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Abstract- Pursuit-evasion games in complex envi- 
ronments have a rich but disconnected history. Con- 
tinuous or differential pursuit-evasion games focus on 
optimal control methods, and rely on very intense 
computations in order to provide locally optimal cou- 
trols. Discrete pursuit-evasion games on graphs are 
algorithmically much more appealing, hut completely 
ignore the physical dynamics of the players, result- 
ing in possibly infeasible motions. In this paper, we 
present a provable and algorithmically feasible solution 
for visibility-based pursuit-evasion games in simply- 
connected environments, for players with dynamic con- 
straints. is achieved by combining two recent but 
distant results. 

I. INTRODUCTION 

In pursuit-evasion games, a pursuer tries to capture 
an evader who, in turn, actively tries to avoid cap- 
ture. Designing pursuit strategies is a fundamental 
challenge in robotics that has many applications. 
For example, in the well-known homicidal chauffeur 
game, a driver wants to collide with a pedestrian and 
the goal is to determine conditions under which he 
can (not) do so. Among the numerous applications of 
this game are missile guidance, collision avoidance 
and air traffic control (cf. 141). 

Early work on pursuit evasion games focused on 
simple environments [l 11. However, many robotics 
applications (e.g. surveillance) leads to formulations 
of pursuit-evasion games that take place in complex 
environments 1241. 

Historically, there have been two approaches for 
studying pursuit evasion games. On one hand, there 
are continuous games that explicitly model the phys- 
ical motion and constraints of the players [lll, [161, 
[4]. Even though this is a mature area, optimality 
results are typically local, and searching for optimal 
control inputs rely on very expensive numerical so- 
lutions of Hamilton-Jacobi-Isaacs partial differential 
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equations. In complicated environments with many 
players, this approach faces serious scalability chal- 
lenges. 

On the other hand, algorithmic approaches for 
purely discrete games come equipped with theoretical 
results which give global guarantees. These games 
are either played in a purely discrete environment 
such as a gaph P I ,  WI, 1171, 111, 171, 121, [13l, 
or in a continuous environment without any motion 
constraints 191, 1211, 1231, 1151, V21, 1201, [MI, 
1121. These models of the players abstract away the 
physical dynamics and constraints of motion. This 
may result in purely discrete strategies which are 
dynamically infeasible. 

In this paper, we initiate a study that attempts 
to combine discrete and continuous approaches. We 
focus on the visibility-based pursuit-evasion game ' 
introduced in 1231, 191, but for players with physical 
dynamics. In this game, the goal is to locate an 
unpredictable and adversarial evader hiding inside a 
polygonal environment. Recently, it has been shown 
that [12] there exists a randomized strategy for a 
single pursuer to locate the evader in any simply- 
connected environment - even if the evader is arbi- 
trarily faster than the pursuer, knows the position of 
the pursuer at all times, and actively avoids capture. 
This randomized strategy is based on triangulations 
of environment, and hence is compatible with the 
environment where the game is played. However, 
the discrete strategy may not be compatible with the 
dynamic model of the pursuer. This may result in 
winning (discrete) strategies with infeasible physical 
(continuous) implementations. 

Refining strategies from the discrete to the contin- 
uous world has received much attention in the hybrid 
systems community [3]. In robotics, connecting dis- 
crete path planning strategies to automatic generation 
of control laws is an important research problem [81. 
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In this paper, we utilize very recent results [5] ,  
[IO] that will guarantee that the discrete strategy of 
the pursuer will be feasibly executed by the dynamic 
model of the pursuer. Under suitable conditions, a 
feedback controller is constructed for each triangle, 
steering the pursuer between adjacent triangles. The 
randomized strategy between triangles will result in a 
hybrid controller for the pursuer, where the switching 
among the triangle-dependent controllers will be or- 
chestrated by the randomized pursuit-evasion strategy. 
The combination of the two results gives rise to a 
stochastic hybrid controller for the pursuer that can 
capture the evader with probability arbitrarily close 
to one. This is one of the few results in the literature 
for pursuit-evasion games in complex environments 
which give global guarantees while ensuring that the 
generated motions are feasible. 

The paper is organized as follows: In Section II, 
we present a formal definition of the visibility based 
pursuit-evasion game. An overview of the discrete 
strategy based on the triangulation graph of the envi- 
ronment is presented in Section 111. Next, in Section 
N, we show how control inputs for implementing 
the discrete pursuit strategy can be generated. We 
conclude the paper with simulations (Section V) and 
an overview of our results (Section VI). 

11. PROBLEM FORMULATION 

A. Environment Description 

Let P be the polygon that represents the environ- 
ment where the game is played. Throughout the paper, 
we will use P to denote both the boundary and the 
interior of the environment. Unless stated otherwise, 
n denotes the number of vertices of P. We say two 
points x, y E P can see each other if the line segment 
xy lies entirely in P. 

A polygon is simply-connected if it contains no 
holes, i.e. any simple closed curve inside the polygon 
can be shrunk to a point. All the polygons considered 
in this paper are simply-connected. The triangulation 
of a polygon is a decomposition of the polygon 
into triangles by a maximal set of non-intersecting 
diagonals. The dual of a triangulation is a graph 
whose vertices correspond to the triangles. There is 
an edge between two vertices if the corresponding 
triangles share a side. See Figure 2 for an illustration. 
It is well known that the triangulation of a simply- 
connected polygon has exactly n-2 triangles where n 
is the number of vertices of the polygon. In addition, 
the dual of the triangulation of a simply-connected 
polygon contains no cycles, it is a tree [19]. 

B. Game Formulation 

In this section, we formally define the visibility- 
based pursuit evasion game. There are two players, 
a pursuer and an evader. The motion of the pursuer 
is subject to the following planar fully-actuated kine- 
matics: 

& = U ,  X € P ,  U € U  (1) 

where x E P c RZ, and the control U is bounded 
to a polyhedral subset U of R2. Here, P denotes 
the polygon where the game is played. In this pa- 
per, we present results for single integrators on the 
plane. In the full version of the paper, we present 
generalizations to more complicated, even nonlinear, 
dynamics [6] .  

In this game, the evader is much more powerful 
than the pursuer. In fact it can be modeled as the pur- 
suer above, but with no constraints on U. It can thus 
be arbitrarily faster than the pursuer. Furthermore, it 
knows the position of the pursuer at all times. 

The game takes place in a simply-connected poly- 
gon p.  The pursuer’s initial position is an arbitrary 
point inside P and is known to the evader. However, 
the pursuer does not know the initial position of the 
evader. 

When the game starts, the pursuer starts searching 
for the evader. The pursuer wins the game if in finite 
time it can see, or locate the evader. The evader wins 
the game if it can avoid being seen forever. 

It is worth mentioning that we make no assump- 
tions about the strategy of the evader who actively 
avoids being seen. As mentioned before, the evader 
knows the position of the pursuer at all times and it 
can adaptively design a strategy based on the current 
position of the pursuer. 

The question is then, can we design a pursuer 
strategy so that the evader will eventually be located 
no matter which strategy it follows? 

111. THE PURSUER STRATEGY FOR LOCATING THE 
EVADER 

In [9] it has been shown that there are simply- 
connected environments such that if the pursuer is 
restricted to deterministic strategies, there are poly- 
gons with n vertices such that O(1ogn) pursuers 
are required to locate the evader. However, a single 
pursuer can locate the evader in any simply-connected 
environment with probability arhitraxily close to one 
-using a randomized strategy [12]. In this section, we 
give an overview of the randomized pursuit-strategy 
for a robot with no motion constraints. 
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Given polygon P,  the pursuer first triangulates the 
polygon. Let d(u, v) denote the minimum travel time 
from vertex U to vertex v. We define diam(P) as the 
maximum amount of time it takes to travel between 
any two vertices of the polygon, i.e. diam(P) = 
ma.xu,vtp d(u, U). The pursuer's strategy is divided 
into rounds of length at most diam(P). Let T be 
the dual triangulation tree rooted at the triangle that 
contains the pursuer's initial location at the beginning 
of a round. For any triangle t let t l , . . , t k ,  k 5 3 be 
the children of t .  We use the notation T( t )  to denote 
the subtree of T rooted at the triangle t. Figure 1 is 
provided for quick reference to the notation used in 
this section. 

The pursuer's strategy relies on the following ob- 
servation: Suppose the pursuer is inside triangle t and 
the evader is located inside a triangle contained in 
T(t i )  for some i. Then. while the uursner is located 

picks the child ti and moves there. After arriving at 
ti, the pursuer randomly picks one of the children 
of ti using the same weighted guessing strategy. The 
round is over whenever the pursuer arrives at a leaf 
of T .  

It bas been shown [12] that the probability of find- 
ing the evader in each round is at least ;. Therefore, 
if the pursuer repeats this strategy for n log n rounds, 
the probability of capturing the evader will be at least 
1 ~ ;. This probability can be made arbitrarily close 
to 1 by increasing the number of rounds. 

The following theorem summarizes this result. 
Theorem 1 ([12]): In any simply connected envi- 

ronment P,  against any evader strategy, the expected 
time to locate the evader with a single pursuer is at 
most n diam(P) where n is the number of vertices 
and diam(P) is the diameter of the polygon. 

The high-level strategy for finding the evader is - -. ~ J I  

at t ,  the evader can not enter any triangle contained 
in T(ti), i # j without being seen by the pursuer. 

presented in Table 1. 

This is because the triangle t is a separator-for the 
subtrees T(t,). Moreover, this property is preserved 
if the pursuer moves to the triangle t j .  

t 

Fig. 1. Each vertex of the me corresponds to a tiangle in the 
triangulation tree. When located at t, the pursuer picks triangle t ,  
with probability l ( t l ) / ( l ( t l )  +l(tz)+l(tS)) where l ( t i )  denotes 
the number of  leaves of the subtree rooted at ti. 

Therefore, bad the pursuer known the subtree that 
contains the evader, he could gradually move towards 
it while preventing the evader to move from one 
subtree to another. This process guarantees that the 
pursuer can enter the triangle the evader is located 
in and this clearly implies that the evader would 
be located. Of course, the pursuer does not know 
where the evader is. This is where we will utilize 
randomization. The pursuer will guess the subtree that 
contains the evader according to the following rule: 

Let l( t)  denote the number of leaves of the subtree 
T(t) .  Suppose the pursuer is located in triangle t and 
let t l ,  ..,& be the children of t (see Figure 1). Let 
L = E:=, I ( & ) .  With probability y, the pursuer 

LocateTheEvader(E a triangulation of the environmenfi 
while the evader is not found 

~ 

~~ 

t - current triangle of the pursuer 
T + 7 rooted at t 
repeat 

C + { t i  : t, is a child o f t }  
tne,t + randomly chosen miangle from C where 

move from t to t,,,< 
t - t",,, 

until t is a leaf triangle 

ti is chosen with probability &$& 

TABLE I 
THE PURSUER'S STRATEGY FOR LOCATING THE EVADER. THE 

NUTATION l ( t )  DENOTES THE NUMBER OF LEAVES OF THE 

SUBTREE ROOTED AT t (WITH RESPECT TO THE 

TRIANGULATIUNTREBT. SEEFIGURE I ) .  

To be able to implement the algorithm presented in 
Table I, we mnst generate control inputs that take the 
pursuer from the current triangle t to the next triangle 
tneZt. We address this problem in the next section. 

IV. MOTION PLANNING IN TRIANGULATED 
ENVIRONMENTS 

The goal of this section is to plan motions for 
the pursuers that on one hand implement the discrete 
strategy of moving from one triangle to another, but 
on the other are compatible with the pursuer dynamics 
and input constraints. 

Consider triangle Sz from the triangulation of P,  
the input polygon.' Consider three affinely indepen- 

'We use the notation Sa to emphasize the fact that the triangles 
are simplicks in I?. 
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dent points VI, vz,v3 in P c R2. The triangle Sz with 
vertices ul, U Z ,  v3 can be expressed as the convex hull 
of v1, v2,213: 

3 3 

Sz = { x  E R21x= CXjv;, CXi = 1, X i  > O }  
i=l i=l 

(2) 
For i E {1,2,3}, the convex hull of {VI, UZ, us} \ 

{vi} is a facet of Sz and is denoted by F,. Let ni 
denote the corresponding unit outer normal vector. 
Consider the following control system 

x=u, X € S Z  (3) 

where the control U is hounded to a polyhedral subset 
U of R2. We are interested in determining constrained 
linear feedback control laws 

U = k(x )  = AX + b E U, (4) 

where A E RzXz and b E R2, with the property that 
all the initial states in Sz are driven out of Sz through 
a desired facet in finite time. 

The solution to this problem has been recently 
shown in [IO], [5] for the general case of an n- 
dimensional simplex. 

Lemma 2: The affine function (4) is uniquely de- 
termined by its values k(q) = g,, i = 1 , 2 , 3  at the 
vertices of Sz. Moreover, the restriction of k to SZ is 
a convex combination of its values at the vertices and 
is given by: 

(7) 

are 2 x 3 and 3 x 3 real matrices. 
Remark I :  The restriction of an affine function k 

to a facet F, of s ~ ' ( F ,  itself is a "triangle" in RI, i.e., 
a line segment) is affine and for any z E Fi. k ( z )  is a 
convex combination of the values of k at the vertices 

Proposition 3: There exists an affine feedback law 
(4) driving all initial states in the simplex SZ through 
the facet F, in finite time if and only if the following 
sets are nonempty: 

of Fi. 

U, = U n I g  E R21n,Tg 5 0, 

j = 1 , 2 , 3 , j f i a n d n T g > O } ,  

U, = U n { g  E R'InTg > 0 and 

nEg 5 0 for all k = 1,2,3,  k # j ,  k # i} 
for all j = 1,2,3,  j # i. 

If one of the sets from Proposition 3 is empty, 
then there is no affine feedback law in Sz satisfying 
the corresponding property. However, if U contains 
a neighborhood of the origin, then all the sets from 
Proposition 3 are guaranteed non-empty. If they are 
all nonempty, then any choice of gc E U,, i = 1,2 ,3  
will give a valid affine vector field by formula (5). 
Indeed, for every x E Sz, we know that k(x )  is a 
convex combination of g1,gZ1g3 E U.  Hence, k ( x )  
is contained in the convex hull of g1,gz,g3, which 
is the smallest convex set containing g1,gzig3, and 
therefore included in U .  So the vector field is bounded 
everywhere in the simplex as required, and achieves 
the desired goal of steering the pursuer from one 
triangle to another (adjacent) triangle. 

Using Proposition 3 in each of the triangular re- 
gions, we can derive necessary and sufficient con- 
ditions for the existence of affine vector fields (re- 
stricted to the polyhedral set U )  driving all initial 
states through a separating facet in finite time. 

Note that, if we choose the same velocity values at 
the vertices corresponding to the common facet of two 
adjacent triangles, the continuity of the vector field 
is guaranteed everywhere. Indeed, the vector fields 
in two adjacent triangles coincide on the separating 
facet, since their restrictions to the separating facet, 
which is a lower dimensional simplex, are uniquely 
determined by the values at the corresponding ver- 
tices. Sample trajectories for adjacent triangles are 
shown in Figure 2. 

Remark 2: Integrating the results of the previous 
two sections can be naturally captured in the language 
of hybrid systems [3]. The triangulation of the envi- 
ronment P results in a finite partition of the state 
space. In every element (triangle) of the partition, 
the pursuer is evolving using dynamics given in 
Equation 3 under the influence of affine, feedback 
controller of Equation 4 that guarantee physical 
motion between adjacent triangles. The switching 
occurs when the pursuer reaches the facet of adjacent 
triangles. The probabilities of the discrete transitions 
obey the guessing rules obtained in Section In. 

V. SIMULATIONS 
In Figure 2, we present sample trajectories gen- 

erated for a point robot (the pursuer). The velocity 
of the pursuer is subject to the polyhedral bounds 
U = [-l,l] x [-l,l]. The environment where the 
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Fig. 2. TOP A polygonal environment, its triangulation and the dual of the triangulation MIDDLE-BOTTOM ROWS: Actual 
Irajectories generated for four different rounds of the game. Each round cormponds to a hip from one leaf to another. Even though 
the rounds start with identical initial conditions, due to the randomized nahlre of the strategy, different trajectories ax generated. 
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game takes place, its triangulation and the dual graph 
of the triangulation is shown in the top figure. Actual 
trajectories generated for four different rounds of 
the game are presented in the rest of the figures. 
Each round corresponds to a trip from one leaf to 
another. During the round, the pursuer picks one 
of the children of his current triangle randomly as 
described in Section III. 

VI. CONCLUSION 
In this paper, we have studied the problem of 

generating feasible trajectories for a pursuer who tries 
to locate an adversarial, unpredictable evader in a 
simply-connected polygon. Our approach shuts from 
a discrete, randomized pursuit strategy based on a 
triangulation of the environment. We then generate 
feasible trajectories that obey motion constraints of 
the pursuer's model. The overall strategy yields a 
stochastic hybrid controller for the pursuer which 
guarantees that, with probability arbitrarily close to 
one, the pursuer will locate the evader regardless of its 
strategy. This is one of the few results in the literature 
for pursuit-evasion games in complex environments 
which give global guarantees while ensuring that the 
generated motions are feasible. 

One of our future research directions is to study 
the visibility-based pursuit evasion game in multiply- 
connected environments. Note that since the evader 
knows the position of the pursuer at all times, we 
can not locate the evader in such an environment 
using a single pursuer. Other research directions in- 
clude pursuit-evasion games in higher dimensions as 
well as more ambitious notions of capture such as 
intercepting the evader. 
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