose
the control bound U for (2) is defined as

U = {u ∈ Rq : umin ≤ u(t) ≤ umax ∀t ∈ [t0, tf ]} (19)

where umin,umax ∈ Rq . In order to solve this optimization problem,
we use the QP-based approach (suppose C(||u(t)||) = ||u(t)||2) in-
troduced at the end of Section II, i.e., we partition the time interval
[t0, tf ] into a set of equal time intervals {[t0, t0 +Δt), [t0 +Δt, t0 +
2Δt), . . . }, where Δt > 0. In each interval [t0 + ωΔt, t0 + (ω +
1)Δt) (ω = 0, 1, 2, . . . ), we keep the state constant at its value at the
beginning of the interval and also assume the control is constant, and re-
formulate the optimization problem as a sequence of QPs. Specifically,
at t = t0 + ωΔt (ω = 0, 1, 2, . . . ), we solve

(u∗(t), δ∗(t)) = arg min
u(t),δ(t)

||u(t)||2 + pδ2(t)

s.t.(18), (19) and

LfV (x) + LgV (x)u+ c3V (x) ≤ δ (20)

where δ is a slack variable used to relax (soften) the CLF constraint
and p > 0 is a weight. After solving (20), we integrate (2) with
control u∗(t) kept constant during [t0 + ωΔt, t0 + (ω + 1)Δt). This
QP-based method is suboptimal compared with the original OCP (17),
as the optimizations are performed pointwise.

Constraint (18) may conflict with (19), in which case we cannot find
a valid HOCBF. If this happens, the OCP becomes infeasible. In the
rest of this section, we propose a two-stage methodology to find a valid
HOCBF, which is based on offline computations of solutions to (20). We
first apply the penalty method (see Section IV-A,) assuming the class
K functions are given. If this fails, i.e., the conditions under which the
penalty method works are not satisfied, we turn to the parameterization
method (see Section IV-B). We find a valid HOCBF based on the worst-
case initial state for some symmetric unsafe sets (such as circular unsafe
sets). For such sets, the problem feasibility does not heavily depend
on the initial state and the worst-case initial condition is also easy to
find. For example, for a spherical obstacle, the worst-case initial state
corresponds to maximum velocity directed at the center of the sphere.
With some conservatism, other geometries can also be dealt with by
covering them with symmetric sets—in our recent work [23], we used
disks. Note that a valid HOCBF might be hard to find for nonconvex

unsafe sets [24], in which case the proposed approximation method
in [23] can still work.

A. Penalty Method

In (10), we multiply the class K function αi(·) with penalties
(weights) pi ≥ 0, i ∈ {1, . . . ,m} in the form

ψi(x) = ψ̇i−1(x) + piαi(ψi−1(x)), i ∈ {1, . . . ,m}. (21)

The sets X and U are closed. Let

Umin := inf
x∈X,u∈U

[−LgLm−1
f b(x(t))u]

Umax := sup
x∈X,u∈U

[−LgLm−1
f b(x(t))u]

Fmin := inf
x∈X

[Lmf b(x)].

The following theorem provides conditions for the feasibility guar-
antee of the QP (20).

Theorem 5: If Umax ≤ Fmin, then there exist (small enough) pi ≥
0, i ∈ {1, . . . ,m} such that the control limitations (19) do not conflict
with the HOCBF constraint (18) ∀x(t0) ∈ C1 ∩ · · · ∩ Cm.

Proof: It follows from the sequence of equations in (21) that
p1, p2, . . . , pm−1 will appear in all terms of O(b(x)) in (18), i.e.,
O(b(x)) = 0 if pi = 0 ∀i ∈ 1, 2, . . . ,m− 1. Since pm shows up in
the last equation of (21), we have that

−LgLm−1
f b(x)u ≤ Lmf b(x)

if pi = 0 ∀i ∈ 1, 2, . . . ,m. Since Lmf b(x) ≥ Fmin, if
−LgLm−1

f b(x)u ≤ Fmin, then the last constraint is satisfied.
The control bound on u in (19) always satisfies

Umin ≤ −LgLm−1
f b(x)u ≤ Umax.

Since Fmin ≥ Umax, the intersection of the sets determined by the last
two inequalities is always nonempty, i.e., the intersection of the control
bounds (19) and the HOCBF constraint (18) is always nonempty.
We conclude that there exist small enough penalties p1 ≥ 0, p2 ≥
0, . . . , pm ≥ 0 such that the control limitations (19) will not conflict
with the HOCBF constraint (18). �

The following corollary provides simpler conditions for systems
[such as (7)] that satisfy extra properties.

Corollary 1: If 0 ∈ U and Lmf b(x) ≥ 0 ∀x ∈ X , then there exist
(small enough) pi ≥ 0, i ∈ {1, . . . ,m} such that the control limitations
(19) do not conflict with the HOCBF constraint (18) ∀x(t0) ∈ C1 ∩
· · · ∩ Cm.

Proof: Similar to the proof of the last theorem, we have

−LgLm−1
f b(x)u ≤ Lmf b(x)

if pi = 0 ∀i ∈ 1, 2, . . . ,m. Since Lmf b(x) ≥ 0 ∀x ∈ X , if
−LgLm−1

f b(x)u ≤ 0, then the last constraint is satisfied. The 0
vector is included in the last equation, and 0 ∈ U . Therefore, there
exist small enough penalties p1 ≥ 0, p2 ≥ 0, . . . , pm ≥ 0 such
that the control limitations (19) do not conflict with the HOCBF
constraint (18). �

Example revisited: For the ACC problem introduced in Section III,
L2
fb(x) = 0. If 0 is included in the control bound, then from Corollary

1, it follows that HOCBF constraints do not conflict with the control
bound when we choose small enough penalties p1, p2 for α1(·), α2(·).

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 20,2023 at 10:58:11 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 7, JULY 2022 3659

Remark 5 (Applying the penalty method): Given the class K func-
tionsαi(·), i ∈ {1, . . . ,m} in an HOCBF b(x), if the QP (20) becomes
infeasible for some x ∈ C1 ∩ · · · ∩ Cm, or it becomes infeasible at
some time t ∈ [t0, tf ], we restart from time t0 and add penalties to the
class K functions as in (21). Note that, when penalties are applied, the
sets Ci, i = 2, . . . ,m will be affected. By random selection, we try to
find values for the penalties such that x(t0) ∈ C1 ∩ · · · ∩ Cm. If the
optimization problem becomes feasible, then we are done. Otherwise,
we decrease the value of p1, as p1 shows up in all the ψi(·) functions
in (21), and thus decreasing p1 is the most efficient way among all the
penalties to make the problem feasible. However, decreasing p1 can
significantly shrink C2, which might result in x(t0) /∈ C2, as shown
in (11). In order to avoid this, we can proceed with decreasing p2, and
recursively try to find penalties such that x(t0) ∈ C1 ∩ · · · ∩ Cm. If
we are not successful, then we will turn to the parameterization method
described next.

B. Parameterization Method

When the conditions in Theorem 5 or Corollary 1 are not satisfied
or no penalties can be found because of x(t0) as in Remark 5, we use
the parameterization method, in which we also determine the class K
functions. Since power functions are mostly used as class K functions,
we can explicitly write (21) as

ψi(x) = ψ̇i−1(x) + piψ
qi
i−1(x), i ∈ {1, . . . ,m} (22)

where qi ≥ 1 ∀i ∈ {1, . . . ,m}. The penalties pi, i ∈ {1, . . . ,m} and
powers qi, i ∈ {1, . . . ,m} are parameters of the HOCBF, and they
determine at what time the HOCBF constraint (18) becomes active
(i.e., it is satisfied as an equality). If the HOCBF constraint becomes
active when system (2) is close to the obstacle (i.e., b(x) is close to
0), system (2) may require a large control input such that the safety
constraint b(x) ≥ 0 could be enforced by the HOCBF, which could
possibly conflict with the control bound U . Thus, the OCP can become
infeasible. Ideally, we would like to choose the parameters such that
(20) is feasible in [t0, tf ]. We may just randomly sample the penalties
and powers such that the problem (20) is feasible [assume there exists
a feasible solution for the problem and there exist such parameters
that can make the problem feasible; otherwise, we need to consider
all possible class K functions instead of just power functions in (22)].
However, we do not want the HOCBF constraint (18) to be active when
system (2) is far from the corresponding obstacle (i.e., b(x) is large)
as the obstacles may not be detected before the HOCBF constraint
(18) becomes active in an unknown environment. If this happens, the
initial conditions of an HOCBF in Theorem 4 may not be satisfied
or the HOCBF constraint may conflict with the control bound U , and
thus, the safety is not guaranteed. Therefore, we want to choose the
parameters such that the value of the HOCBF b(x) when the constraint
first becomes active is minimized.

Remark 6 (Applying the parameterization method): We can use
a gradient-descent method to find the optimal penalties and powers
such that the problem is feasible while also minimizing b(x(ta)),
where ta ∈ [t0, tf ] is the time at which the HOCBF constraint first
becomes active under the worst-initial condition (such as maximum
approaching speed). We randomly sample for pi, qi, and start with any
pi, qi, i ∈ {1, . . . ,m} such that the QPs are all feasible in [t0, tf ] and
take b(x(ta)) as the objective function to minimize with pi, qi, i ∈
{1, . . . ,m} as decision variables. We evaluate the gradient of b(x(ta))
with respect to pi, qi, then minus pi, qi by the gradient times a learning
rate γ > 0 and solve the QP (20) again ∀t ∈ [t0, tf ] to find a smaller
possible b(x(ta)). We repeat this process for each feasible sample (see
Algorithm 1).

Remark 7 (Comparison between the penalty and parameterization
methods): The penalty method is simpler and more intuitive than
the parameterization method as we can just choose small penalties
to make the problem feasible (see Remark 5). The parameterization
method does not necessarily choose small pi’s, but searches through
the whole parameter space, and thus is less conservative and more
computationally expensive. The parameterization method works well
for unknown environments as we make the HOCBF constraints active
as late as possible to allow the system to detect obstacles.

Remark 8 (The effect of time discretization): In order to implement
the HOCBF method in real systems, we need to discretize the time,
as described at the end of Section II. The forward invariance of the
safety sets might not be guaranteed in between the discretization time
instants. The work in [21] addresses this issued by trying to find closed-
form solutions to the problem. The sampling approach from Cortez
et al. [25] is used to ensure the constraint satisfaction in the time
intervals between the discretization instants. The self-triggered method
from Yang et al. [26] can also be used to determine discretization times
ensuring invariance in continuous time.

Remark 9 (The use of extended class K functions): We can define
αi(·), i ∈ {1, . . . ,m} in Definition 8 as extended class K functions
(α : [−a, a] → [−∞,∞] as in Definition 1) to ensure robustness of
an HOCBF to perturbations [21]. However, the use of extended class
K functions cannot ensure a constraint to be satisfied if it is initially
violated for a relative degree one CBF, which can also cause a similar
problem in an HOCBF since ψi(x) in (10) is recursively defined.

V. CASE STUDIES AND RESULTS

In this section, we complete the ACC case study and introduce a robot
control problem. All the computations and simulations were conducted
in MATLAB.

A. Adaptive Cruise Control

For the dynamics given by (7), we consider a cost J(u) =∫ tf
t0
u2(t)dt, and we require the vehicle to achieve a desired speed

vd = 24m/s. For this, we define a CLF V (x) = (v − vd)
2 (see Defi-

nition 5).
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Fig. 1. Control input u(t) as b(x(t)) → 0 for different p when using
quadratic class K function. All the solid lines (black, red, blue) start from
b(x) = 90. They coincide before the corresponding HOCBF constraint
becomes active (e.g., the red solid line can only be seen after b(x) <=
45), when the solid line starts overlapping with its associated dashed
line. The arrows denote the changing trend for b(x(t)) with respect to
time.

Fig. 2. Variations of functions b(x(t)) and ψ1(x(t)) for linear (p = 1)
and quadratic (p = 0.02) class K functions, respectively. b(x(t)) ≥ 0 and
ψ1(x(t)) ≥ 0 imply the forward invariance of C1 ∩C2.

We consider a control constraint −0.4g ≤ u(t) ≤ 0.4 g, g =
9.81m/s2. The relative degree of (8) is two, and we define three
different HOCBFs as in Definition 8 by choosing square root, linear and
quadratic class K functions for both α1(·), α2(·) in (21) with penalties
p1 = p2 = p > 0. The other parameters are the same as in [1].

We define b(x) = z − δ as an HOCBF withm = 2. SinceL2
fb(x) =

0, the conditions in Corollary 1 are satisfied and we can find small
enough p1, p2 such that the problem is feasible. We present the penalty
case study for quadratic class K functions in Fig. 1. The dashed lines
denote the values of the right-hand side of the HOCBF constraint (i.e.,
Lm

f
b(x)+O(b(x))+αm(ψm−1(x))

−LgL
m−1
f

b(x)
), and the solid lines are the optimal

controls. When the dashed lines and solid lines coincide, the HOCBF
constraint for b(x) is active.

In Fig. 1, the HOCBF constraint does not conflict with the braking
limitation −cdg when p = 0.02 for a quadratic class K function. The
minimum control input (negative) increases as p decreases. Then, we set
p to be 1, 0.02 for linear and quadratic class K functions, respectively.
We present the forward invariance of the set C1 ∩ C2, where C1 :=
{x(t) : b(x(t)) ≥ 0} and C2 := {x(t) : ψ1(x(t)) ≥ 0} in Fig. 2.

B. Robot Control

Consider the unicycle model for a wheeled mobile robot ẋ =
v cos θ, ẏ = v sin θ, v̇ = u2, θ̇ = u1,x, y denote the location, θ is the

heading angle, v denotes the linear speed, and u1, u2 are the two
control inputs (turning speed and forward acceleration). Note that the
dynamics are in the form (2), with x = (x, y, θ, v)T , u = (u1, u2)

T ,
f = (v cos θ, v sin θ, 0, 0)T , and g = (0, 0; 0, 0; 1, 0; 0, 1).

In this problem, we have two objectives: (o1) minimize energy
consumption J(u(t)) =

∫ tf
t0

(u2
1(t) + u2

2(t))dt, and (o2) reach desti-
nation (xd, yd) ∈ R2, during time interval [t1, t2], t0 ≤ t1 ≤ t2 ≤ tf ,
and two constraints: (c1) safety (x(t)− xo)

2 + (y(t)− yo)
2 ≥ r2,

where (xo, yo) ∈ R2 denotes the location of a circular obstacle and
r = 7 m is its size (a little larger than the actual size, which is
6 m), and (c2) robot limitationsvmin ≤ v(t) ≤ vmax, u1,min ≤ u1(t) ≤
u1,max, u2,min ≤ u2(t) ≤ u2,max, where vmin = 0m/s, vmax = 2m/s,
u1,max = −u1,min = 0.2 rad/s, and u2,max = −u2,min = 0.5m/s2.

We use HOCBFs to (strictly) impose constraints (c1) and
(c2) and two CLFs V1(x) = (θ − atan( yd−y

xd−x ))
2, V2(x) = (v −

vd)
2, vd = 2m/s to achieve objective (o2). We capture objective (o1)

in the cost of the optimization problem. For constraint (c1), we define
an HOCBF b(x) = (x(t)− xo)

2 + (y(t)− yo)
2 − r2 with m = 2.

Since L2
fb(x) = 2v2 is guaranteed to be nonnegative, the penalty

method always works given proper x(t0). However, we use the pa-
rameterization method for (c1), since we also wish to minimize the
HOCBF value when the HOCBF constraint first becomes active. This
approach gives good results in an unknown environment with obstacles,
as shown below. We use two HOCBFs to impose the speed part of (c2):
bmax(x) = vmax − v and bmin(x) = v − vmin. Both have relative degree
1, andLf bmax(x) = Lfbmin(x) = 0. If we setu = 0, the speed will not
change. Therefore, these HOCBF constraints do not conflict with the
control bound, and we do not need to use the penalty or parameterization
methods.

We find penalties p1, p2 and powers q1, q2 for a worst-case scenario.
We consider maximum initial speed v(t0) = vmax and initial position
(x(t0), y(t0)) = (5, 25 m). We assume the obstacle center (xo, yo) =
(32, 25 m) and the destination (xd, yd) = (45, 25 m) are aligned, and
the initial heading θ(t0) = 0 is also parallel to this line [see Fig. 3(a)].
We study the feasibility robustness of the solution (i.e., how feasibility
is affected by changes in state and/or environment).

When the destination component yd is exactly 25 m, the robot stops
before the obstacle (if p1, p2, q1, q2 are feasible for the QP), i.e., it can-
not arrive at the destination. We call this stop point an equilibrium point,
as shown in Fig. 3(a). However, if yd has a positive offset (arbitrary
small), the robot can overpass the obstacle and arrive at the destination
following the left trajectories shown in Fig. 3(a). Otherwise, the robot
will produce right trajectories also shown in Fig. 3(a). Therefore, we
choose a small offset for yd (i.e., yd = 25.0000001 m) when trying to
find the optimal p1, p2, q1, q2.

We randomly sample p1, p2, q1, q2 (p1, p2 ∈ (0, 3], q1, q2 ∈ [1, 3])
to get 2000 points, and run simulations for 30 s. We use the algorithm in
Remark 6 to optimize each sample and get the optimal (p∗1, p

∗
2, q

∗
1, q

∗
2) =

(0.7535, 0.6664, 1.0046, 1.0267) such that the QPs are feasible and the
HOCBF value is minimized when the HOCBF constraint first becomes
active. The HOCBF constraint is active when b(x) = Dmin (Dmin =
5.4 m2, a distance metric instead of the real distance). In the rest of this
section, we study the feasibility robustness of the proposed method,
assuming the optimal (p∗1, p

∗
2, q

∗
1, q

∗
2) given above. Note that the QP

feasibility does not depend on the specific initial condition as long as
the robot initially has a distance (in terms of b(x)) of at least Dmin

from the obstacle, and the initial state is within the predefined bound
(see [27]).

1) Feasibility Robustness to the Heading Angle: In this
case, we only change the value of destination component yd. Based
on yd = 25.0000001 m and yd = 24.9999999 m, we further offset yd
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Fig. 3. Robot control problem using HOCBFs and the parameterization method. (a) Trajectories under different parameters. (b) Trajectories under
different obstacle-approaching angles. (c) Trajectories under different obstacle-approaching speeds. (d) Trajectories for obstacles of different sizes.

Fig. 4. Safe exploration in an unknown environment.

by +2m for yd = 25.0000001 m (−2m for yd = 24.9999999 m), and
generate 7 destinations for both cases, respectively. These 14 destina-
tions are all feasible, which shows good feasibility robustness of the
penalty method to changes in the heading angle when approaching the
obstacle, as shown in Fig. 3(b). The HOCBF values when the HOCBF
constraint becomes active are all smaller than Dmin.

2) Feasibility Robustness to the Approaching Speed:
We vary the approaching speed to the obstacle between 1.8 and 2.5m/s
(2m/s was the value for the original problem). All these values are
all feasible, which shows good feasibility robustness of the penalty
method to the change in speed when approaching the obstacle. The
HOCBF values when the HOCBF constraint becomes active increase
as the approaching speed increases, as shown in Fig. 3(c).

3) Feasibility Robustness to the Obstacle Size: Here, we
only change the obstacle size from the predefined value r = 7 m. We
consider a range of r between 2 and 9 m. The results show good
feasibility robustness to the change of obstacle size as the QPs are
always feasible and the robot can safely arrive at its destination, as
shown in Fig. 3(d). The HOCBF values when the HOCBF constraint
becomes active do not change under different-size obstacles.

Finally, in order to show the feasibility robustness is independent of
the location of the obstacles, we present an application of robot safe
exploration in an unknown environment. Suppose the robot is equipped
with a sensor [ 2

3
π field of view and 7 m (greater than the one corre-

sponding to Dmin) sensing distance with 1− m sensing uncertainty] to
detect the obstacles, and there are three unknown obstacles (to the robot)
whose center locations are (32, 25 m), (28, 35m), and (30, 40 m)
with radius 6, 5, and 6m, respectively. The robot is required to

arrive sequentially at points a := (39, 35 m), b := (30, 15 m), c :=
(38, 40 m), and d := (20, 28m). The robot can safely arrive at these
four destinations with the penalties and powers (p1, p2, q1, q2) =
(0.7535, 0.6664, 1.0046, 1.0267) as calculated earlier, which shows
good feasibility robustness. The robot trajectory is shown in Fig. 4.
The computation time to solve the QP at each time step is less than
0.01 s (Intel(R) Core(TM) i7-8700 CPU @ 3.2 GHz×2).

VI. CONCLUSION

We extended BFs and CBFs to HOBFs and HOCBFs, and showed
how they can be used to solve OCPs with safety requirements and
control limitations for systems with high relative degree. We showed
how the new definitions can be used to significantly increase the
feasibility of the OCPs. We applied the proposed framework to an ACC
problem and to a robot navigating in an unknown environment facing
real-time safety constraints. In the future, we will investigate the use of
machine learning techniques to improve system performance.
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