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Abstract— Recent work has shown that stabilizing an affine
control system to a desired state while optimizing a quadratic
cost subject to state and control constraints can be reduced
to a sequence of Quadratic Programs (QPs) by using Control
Barrier Functions (CBFs) and Control Lyapunov Functions
(CLFs). In our own recent work, we defined High Order CBFs
(HOCBFs) for systems and constraints with arbitrary relative
degrees. In this paper, in order to accommodate initial states
that do not satisfy the state constraints and constraints with
arbitrary relative degree, we generalize HOCBFs to High Order
Control Lyapunov-Barrier Functions (HOCLBFs). We also
show that the proposed HOCLBFs can be used to guarantee the
Boolean satisfaction of Signal Temporal Logic (STL) formulae
over the state of the system. We illustrate our approach on a
safety-critical optimal control problem (OCP) for a unicycle.

I. INTRODUCTION

Barrier functions (BFs) are Lyapunov-like functions [17],
whose use can be traced back to optimization problems
[4]. More recently, they have been employed to prove set
invariance [3], [14] and for the purpose of multi-objective
control [13]. In [17], it was proved that if a BF for a given
set satisfies Lyapunov-like conditions, then the set is forward
invariant. A less restrictive form of a BF, which is allowed
to grow when far away from the boundary of the set, was
proposed in [1]. Another approach that allows a BF to take
zero values was proposed in [6], [9]. Control BFs (CBFs)
are extensions of BFs for control systems, and are used
to map a constraint that is defined over system states to a
constraint on the control input. Recently, it has been shown
that, to stabilize an affine control system while optimizing a
quadratic cost and satisfying state and control constraints,
CBFs can be combined with control Lyapunov functions
(CLFs) [2], [5] to form quadratic programs (QPs) [1], [6]
that are solved in real time.

The CBFs from [1] and [6] work for constraints that have
relative degree one with respect to the system dynamics.
A CBF method for position-based constraints with relative
degree two was proposed in [18]. A more general form,
which works for arbitrarily high relative degree constraints,
was proposed in [11]. The method in [11] employs input-
output linearization and finds a pole placement controller
with negative poles to stabilize the CBF to zero. In our
recent work [19], we defined a High Order CBF (HOCBF)
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that can accommodate constraints with high relative degree
and does not require linearization. In this paper, we propose
an extension of the HOCBF from [19] that achieves two
main objectives: (1) it works for states that are not initially
in the safe set, and (2) it can guarantee the satisfaction
of specifications given as Signal Temporal Logic (STL)
formulae.

Recent works proposed the use of CBFs to enforce
the satisfaction of temporal logic (TL) specifications. STL
and Linear TL (LTL) were used as specification languages
in [9] and [12], respectively, for systems and constraints
with relative degree one. Many specifications and systems,
however, lead to higher relative degrees. For example, a
comfort requirement for an autonomous vehicle is usually
expressed using jerk, which induces a high relative degree
constraint. The authors of [9] defined time-varying functions
to guarantee the satisfaction of a STL formula for systems
with relative degree one. Extending time-varying functions
to work for high relative degree constraints, even though
possible, would be difficult, as it would require that the
state of the system be in the intersection of a possibly large
number of sets. TL specifications have also been considered
in [16] by using finite-time convergence CBFs [8]. However,
this approach is restricted to relative-degree-one constraints,
and may lead to chattering behaviors that result from finite-
time convergence, as will be shown in this paper. Barrier-
Lyapunov functions, as proposed in [17], [15], could also be
used, in principle, to implement STL specifications, as they
combine (linear) state constraints with convergence.

In this paper, to accommodate STL specifications over
nonlinear state constraints for high relative degree systems,
we propose High Order Control Lyapunov-Barrier Functions
(HOCLBF). The proposed HOCLBFs lead to controllers
that stabilize a system inside a set within a specified time
if the system state is initially outside this set, and ensure
that the system remains in this set after it enters it. We
also propose how to eliminate chattering behaviors with
the HOCLBF method. We illustrate the usefulness of the
proposed approach by applying it to a unicycle model.

II. PRELIMINARIES

We assume the reader is familiar with the definitions of
class K function, extended class K function, relative degree
of a (sufficiently many times) differentiable function [7], and
forward invariance of a set with respect to given dynamics.
When a constraint is defined using a differentiable function,
we will refer to the relative degree of the function as the
relative degree of the constraint.

2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

978-1-6654-4197-1/$31.00 ©2021 AACC 4886

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:12:16 UTC from IEEE Xplore.  Restrictions apply. 



Consider an affine control system of the form

ẋ = f(x) + g(x)u (1)

where x ∈ Rn, f : Rn → Rn and g : Rn → Rn×q are
globally Lipschitz, and u ∈ U ⊂ Rq (U denotes the control
constraint set). Solutions x(t) of (1), starting at x(0), t ≥ 0,
are forward complete for all u ∈ U .

Suppose the control bound U is defined as (the inequality
is interpreted componentwise, umin,umax ∈ Rq):

U := {u ∈ Rq : umin ≤ u ≤ umax}. (2)

(1) High Order Control Barrier Functions: For a
constraint b(x) ≥ 0 with relative degree m, b : Rn → R,
and ψ0(x) := b(x), we define a sequence of functions
ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi(·), i ∈ {1, . . . ,m} denotes a (m − i)th order
differentiable class K function. We further define a sequence
of sets Ci, i ∈ {1, . . . ,m} associated with (3) in the form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 1: (High Order Control Barrier Function
(HOCBF) [19]) Let C1, . . . , Cm be defined by (4) and
ψ1(x), . . . , ψm(x) be defined by (3). A function b : Rn → R
is a high order control barrier function (HOCBF) of relative
degree m for system (1) if there exist (m − i)th order
differentiable class K functions αi, i ∈ {1, . . . ,m − 1} and
a class K function αm such that ∀x ∈ C1∩, . . . ,∩Cm,

sup
u∈U

[Lm
f b(x)+LgL

m−1
f b(x)u+S(b(x))+αm(ψm−1(x))] ≥ 0.

(5)
In (5), Lmf (Lg) denotes Lie derivatives along f (g) m

(one) times, S(·) denotes the remaining Lie derivatives along
f with degree < m (omitted for simplicity, see [19]). Assume
the number of x such that LgLm−1f b(x) = 0 is finite.

Theorem 1: ([19]) Given a HOCBF b(x) from Def. 1
with the associated sets C1, . . . , Cm defined by (4), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
u(t) that satisfies (5), ∀t ≥ 0, renders C1∩, . . . ,∩Cm
forward invariant for system (1).

The HOCBF is a general form of the relative degree one
CBF [1], [6], [9] (setting m = 1 reduces the HOCBF to the
common CBF form in [1], [6], [9]). In order to accomodate
initial conditions x(0) that are not in C1, the extended class
K functions are used in the definition of a relative degree one
CBF [23], [1]. In this way, a system will be assymptotically
stabilized to a safe set that is defined by a safety constraint
if the system is initially outside this set, but this may not
work for high relative degree constraints, as will be shown
in the next section. The HOCBF is also a general form of
the exponential CBF [11].

For system (1), consider the following cost:

J(u(t)) =

∫ T

0

C(||u(t)||)dt (6)

where || · || denotes the 2-norm of a vector, and C(·) is a
strictly increasing function.

Problem 1 (Optimal Control Problem (OCP)): Given
system (1) with initial condition x(0), find a control law
that minimizes cost (6), while satisfying the control bounds
(2) and a constraint b(x) ≥ 0, for all t ∈ [0, T ].

Under the assumption that the cost (6) is quadratic, a
conservative solution of the OCP above is obtained through
a sequence of QPs, by discretizing the time, keeping the
state constant at its value at the beginning of each interval,
and solving for a constant optimal control in each interval
(note that constraint (5) is linear in control when the state
is constant). Most existing approaches use a simpler form of
(5), which corresponds to a constraint of relative degree 1
[1], [9], [11]. HOCBFs are used for arbitrary relative degree
constraints in [19]. To guarantee the QP feasibility, we can
use the analytical approach [22] or adaptive CBF methods
[20].

(2) Signal Temporal Logic (STL): In this paper, we
use the negation-free signal temporal logic (STL) to specify
regions of interest to be reached by the states of system (1).
Formal definitions for the syntax and semantics of STL can
be found in [10]. Informally, the STL formulas that we use
in this paper are predicates over the state µ := (b(x) ≥ 0)
(b : Rn → R is a differentiable function of relative degree
m with respect to system (1)) connected using the usual
Boolean operators (e.g., ∧, ∨, ⇒) and temporal operators
such as UI (“until”), FI (“eventually”), and GI (“always”),
where I = [ta, tb] is a time interval, with tb ≥ ta ≥ 0. We
use x |= ϕ to denote that x satisfies ϕ.

Example: Consider a unicycle model:

ẋ = v cos θ, ẏ = v sin θ, θ̇ = u, (7)

where (x, y) denote the coordinates of the robot, v > 0
denotes its linear speed, θ is its heading angle, and u denotes
its control (angular speed). Formula ϕ1 := G[5,6](x2(t) +
y2(t) ≤ R2), R > 0, requires the robot to satisfy the
constraint x2(t) + y2(t) ≤ R2 for all times in [5s, 6s].
Formula ϕ2 := F[5,6](x

2(t) + y2(t) ≤ R2), R > 0, requires
the robot to satisfy the constraint x2(t) + y2(t) ≤ R2 for at
least a time instant in [5s, 6s].

III. PROBLEM FORMULATION AND APPROACH

Problem 2 (OCP with STL constraints): Given system
(1) with initial state x(0), and given a STL formula ϕ over
its state x, find a control law that minimizes cost (6), while
satisfying the control bounds (2) and formula ϕ.

Assume the STL formula ϕ can be satisfied for some
controllers. In the case that it cannot be satisfied, we explore
how to maximally satisfy it, i.e., to maximize the STL
robustness. This will be further studied in future work.

Our approach to Problem 2 is based on two types of
HOCLBF (class 1 and class 2, shown in the next section)
and it can be summarized as follows. First, by exploiting
the negation-free structure of formula ϕ, we break it down
(assume it is tractable) into a set of atomic formulae of
the type G[ta,tb](b(x(t)) ≥ 0) and F[ta,tb](b(x(t)) ≥ 0).
Starting from time t = 0, we use a receding horizon H > 0
to determine the atomic formulae that we will consider at
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time t, i.e., we only consider the atomic formulae such that
[t, t + H] ∩ [ta, tb] 6= ∅ (the choice of H is discussed at
the end of Sec. IV). For each predicate involved in these
formulae, we define a HOCLBF (we discuss later how to
address possible conflicts among these predicates). If the
current state satisfies a predicate b(x(t)) ≥ 0 (the predicate
most likely corresponds to a safety requirement), then we use
a class 2 HOCLBF, which is a HOCBF as defined in our
previous work [19], to derive a controller that makes sure
the predicate stays true for all future times. If the current
state does not satisfy the predicate (usually related to a
state convergence requirement), we use a class 1 HOCLBF
that makes sure the system satisfies the predicate before tb
for atomic formulae with F[ta,tb], and before ta for atomic
formulae with G[ta,tb]. Once the predicate is satisfied, we
switch to a class 2 HOCLBF. We show how the satisfaction
of general STL formulae can be enforced with such class 1
and class 2 HOCLBFs.

IV. HIGH ORDER CONTROL LYAPUNOV-BARRIER
FUNCTIONS

In this section, we define high order control Lyapunov-
barrier functions (HOCLBFs) for system (1), and classify
them into two classes to accommodate systems with arbitrary
initial states. The proofs of all the results from this section
are omitted and can be found in [21].

Example revisited: Consider the robot from the previous
example and formula ϕ1, which requires the satisfaction
of constraint x2(t) + y2(t) ≤ R2 for all times in [5s, 6s].
This constraint has relative degree 2 for system (7). If this
constraint is satisfied at time 0, then we can define a HOCBF
b(x) := R2−x2(t)− y2(t) such that ϕ1 is guaranteed to be
satisfied if a controller u satisfies the corresponding HOCBF
constraint (5). Otherwise, we cannot define a HOCBF for it
since b(x(0)) < 0 and the class K function α1(·) in (3) only
allows for a non-negative argument. Thus, it is impossible to
construct the corresponding sets C1, C2.

If b(x(0)) < 0 and ḃ(x(0)) > 0, we can then redefine
ψi(x) (i ∈ {1, 2} in this case) in (3) as:

ψ1(x) := ψ̇0(x) + p1β1(ψ0(x)),

ψ2(x) := ψ̇1(x) + α2(ψ1(x)),
(8)

where ψ0(x) = b(x), p1 > 0. β1(·) and α2(·) are ex-
tended class K (e.g., β1(ψ0(x)) = ψ3

0(x)) and class K
(e.g., α2(ψ1(x)) = ψ2

1(x)) functions, respectively. Since
ḃ(x(0)) > 0 and b(x(0)) < 0, we can always choose a
small enough p1 such that ψ1(x(0)) ≥ 0 in (8). The HOCBF
constraint (5) is the Lie derivative form of ψ2(x) ≥ 0 in this
case. It follows from Thm. 1 that ψ1(x(t)) ≥ 0,∀t ≥ 0
if a controller satisfies the corresponding HOCBF constraint
(5). Because β1(·) is an extended class K function in (8),
the robot will be asymptotically stabilized to the set C1 :=
{x : b(x) ≥ 0}, but it will never reach the set boundary in
finite time, i.e., the STL specification ϕ1 cannot be satisfied.
If both b(x(0)) < 0 and ψ1(x(0)) < 0, the HOCBF
fails to work since ψ1(x) ≥ 0 is not guaranteed to be
satisfied in finite time. Since ψ1(x) ≥ 0 is equivalent to

ψ̇0(x) + α1(ψ0(x)) ≥ 0 by (3), we have that the original
constraint b(x) ≥ 0 is also not guaranteed to be satisfied.
We explore how to solve this problem in the next section.

A. High Order Control Lyapunov-Barrier Function

We introduce HOCLBFs that stabilize a system to a set1

defined by b(x) ≥ 0 whose relative degree is m w. r. t.
system (1). Similar to (3), we define a sequence of functions:

ψi(x) := ψ̇i−1(x) + piβi(ψi−1(x)), i ∈ {1, . . . ,m}, (9)

where ψ0(x) := b(x) and pi ≥ 0. βi(·), i ∈ {1, . . . ,m} are
extended class K functions.

We also define a sequence of sets as in (4). Note that
x(0) ∈ C1 means that system (1) is initially in the set
defined by the constraint b(x) ≥ 0. If b(x(0)) > 0, we can
always construct a non-empty set C1∩, . . . ,∩Cm at time 0
by choosing proper class K functions in the definition of a
HOCBF. Otherwise, there are only some extreme cases (such
as b(x(0)) = 0 and ḃ(x(0)) > 0) in which we can construct
a non-empty set C1∩, . . . ,∩Cm, as discussed in [19]. If we
cannot construct such a non-empty set at time 0, we construct
C1 as in (4), and construct sets Ci, i ∈ {2, . . . ,m} by (9)
and (4) such that x(0) /∈ C1∩, . . . ,∩Cm. Then, we define a
HOCLBF as follows:

Definition 2: (High Order Control Lyapunov-barrier
Function (HOCLBF)) Let C1, . . . , Cm be defined by (4) and
ψ1(x), . . . , ψm(x) be defined by (9). A function b : Rn →
R is a HOCLBF of relative degree m for system (1) if
there exist (m − i)th order differentiable extended class K
functions βi, i ∈ {1, . . . ,m − 1} and an extended class K
function βm such that

sup
u∈U

[Lm
f b(x)+LgL

m−1
f b(x)u+R(b(x))+pmβm(ψm−1(x))] ≥ 0,

(10)
for all x ∈ Rn. In (10), R(·) denotes the remaining Lie
derivatives along f with degree < m (omitted for simplicity).

We make the following assumption, which is not true
in some cases (such as asymptotically growing functions).
However, we will relax it in the next subsection.

Assumption 1: If ψi−1(x(t)), i ∈ {1, . . . ,m} is negative
at time 0 and there exists a controller u(t) ∈ U that makes it
strictly increasing ∀t ≥ 0, then, under this controller, assume
ψi−1(x(t)) will become non-negative in finite time.

Theorem 2: Given a HOCLBF b(x) from Def. 2 with
the associated sets C1, . . . , Cm defined by (4), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
u(t) that satisfies (10), ∀t ≥ 0 renders C1∩, . . . ,∩Cm
forward invariant for system (1). Otherwise, any Lipschitz
continuous controller u(t) that satisfies (10), ∀t ≥ 0 stabi-
lizes system (1) to the set C1∩, . . . ,∩Cm.

B. Two Classes of HOCLBFs

In this subsection, we classify HOCLBFs into two classes:
one that can achieve finite-time convergence (to a set defined
by an arbitrary-relative-degree constraint) if a system is

1For simplicity, throughout the paper, we say that a system is stabilized
to a set if, when initialized outside the set, it reaches the set in finite time
and then it stays inside the set for all future times.
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initially outside the set, which can help us relax Assumption
1 in Thm. 2, and another one that enforces set forward
invariance if a system is initially inside the set.

Since power functions are often used for class K functions,
we consider extended class K functions as power functions.
If qi = k or qi = 1

k , where k ≥ 1 is an odd number, we
rewrite (9) in the form:

ψi(x) = ψ̇i−1(x) + piψ
qi
i−1(x), (11)

where pi > 0, i ∈ {1, . . . ,m}. Otherwise, the analysis is
similar, and thus is omitted. If qi ≥ 1, the next lemma
shows the asymptotic convergence property of ψi−1(x) in
a HOCLBF (we assume 0 is the initial time WLOG):

Lemma 1: Given a HOCLBF b(x), if a controller u(t) ∈
U for (1) satisfies

ψ̇i−1(x(t)) + piψ
qi
i−1(x(t)) ≥ 0,∀t ≥ 0, (12)

with pi > 0, qi ≥ 1, i ∈ {1, . . . ,m} and ψi−1(x(0)) =
ψ0
i−1 6= 0, then there exists a lower bound for ψi−1(x(t)),

and the lower bound asymptotically approaches 0 as t→∞.
Note that the extended class K function piψ

qi
i−1(x) in (11)

is not Lipschitz continuous when ψi−1(x) = 0 if 0 < qi < 1.
Then, we have the following lemma that demonstrates the
finite-time convergence property of ψi−1(x) in a HOCLBF:

Lemma 2: Given a HOCLBF b(x), if a controller u(t) ∈
U for (1) satisfies (12) with pi > 0, qi ∈ (0, 1), i ∈
{1, . . . ,m} and ψi−1(x(0)) = ψ0

i−1 6= 0, then there exists a
lower bound for ψi−1(x), and the time at which this lower
bound becomes 0 is (ψ0

i−1)
1−qi

pi(1−qi) .
Motivated by the properties from Lems. 1 and 2, we

classify HOCLBFs into two classes:
• Class 1: if ∃i ∈ {1, . . . ,m}, s. t. 0 < qi < 1 in (11),
• Class 2: qi ≥ 1,∀i ∈ {1, . . . ,m} in (11).
Next, we continue to consider the Class 1 HOCLBF to

show its finite-time convergence property with the above
lemmas. If ψj(x(ti)) ≥ 0,∀j ∈ {i, . . . ,m}, where i ∈
{1, . . . ,m}, ti ≥ 0, then we can define ψi(x) as a HOCBF to
guarantee that ψj(x(t)) ≥ 0,∀j ∈ {i, . . . ,m},∀t ≥ ti [19].
Thus, we assume that a Class 1 HOCLBF always defines
ψi(x) to be a HOCBF if ψj(x(ti)) ≥ 0,∀j ∈ {i, . . . ,m} as
it better guarantees finite-time convergence.

Given a Class 1 HOCLBF b(x) with b(x(0)) < 0 and
ψi(x(0)) = ψ0

i ∈ R, i ∈ {1, . . . ,m− 1}, we define

m0 =

{
min

i∈{1,...,m−1}:ψ0
i>0

i, if there exists i s.t. ψ0
i > 0

m, otherwise.
(13)

In summary, if i ≤ m0, we choose qi ∈ (0, 1) in (11);
otherwise, we choose qi ≥ 1 for a Class 1 HOCLBF.

Let ti ≥ 0, i ∈ {1, . . . ,m} denote the starting time instant
when ψj(x(ti)) ≥ 0,∀j ∈ {i, . . . ,m}. Each ti depends on
x(0) and u(t), t ≥ 0. The following theorem provides the
finite-time convergence property of a Class 1 HOCLBF:

Theorem 3: Given a Class 1 HOCLBF b(x) with
b(x(0)) < 0, any controller u(t) ∈ U that satisfies (10)

makes (1) converge to the set C1 ∩ · · · ∩ Cm within time

tup =

m0∑
i=1

(ψi−1(x(ti)))
1−qi

pi(1− qi)
. (14)

Remark 1: (Chattering in Class 1 HOCLBFs) By Lemma
2, we have that ψi−1(x) will go to zero within time t =
(ψi−1(x(ti)))

1−qi

pi(1−qi) when ψi−1(x(ti)) is negative. This could
also be true when (12) becomes active if ψi−1(x(ti)) is
positive, which is usually imposed by the state convergence
requirement. After ψi−1(x) becomes zero, it will become
positive (negative) if it is initially negative (positive) due
to the continuity of the dynamics (1). However, ψi−1(x)
may go to zero again after it becomes positive (negative),
which is usually imposed by state convergence requirements.
Recursively, this may cause a chattering behavior.

We can relax Assumption 1 by defining a Class 1 HO-
CLBF when x(0) /∈ C1 ∩ · · · ∩ Cm since ψi−1(x(t)) will
always cross the boundary ψi−1(x(t)) = 0 in finite time
when ψ̇i−1(x) > 0, (a condition imposed by ψi(x(t)) ≥ 0
in Def. 2). After ψi−1(x) becomes positive, we can re-define
an extended power class K function with qi ≥ 1 for ψi(x)
in (11) in order to eliminate the chattering behavior. This
switching process is formally shown in [21].

In a nutshell, we would like to define a Class 1 HOCLBF
when b(x(0)) ≤ 0 as the state of system (1) will converge
to the set C1∩, . . . ,∩Cm without Assumption 1 in finite
time, and define a Class 2 HOCLBF when b(x(0)) > 0
in which case we can always define Ci, i ∈ {1, . . . ,m} such
that x(0) ∈ C1∩, . . . ,∩Cm, as shown in [19]. Then the set
C1∩, . . . ,∩Cm is forward invariant, as shown in Thm. 2. If
we want ψi−1(x) to decrease to 0 slower, we can define a
Class 2 HOCLBF with large qi value, as shown in [19].

C. HOCLBFs for STL Satisfaction
In this section, we show how we can use HOCLBFs to

guarantee the satisfaction of a STL formula. A STL formula
can be decomposed into atomic formulae composed of G,F
operators, and each atomic formula is mapped to a constraint
over the state of (1). The receding horizon H > 0 of the STL
is shown as in Sec. III. If the constraint is satisfied at the
current state, we can define a Class 2 HOCLBF to make sure
the predicate always stays true. The implementation is the
same as for HOCBF, and thus is omitted; otherwise, we can
use Class 1 HOCLBFs to guarantee it to be satisfied within
specified time. Once this constraint is satisfied, we switch to
a Class 2 HOCLBF as shown next.

Always atomic formula G: x |= ϕ, where ϕ :=
G[ta,tb](||x(t)−K|| ≤ ξ), K ∈ Rn, 0 ≤ ta ≤ tb, and ξ > 0,
requires the trajectory x of system (1) to satisfy:

∀t ∈ [ta, tb], ||x(t)−K|| ≤ ξ. (15)

Let b(x) := ξ−||x−K||, where b(x) has relative degree
m for system (1) and b(x(0)) < 0. If we define b(x) to
be a Class 1 HOCLBF and choose pi > 0, qi ∈ (0, 1), i ∈
{1, 2, . . . ,m0} to satisfy

ta ≥
m0∑
i=1

(ψi−1(x(ti)))
1−qi

pi(1− qi)
, (16)
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then the constraint (15) is guaranteed to be satisfied at ta
following from Thm. 3 and is always satisfied after ta when
we define b(x) to be a Class 2 HOCLBF to avoid chattering.
We remove the HOCLBF b(x) after tb. Thus, this atomic
formula is guaranteed to be satisfied. Since ψi−1(x(ti)), i ∈
{2, . . . ,m} depends on pj , qj ,∀j ∈ [1, . . . , i], choosing pi, qi
to satisfy constraint (16) is difficult. However, this can be
easily resolved if we define an Adaptive CBF (AdaCBF) [20]
that makes pi, qi time-varying (adaptive). In this paper, we
provide a simple approach to choose pi, qi, i.e., we redefine
ψi(x) in (11) as (pi > 0):

ψi(x) :=


ψ̇i−1, if i < m0,

ψ̇i−1(x) + piψ
qi
i−1, qi ∈ (0, 1), if i = m0,

ψ̇i−1(x) + piψ
qi
i−1, qi ≥ 1, otherwise.

(17)
Now, ψm0

(x) in (17) excludes pi, qi,∀i ∈ {1, . . . ,m0 −
1}. We partition the time [0, ta] into m0 intervals
{t1, . . . , tm0

} such that
∑m
i=1 ti = ta. Each interval cor-

responds to the time necessary to drive ψi−1(x), i ∈
{1, . . . ,m0} in (17) from negative to positive. We update
m0 ← m0 − 1 whenever ψm0−1(x) > 0, and then design
each pair of pm0

, qm0
according to Lem. 2 and the pre-

partitioned time interval mentioned above. Each pair pi, qi
is determined online (the algorithm is shown in [21]).

Example revisited. For the robot control problem in Sec.
II, consider formula ϕ1. Let b(x) = R2−x2−y2 be a Class
1 HOCLBF. The initial condition of system (7) is given by
(0,−7.7, π4 ), R = 4m, v = 1.732m/s. We have b(x(0)) =

−43.29 and ḃ(x(0)) > 0, and thus, m0 = 1. If we choose
p1 = 5, q1 = 1

3 , t1 = 4s, then ψ1(x(0)) = 1.3042 > 0, and
t1 >

(b(x(0)))1−q1

p1(1−q1) is satisfied. Thus, by Thm. 3, the formula
ϕ1 is guaranteed to be satisfied.

Eventually atomic formula F : x |= ϕ, where ϕ :=
F[ta,tb](||x(t) − K|| ≤ ξ), K ∈ Rn, 0 ≤ ta ≤ tb, and
ξ > 0, requires the trajectory x of system (1) to satisfy the
quantified constraint:

∃t ∈ [ta, tb], ||x(t)−K|| ≤ ξ. (18)

Let b(x) := ξ−||x−K||, where b(x) has relative degree
m for system (1) and b(x(0)) < 0. If we define b(x) to
be a Class 1 HOCLBF and choose pi > 0, qi ∈ (0, 1), i ∈
{1, . . . ,m0} to satisfy

tb ≥
m0∑
i=1

(ψi−1(x(ti)))
1−qi

pi(1− qi)
, (19)

then constraint (18) is guaranteed to be satisfied before tb
following from Thm. 3. If the predicate b(x(t)) ≥ 0 is
satisfied before ta, then we will switch to a Class 2 HOCLBF
to make the predicate stay true. We remove the HOCLBF
b(x) once the constraint (18) is satisfied for any time instant
in [ta, tb]. The approach to choose pi, qi is similar to the G.

Disjunction, conjunction, and Until formulae: For con-
junctions of atomic formulae, we consider the corresponding
HOCLBFs at the same time. We also consider the corre-
sponding HOCLBFs at the same time for the disjunctions
of atomic formulae. However, we will relax the one whose

barrier function value is smaller when any two of the atomic
formulae conflict and remove all the HOCLBFs once any
one of these HOCLBFs is non-negative. Note that an Until
formula U is a conjunction of G and F atomic formulae [10].

Horizon H and conflict predicates: The horizon H (see
the description of the approach in Sec. III) is chosen as large
as possible given the available computation resources. While
we define a HOCLBF for each atomic formula, it is likely
that there will be conflict predicates among the predicates
within H , which could make the problem infeasible. To
address this, we relax the predicates in formulae with larger
ta, while minimizing the relaxation in the cost function.

V. CASE STUDY

Consider the unicycle described by Eqn. (7). The objective
is to minimize the control effort: minu(t)

∫ T
0
u2(t)dt. The

STL specification is given by

x |= (ϕ1 ⇒ ϕ2) ∧ (ϕ0 ⇒ ϕ3) ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7, (20)

where ϕ0 := (b1(x(0)) < 0), ϕ1 := (b1(x(0)) ≥ 0),
ϕ2 = G[0,tb](b1(x) ≥ 0), ϕ3 = G[ta,tb](b1(x) ≥ 0), ϕ4 =
F[tc,td]b2(x) ≥ 0, ϕ5 = G[te,T ](b3(x) ≥ 0), ϕ6 =
G[0,T ](b4(x) ≥ 0), ϕ7 = G[0,T ](b5(x) ≥ 0), 0 < ta < tb <
tc < td < te < T , where

b1(x) := R2
1 − x2 − y2 ≥ 0, (21)

b2(x) := φ2 − (θ − θd)2 ≥ 0, (22)

b3(x) := R2
2 − (x+Ax)2 + (y +Ay)2 ≥ 0, (23)

describe desired sets, with R1 > 0, R2 > 0, φ > 0, θd ∈
R, Ax ∈ R, Ay ∈ R. Functions b4(x) and b5(x) describe
two obstacles, i.e.,

b4(x) := (x+Ox,1)2 + (y +Oy,1)2 −R2
3 ≥ 0, (24)

b5(x) := (x+Ox,2)2 + (y +Oy,2)2 −R2
4 ≥ 0, (25)

where R3 > 0, R4 > 0, (Ox,1, Oy,1) ∈ R2, (Ox,2, Oy,2) ∈ R2.
In plain English, the STL specification states that, if the

robot is initially in the set defined by constraint (21), then
it should stay there ∀t ∈ [0, tb]. Otherwise, it should stay
in this set ∀t ∈ [ta, tb]. The heading of the robot should be
θd with error φ for at least a time instant in [tc, td], and the
robot should stay in the set defined by (23) ∀t ∈ [te, T ]. The
robot should always avoid the obstacles defined by (25) (24).

The control limitation is defined as: umin ≤ u ≤ umax,
where umin < 0, umax > 0. The relative degrees of all the
constraints (21)-(25) with respect to (7) are 2. We solve the
OCP with the approach introduced in Sec. II.

We implemented the proposed algorithms in MATLAB.
We used Quadprog to solve the QPs and ODE45 to integrate
the dynamics. Simulations for initially violated constraints to
study Class 1 and Class 2 HOCLBFs can be found in [21].
We just show chattering and present the complete solution
to the OCP with STL specifications in this paper.

(1) Chattering Behavior: We consider Class 1 HOCLBFs
to study chattering behaviors with the atomic formula ϕ3.
The robot starts inside the set C1 := {x : b1(x) ≥ 0}
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with x(0) = (0,−3.7, 0), v = 1.732m/s. Other simulation
parameters are tb = 30s,∆t = 0.1, umax = −umin =
0.6rad/s,R = 4m. There would be chattering for the robot
if we define a Class 1 HOCLBF for the safety constraint
(21), as the blue curves shown in Fig. 1(a). In order to
avoid chattering, we switch a Class 1 HOCLBF to a Class 2
HOCLBF, as shown in Sec. IV-B. The results of three Class
1 HOCLBFs with the switch method to avoid chattering are
shown in Fig. 1(b).

(a) Chattering behaviors. (b) The switch method.

Fig. 1. Chattering behaviors (p1 = 6, p2 = 0.14, q1 = q2 = 1
3

) and the
switch method for Class 1 HOCLBFs.

(2) Complete Solution: The simulation parameters are
T = 32s, ta = 4s, tb = 5s, tc = 7s, td = 9s, te =
21s,∆t = 0.1s,R1 = 4m,R2 = 4m,R3 = 2m,R4 =
3m,Ax = 10m,Ay = 10m,φ = π

12 , θd = 5π
4 , Ox,1 =

8m,Oy,1 = 4m,Ox,2 = 10m,Oy,2 = 10m,umax =
−umin = 0.9rad/s, v = 1.732m/s,H = 10s. The robot
initial state is (0,−7.7, π4 ).

Fig. 2. A trajectory that satisfies the STL specification with HOCLBFs.

We choose q1 = q2 = 1
3 for all Class 1 HOCLBFs,

and choose q1 = q2 = 1 for all Class 2 HOCLBFs. Then
we get (p1, p2) with the approach introduced in Sec. IV-C
as (5, 0.4), (0.8, N/A), (4.85, 0.4) for the atomic formulae
ϕ3, ϕ4, ϕ5, respectively. Note that the relative degree of (22)
is one, so ϕ4 only has p1. The p1, p2 for ϕ6, ϕ7 are chosen
according to the penalty method [19] such that the QP is
feasible. When the Class 1 HOCLBF (desired set) conflicts
with the Class 2 HOCLBF (safety), we relax the Class 1
HOCLBF. The STL formula is satisfied, as shown in Fig. 2.

VI. CONCLUSION

We propose high order control Lyapunov-barrier functions
(HOCLBF) that work for constraints with arbitrary relative

degree and systems with arbitrary initial state. We show
how the proposed HOCLBFs can be used to enforce the
satisfaction of Signal Temporal Logic (STL) specifications.
Simulation results on a unicycle model demonstrate the
effectiveness of the proposed method. Future work will focus
on the robust satisfaction of STL specifications.

REFERENCES

[1] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE
Transactions on Automatic Control, 62(8):3861–3876, 2017.

[2] Z. Artstein. Stabilization with relaxed controls. Nonlinear Analysis:
Theory, Methods & Applications, 7(11):1163–1173, 1983.

[3] J. P. Aubin. Viability theory. Springer, 2009.
[4] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge

university press, New York, 2004.
[5] R. A. Freeman and P. V. Kokotovic. Robust Nonlinear Control Design.

Birkhauser, 1996.
[6] P. Glotfelter, J. Cortes, and M. Egerstedt. Nonsmooth barrier functions

with applications to multi-robot systems. IEEE control systems letters,
1(2):310–315, 2017.

[7] H. K. Khalil. Nonlinear Systems. Prentice Hall, third edition, 2002.
[8] A. Li, L. Wang, P. Pierpaoli, and M. Egerstedt. Formally correct

composition of coordinated behaviors using control barrier certificates.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 3723–3729, 2018.

[9] L. Lindemann and D. V. Dimarogonas. Control barrier functions for
signal temporal logic tasks. IEEE Control Systems Letters, 3(1):96–
101, 2019.

[10] O. Maler and D. Nickovic. Monitoring temporal properties of con-
tinuous signals. In Proc. of International Conference on FORMATS-
FTRTFT, pages 152–166, Grenoble, France, 2004.

[11] Q. Nguyen and K. Sreenath. Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints. In Proc. of
the American Control Conference, pages 322–328, 2016.

[12] P. Nillson and A. D. Ames. Barrier functions: Bridging the gap
between planning from specifications and safety-critical control. In
Proc. of 57th IEEE Conf. on Decision and Control, 2018.

[13] D. Panagou, D. M. Stipanovic, and P. G. Voulgaris. Multi-objective
control for multi-agent systems using lyapunov-like barrier functions.
In Proc. of 52nd IEEE Conference on Decision and Control, pages
1478–1483, Florence, Italy, 2013.

[14] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework for worst-
case and stochastic safety verification using barrier certificates. IEEE
Transactions on Automatic Control, 52(8):1415–1428, 2007.

[15] K. Sachan and R. Padhi. Barrier lyapunov function based state-
constrained control for a class of nonlinear systems. IFAC-
PapersOnLine, 51(1):7–12, 2018.

[16] M. Srinivasan, S. Coogan, and M. Egerstedt. Control of multi-agent
systems with finite time control barrier certificates and temporal logic.
In IEEE Conference on Decision and Control, pages 1991–1996, 2018.

[17] K. P. Tee, S. S. Ge, and E. H. Tay. Barrier lyapunov functions
for the control of output-constrained nonlinear systems. Automatica,
45(4):918–927, 2009.

[18] G. Wu and K. Sreenath. Safety-critical and constrained geometric
control synthesis using control lyapunov and control barrier functions
for systems evolving on manifolds. In Proc. of the American Control
Conference, pages 2038–2044, 2015.

[19] W. Xiao and C. Belta. Control barrier functions for systems with high
relative degree. In Proc. of 58th IEEE Conference on Decision and
Control, pages 474–479, Nice, France, 2019.

[20] W. Xiao, C. Belta, and C. G. Cassandras. Adaptive control barrier
functions. In IEEE Transactions on Automatic Control (provisionally
accepted), preprint in arXiv:2002.04577, 2021.

[21] W. Xiao, C. Belta, and C. G. Cassandras. High order control lyapunov-
barrier functions for temporal logic specifications. In preprint in
arXiv:2102.06787, 2021.

[22] W. Xiao, C. Belta, and C. G. Cassandras. Sufficient conditions for
feasibility of optimal control problems using control barrier functions.
In submitted to Automatica, preprint in arXiv:2011.08248, 2021.

[23] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. Robustness
of control barrier functions for safety critical control. IFAC-Papers
OnLine, 48(27):54–61, 2015.

4891

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 26,2023 at 04:12:16 UTC from IEEE Xplore.  Restrictions apply. 


