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ABSTRACT

We present a computational framework and experimental platform
for robot navigation that allows for a user-friendly, graphical and
haptic interaction with the human operator during the deployment
process. The operator can see, feel, and manipulate the artificial po-
tential field that drives the robot through an environment cluttered
with obstacles. We present a case study in which the operator res-
cues a robot trapped in a local minimum of a navigation potential
field.

Index Terms: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Haptic I/O; I.2.9 [Artificial Intelligence]:
Robotics—Autonomous vehicles

1 INTRODUCTION

The aim in robot motion planning is to be able to specify a task in a
high-level, expressive language and to have the robot automatically
convert the specification into a set of low level primitives, such as
feedback controllers, to accomplish the task [4, 12, 13]. Navigation
is arguably the most common motion planning problem, in which
a robot is deployed from a specification given simply as “Go from
A to B and avoid obstacles.” Potential-based motion planners for
navigation are based on the idea that a robot configuration can be
driven to a desired value in the same way in which a particle moves
in a force field. They have been successfully applied to a variety of
robotic applications. Earlier work focused on motion planning for
robotic manipulators [8,15,16]. Since then, such methods have be-
come commonplace in path planning [12], with numerous examples
in just the past few years (e.g. [3, 7, 9, 14]).

A potential function is required to have a minimum value at the
goal and high values at the obstacles. It is usually constructed
through the superposition of attractive (to the goal) and repulsive
(from the obstacles) functions. As a result, such functions usually
exhibit local minima, which are undesired locations where the robot
can get trapped. Other limitations include barred passage between
closely spaced obstacles and oscillations in narrow passages [10].
A variety of approaches have been developed to overcome these
problems. For example, a modified Newton’s method has been de-
veloped to overcome the oscillations in the presence of obstacles
and narrow passages [17]. Several works address the local minima
problem. Some are based on the augmentation of the potential field
with a search-based planner. For example, the Randomized Path
Planner (RPP) [1] uses a variety of potential functions, and, when
stuck at a local minimum, it performs a random walk, with the goal
of escaping the local minimum. Assuming a successful path exists,
the RPP will find it with high probability. If no such path exists,
however, the scheme has no recourse for modifying the fields. Oth-
ers propose the construction of a special type of potential function,
called a navigation function [18, 19]. While guaranteed to have ex-
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actly one minimum, a navigation function can only be applied to
a limited class of configuration spaces, which are diffeomorphic to
sphere spaces. Finally, local minima can be dealt with by using po-
tential field methods locally, and path planning and path relaxation
methods globally [11]. Most of these approaches have the main
disadvantage that they are “static” or “off-line”: they only apply
to static environments and the human operator cannot intervene to
change the task specification or modify the robot trajectory during
the deployment process.

As robotics become increasingly present in different applica-
tions, from those in everyday life with service and medical robots,
to military settings with unmanned drones and human-robot teams,
the need for an intuitive approach for high-level supervision and
interaction with autonomous systems becomes ever more apparent.
With its ability to transmit information and commands both visu-
ally and tactilely, a combined graphical and haptic system is one
feasible scheme for such an intuitive interface.

With this motivation, in this paper we propose a computational
framework and experimental platform for robot navigation that al-
lows for a user-friendly interaction with the human operator dur-
ing the deployment process. The interaction is achieved through a
combined haptic and graphical interface (see Fig. 1). The interface
allows the operator to see, feel, and manipulate a potential field.
In particular, the potential field can be “pulled” to eliminate local
minima, which allows for the use of simple potential functions, e.g.,
sums of attractive and repulsive potentials. The interface can also
be used to adjust the potential function to changes in the environ-
ment, such as the appearance of new obstacles. These changes take
effect in real-time. The robot in this work is controlled by a simple
gradient descent on the potential field and thus the user modifica-
tions to the field translate immediately to changes in the motion of
the robot. The approach is similar to the use of haptics for motion
control in animation [6,20] but is targeted at motion planning rather
than direct control.

While in this paper we focus on potential-based navigation, we
believe that this graphical / haptic interface can be used to allow for
human intervention during deployment using other navigation tech-
niques, such as cell decompositions [4]. Indeed, the graphical inter-
face could display the vector fields in the partitioned environment,
and their intensities can be felt by the operator through the hap-
tic device. Since recent works show that cell-decomposition-based
motion planning allows for rich specification languages (see [2] for
a review), such as temporal logics [5], we envision that such tech-
niques will allow for high-level, user-friendly, human-robot inter-
action with applications in a variety of areas.

2 EXPERIMENTAL PLATFORM

The IN-HAPTICS platform, schematically depicted in Fig. 1, con-
sists of a wheeled robot, a human supervisor, a graphical interface,
and a haptic interface. The robot moves autonomously through its
workspace along a path determined by an artificial potential field.
This potential field is displayed to the human supervisor both on the
screen of the graphical interface and on the haptics device. At any
time, the supervisor can modify the potential field using the hap-
tics interface. After modification, the changes to the potential field
are transmitted over a wireless link to the robot and immediately
implemented.
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Figure 1: IN-HAPTICS: An autonomous robot moves under the in-
fluence of an artificial potential field. This field is displayed simulta-
neously on a graphical interface and haptics device. At any time, a
human supervisor can use the haptics device to modify the potential
field and adjust the behavior of the robot.

In our implementation, we use a K-Team Khepera III robot. The
main algorithm and the graphical interface are implemented in Mat-
lab on a PC. The graphical interface allows the user to switch be-
tween “modification mode”, during which the haptics device is used
to adjust the potential field, and “display mode” during which the
haptics device is used to tactilely explore the field. The PC is con-
nected to a SensAble Technologies PHANToM Premium. Modi-
fication of the potential field is achieved by first selecting a set of
points of the potential field using the stylus of the haptics device
and then using the stylus to define the desired values. The algo-
rithm, described in Sec. 3, connects these new points with a smooth
surface and then blends this surface into the surrounding field.

3 POTENTIAL FIELD REPRESENTATION AND MODIFICATION

Robot navigation in the workspace is achieved using a standard arti-
ficial potential field approach [12]. Under this scheme, a high value
for the potential field is assigned to obstacles and other regions to
avoid while the global minimum of the potential field is assigned
to the goal destination. While there are many ways to build such a
field, we take a simple approach and create the potential field as a
sum of repulsive fields, one for each obstacle in the environment,
and an attractive field with a global minimum at the goal location.

The attractive potential φatr is modeled as a combination of a
decaying potential and a potential well to ensure a negative gradient
of magnitude zero at the goal destination:

φatr(r) =


r2, r > rrob,√
r2 − rrob + r2rob, r ≤ rrob,

(1)

where r is the distance between the robot’s position and the goal
position and rrob is the radius of the robot.

For simplicity, we model each obstacle as a simple disk that is
large enough to circumscribe the obstacle it represents. Each disk is
enlarged by the radius of the robot. For each such disk, the repulsive
potential at a distance r from the center of an obstacle of radius robs
is

φrep(r, robs) = min

 „
1

r − robs − rrob

«2

, B

!
(2)

where B is a finite constant large enough to prevent collision of the
robot and the obstacle.

The full potential field at a position r = (x, y) with N obstacles
at positions ri, each of radius riobs, and with a goal at rg is then
given by

φ(r) = φatr (‖r− rg‖) +

NX
i=1

φrep
“
‖r− ri‖, riobs

”
(3)

where ‖ · ‖ denotes Euclidean length.
This potential field is displayed both graphically and on the hap-

tics device. To modify it, the user first enters “modification mode”
using the graphical interface. Using the stylus, the user then se-
lects a point and indicates its desired value, selects another point
and indicates its desired value, and so on. When the user completes
the point selection process, regular mode is again entered using the
graphical interface. The potential field is then modified according
to the following algorithm.

The set of points selected by the user defines a convex hull, indi-
cating the area to be modified as well as the potential field values for
the points defining the hull. Within this hull, a grid of points is de-
fined where pi = (xi, yi, zi) denotes the position of the ith point in
the grid. Note that the height zi is interpreted as the potential field
value. This points are then connected in “nearest-neighbor” fash-
ion using virtual springs. The boundary conditions defined by the
user-selected field values for the points defining the convex hull es-
tablish a set of initial conditions for the deflection of the springs. To
determine a smooth potential field surface within the convex hull,
the position of these points are numerically evolved according to

pi (k + 1) = pi (k) +
α

ni

niX
j=1

`
dij (k)− d̄ij

´
d̂ij(k) (4)

where k is the time index in the numerical solution, α is the spring
constant, ni is the number of nearest neighbors to point pi, dij is
the distance to the jth neighbor at time k, d̄ij is the unstretched
length of the spring to the ith neighbor, and d̂ij(k) is a unit vector
pointing from point pi to the jth neighbor.

Under this scheme, points on the edges of the convex hull are
connected only to points on the interior and thus feel a net force
pulling then into the hull, leading to a distortion of the hull. To pre-
vent this, additional points are defined along the edges of the hull.
These points are constrained to move only in the vertical direction
but otherwise follow the same dynamics. The final values of the
modified region are then determined by evolving the system (4) to
its equilibrium state.

To connect the modified region to the remainder of the potential
field an exponential decay is applied to points near, but outside the
convex hull as follows. A rectangular grid is defined near the mod-
ified region. For each point within a fixed distance of the hull, the
modified potential field value is found by evolving

φ (k + 1) = φ (k) e(−
1
r ) + φhull

“
1− e(−

1
r )
”

(5)

to its equilibrium value. Here r is the shortest distance between the
point and the convex hull, φhull is the potential field value at the
closest point on the hull, and k is the iteration index.

In Fig. 2 we illustrate the effect of this algorithm. The original
potential field, together with a collection of points selected by the
user, is shown in Fig. 2(a). The modified potential field after evolv-
ing (4) is shown in Fig. 2(b). Note that the edges of the modified
surface discontinuously connect to the rest of the field. The smooth,
final field after evolving (5) is shown in Fig. 2(c).

464

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 00:45:39 UTC from IEEE Xplore.  Restrictions apply. 



(a) Original Potential Field and Selected Points (b) Potential Field after Modification (c) Exponential Decay of Modified Region

Figure 2: Modifying a potential field. (a) Using the haptics device, the user selects a group of points. (b) The region inside the convex hull of the
selected points is modified according to the algorithm described in the text. (c) To prevent discontinuities, the modified region is connected to
the original potential field using an exponential decay.

4 MOBILE ROBOT DYNAMICS AND CONTROL

The dynamics of the Khepera robot are modeled as a kinematic
nonholonomic system, that is„

ẋ(t)
ẏ(t)

«
= v

„
cos θ(t)
sin θ(t)

«
(6)

where v is the speed of the robot and θ is the heading direction. The
robot is controlled using a standard steepest descent in the potential
field by controlling the heading direction according to

θ̇(t) = β (θ∇φ − θ(t)) (7)

where β is a gain and θ∇φ is the direction of the gradient of the
potential field. The speed v is given by

v = min (‖∇φ‖, vmax) , (8)

where vmax is a threshold used to limit the maximum speed.
When the robot becomes trapped in a local minima, the speed of

the robot goes to zero. After user modification of the field, there
may be a large difference between the current heading of the robot
and the direction of the gradient of the new potential field. As a
practical measure, the resulting large turning speeds are undesir-
able. Therefore, if a large change in the direction of the field is de-
tected, the robot speed is set to 0 until the heading is approximately
aligned to the new gradient direction. Once aligned, the motion is
then governed by (6) and (7).

5 EXPERIMENTAL RESULTS

In this section, we present an example in which IN-HAPTICS is
used to rescue the robot from a local minimum of a navigation po-
tential function. The environment, shown in Fig. 3(a), consists
of two obstacles that are placed close to each other and such that
they separate the robot from its goal position. Note that this is a
typical situation in which a trapping local minimum of the poten-
tial function is known to occur [4]. The potential function in the
robot configuration space is shown in Fig. 3(b). The combination
of the attractive and repulsive potentials results in a local minimum
at the point where the downward sloping attractive potential meets
the upward sloping repulsive potentials from the obstacles.

The robot moves autonomously under the control algorithms de-
scribed in Sec. 4 and gets trapped into the local minimum where
it stops (Fig. 3(a)). Upon noticing the trapping situation, the user
modifies the potential field in such a way that the local minimum
is eliminated (see Sec. 3). The modified potential is shown in Fig.
4(b) and the resulting motion of the robot, which escapes the unde-
sired local minimum, is presented in Fig. 4(a).

(a) The robot is trapped in a local minimum

(b) The initial potential field with trapping local minimum

Figure 3: A typical situation in which a robot is trapped in a local min-
imum of an artificial potential function: two close obstacles separate
the robot from its goal.
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(a) Escaping the local minimum

(b) Modified potential field

Figure 4: After user-modification of the potential field, the local min-
imum is eliminated and the robot autonomously steers around the
obstacles and proceeds to the goal.
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