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Abstract— We consider automatic synthesis of control policies
for non-independent, heterogeneous multi-agent systems with
the objective of maximizing the probability of satisfying a
given specification. The specification is expressed as a formula
in linear temporal logic. The agents are modeled by Markov
decision processes with a common set of actions. These actions,
however, may or may not affect the behaviors of all the
agents. To alleviate the well-known state explosion problem, an
incremental approach is proposed where only a small subset
of agents is incorporated in the synthesis procedure initially
and more agents are successively added until the limitations on
computational resources are reached. The proposed algorithm
runs in an anytime fashion, where the probability of satisfying
the specification increases as the algorithm progresses.

I. INTRODUCTION

Multi-agent systems have played an increasingly important
role in robotics research as robots often have to interact with
one another as well as other uncontrollable and partially
controllable dynamic agents, including humans. In addition,
the robots may have to perform more complex tasks than
target tracking, obstacle avoidance and going from one point
to another as typically studied in the robotics literature.

Linear temporal logic (LTL) has been demonstrated to be
a powerful language for specifying complex robotics tasks
[1]–[5]. Furthermore, it has been shown that control policies
that ensure or maximize the probability for the robots to
satisfy a specification expressed as a formula in LTL can be
automatically synthesized based on exhaustive exploration of
the state space [6]–[13].

For systems that contain multiple agents, the size of the
state space grows exponentially with the number of agents.
As a result, the control policy synthesis problem becomes
more computationally complex as more agents are incorpo-
rated in the synthesis procedure. Consider, as an example, the
problem where an autonomous vehicle needs to go through a
pedestrian crossing while there are multiple pedestrians who
are already at or approaching the crossing. The state space of
the complete system (i.e., the vehicle and all the pedestrians)
grows exponentially with the number of the pedestrians. As
a result, given a limited budget of computational resources,
solving the control policy synthesis problem with respect
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to LTL specifications may not be feasible when there are a
large number of pedestrians. This issue, commonly known
as the state explosion problem, has been a key obstacle that
limits the application of existing control policy synthesis
approaches to relatively small problems.

To alleviate the state explosion problem, distributed syn-
thesis where a global specification of the system is de-
composed into local specifications that can then be used to
synthesize control policies for the individual agents has been
proposed [14], [15]. The approach in [14], however, is limited
to the case where the global specification is traced-closed
whereas the approach in [15] requires manual decomposition
of the global specification and can be conservative. In
addition, distributed synthesis is not suitable for problems
that involve a large number of environment agents over which
the system does not have control.

In [16], [17], we proposed an anytime algorithm for
synthesizing a control policy for a robot interacting with
multiple independent environment agents with the objective
of maximizing the probability for the robot to satisfy a given
specification. The main idea was to progressively compute a
sequence of control policies, by taking into account only a
small subset of the environment agents initially and succes-
sively adding more agents to the synthesis procedure in each
iteration until the computational resource constraints were
exceeded. Incremental construction of various objects that
needed to be computed during the synthesis procedure was
proposed to avoid unnecessary computation by exploiting
the objects computed in the previous iteration. However, we
only considered a specific case where the robot was modeled
by a Markov decision process whereas each environment
agent was modeled by a Markov chain. Hence, an action of
the robot could not affect the behavior of the environment
agents. Furthermore, the specification was limited to the co-
safety fragment of LTL, which only admits tasks that can
be satisfied in finite time. Hence, tasks such as persistent
surveillance could not be specified. Incremental verification
and synthesis for other types of systems and specifications
can be found, e.g., in [18]–[20].

In this paper, we generalize our previous work [16],
[17] by considering more general systems and more general
specifications. The main contribution of this paper is twofold.
First, we consider full LTL, rather than only its co-safety
fragment; thus, allowing more expressive specifications. Sec-
ond, as opposed to [16], [17], which only considered a robot
interacting with multiple independent environment agents,
we consider more general multi-agent systems, including
those where robots interact with each other as well as envi-
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ronment agents. In addition, agents may not be completely
independent. We model each agent by a Markov decision
process. Two case studies are considered, illustrating that
we are able to obtain an optimal solution faster than existing
approaches. Another key advantage of our incremental ap-
proach is its anytime nature. For large problems that cannot
be fully solved, our incremental approach may still provide
a reasonable, potentially sub-optimal solution.

II. PRELIMINARIES

We consider systems that comprise multiple stochastic
components. In this section, we define the formalisms used
in this paper to describe such systems and their desired
properties. We let X∗, Xω and X+ denote the set of finite,
infinite and nonempty finite strings, respectively, of a set X .

A. Linear Temporal Logic and Automata
Linear temporal logic is a powerful specification language

for precisely expressing a wide range of properties of sys-
tems. An LTL formula is built up from a set Π of atomic
propositions, the logic connectives ¬, ∨, ∧ and =⇒ and
the temporal modal operators # (“next”), � (“always”), 3
(“eventually”) and U (“until”). LTL formulas are interpreted
on infinite strings σ = σ0σ1σ2 . . . where σi ∈ 2Π for all
i ≥ 0. Such infinite strings are referred to as “words.” The
satisfaction relation is denoted by |=, i.e., for a word σ and
an LTL formula ϕ, we write σ |= ϕ iff σ satisfies ϕ. We
refer the reader to [1]–[3] for more details on LTL.

Given propositional formulas p1 and p2, examples of
widely used LTL formulas include (i) a safety formula �p1

(read as “always p1”), which simply asserts that property
p1 remains invariantly true throughout an execution, (ii) a
reachability formula 3p1 (read as “eventually p1”), which
states that property p1 becomes true at least once in an
execution (i.e., there exists a reachable state that satisfies
p1) and (iii) a progress formula �3p1 (read as “always
eventually p1”), which states that the property p holds
infinitely often in an execution.

As we will see later, there is a tight relationship between
LTL and finite state automata that will be exploited in control
policy synthesis.

Definition 1: A deterministic Rabin automaton (DRA) is
a tuple A = (Q,Σ, δ, qinit, Acc) where (a) Q is a finite set of
states, (b) Σ is a finite set called alphabet, (c) δ : Q×Σ→ Q
is a transition function, (d) qinit ∈ Q is the initial state, and
(e) Acc ⊆ 2Q × 2Q is the acceptance condition. We use the
relation notation, q w−→ q′ to denote δ(q, w) = q′.

Consider an infinite string σ = σ0σ1 . . . ∈ Σω . A run for
σ in a DRA A = (Q,Σ, δ, qinit, Acc) is an infinite sequence
of states q0q1 . . . such that q0 = qinit and qi

σi−→ qi+1 for all
i ≥ 0. A run is accepting if there exists a pair (H,K) ∈ Acc
such that there exists n ≥ 0 such that for all m ≥ n, qm 6∈ H
and there exist infinitely many n ≥ 0 such that qn ∈ K.

A string σ ∈ Σω is accepted by A if there is an accepting
run of σ in A. The language accepted by A, denoted by
L(A), is the set of all accepted strings of A. It can be shown
that for any LTL formula ϕ over Π, there exists a DRA A
with alphabet Σ = 2Π that accepts all and only words over

Π that satisfy ϕ, i.e., L(A) = {σ ∈ (2Π)ω | σ |= ϕ}. Such
A can be automatically constructed using existing tools [21].

B. Systems and Control Policies
We consider the case where each component of the system

is modeled by a Markov decision process, defined as follows.
Definition 2: A Markov decision process (MDP) is a tuple

M = (S,Act,P, ιinit,Π, L) where (a) S is a countable set
of states, (b) Act is a countable set of actions, (c) P : S ×
Act × S → [0, 1] is the transition probability function such
that for any s ∈ S and α ∈ Act,

∑
s′∈S P(s, α, s′) ∈ {0, 1},

(d) ιinit : S → [0, 1] is the initial state distribution satisfying∑
s∈S ιinit(s) = 1, (e) Π is a set of atomic propositions,

and (f) L : S → 2Π is a labeling function.M is called finite
if S, Act and Π are finite. A valid initial state of M is a
state s ∈ S such that ιinit(s) > 0. An action α is enabled in
state s if and only if

∑
s′∈S P(s, α, s′) = 1. We let Act(s)

denote the set of enabled actions in s.
Assuming that all the components of the system make

a transition simultaneously, the complete system can be
constructed based on the synchronous parallel composition
of all the components. Synchronous parallel composition of
MDPs can be defined based on the definition of handshaking
composition [3] of transition systems as follows.

Definition 3: LetM1 = (S1, Act,P1, ιinit,1,Π1, L1) and
M2 = (S2, Act,P2, ιinit,2,Π2, L2) be Markov decision
processes. Their synchronous parallel composition, denoted
byM1||M2, is the MDPM = (S1×S2, Act,P, ιinit,Π1∪
Π2, L) where (a) for each s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2 and α ∈

Act, P(〈s1, s2〉, α, 〈s′1, s′2〉) = P1(s1, α, s
′
1)P2(s2, α, s

′
2),

(b) for each s1 ∈ S1 and s2 ∈ S2, ιinit(〈s1, s2〉) =
ιinit,1(s1)ιinit,2(s2), and (c) for each s1 ∈ S1 and s2 ∈ S2,
L(〈s1, s2〉) = L(s1) ∪ L(s2).

Given a complete system as the composition of all its
components, we are interested in computing a control policy
for the system that optimizes certain objectives. We define a
control policy for a system modeled by an MDP as follows.

Definition 4: Let M = (S,Act,P, ιinit,Π, L) be a
Markov decision process. A control policy for M is a
function C : S+ → Act such that C(s0s1 . . . sn) ∈ Act(sn)
for all s0s1 . . . sn ∈ S+.

Let M = (S,Act,P, ιinit,Π, L) be an MDP and C :
S+ → Act be a control policy for M. Given an initial
state s0 of M such that ιinit(s0) > 0, an infinite sequence
rCM = s0s1 . . . on M generated under policy C is called a
path on M if P(si, C(s0s1 . . . si), si+1) > 0 for all i. The
subsequence s0s1 . . . sn where n ≥ 0 is the prefix of length
n of rCM. We define PathsCM and FPathsCM as the set of all
infinite paths of M under policy C and their finite prefixes,
respectively, starting from any state s0 with ιinit(s0) > 0.
For s0s1 . . . sn ∈ FPathsCM, we let PathsCM(s0s1 . . . sn)
denote the set of all paths in PathsCM with the prefix
s0s1 . . . sn. It can be shown [3] that there exists a unique
probability measure PrCM on the σ−algebra associated with
M under policy C where for any s0s1 . . . sn ∈ FPathsCM,

PrCM{PathsCM(s0s1 . . . sn)} =
ιinit(s0)

∏
0≤i<nP(si, C(s0s1 . . . si), si+1).
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Given an LTL formula ϕ, one can show that the set
{s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ} is measurable
[3]. The probability for M to satisfy ϕ under policy C is
then defined as

PrCM(ϕ) = PrCM{s0s1 . . . ∈ PathsCM | L(s0)L(s1) . . . |= ϕ}.

For each state s ∈ S, we letMs = (S,Act,P, ιsinit,Π, L)
where ιsinit(t) = 1 if s = t and ιsinit(t) = 0 otherwise. We
define PrCM(s |= ϕ) = PrCMs(ϕ) as the probability for M
to satisfy ϕ under policy C, starting from s.

A control policy essentially resolves all the nondeterminis-
tic choices in an MDP and induces a Markov chainMC that
formalizes the behavior of M under control policy C [3]. In
general,MC contains all the states in S+ and hence may not
be finite even thoughM is finite. However, for a special case
where C is a memoryless or a finite memory control policy,
it can be shown that MC can be identified with a finite
MC. Roughly, a memoryless control policy always picks the
action based only on the current state of M, regardless of
the path that led to that state. In contrast, a finite memory
control policy also maintains its “mode” and picks the action
based on its current mode and the current state of M.

III. PROBLEM FORMULATION

Consider a system that comprises N (possibly heteroge-
neous) agents. Agent i ∈ {1, . . . , N} is modeled by a finite
Markov decision process Mi = (Si, Act,Pi, ιinit,i,Πi, Li)
where Act is the set of all the control actions that are
available to the system.

We assume that at any time instance, the state of the
system, which incorporates the state of all the agents, can
be precisely observed. In addition, we assume that all the
agents M1, . . . ,MN make a transition simultaneously, i.e.,
each of them makes a transition at every time step and
their interaction can be captured by the synchronous parallel
composition (see Definition 3). To ensure well-definedness of
the complete system, we assume that for all i ∈ {1, . . . , N}
and s ∈ Si, Act(s) = Act. Without this assumption, there
may exist a state of the complete system in which no valid
control action can be applied.

Control Policy Synthesis Problem: Given a system
model described by M1, . . . ,MN and an LTL formula ϕ
over Π1 ∪ . . . ∪ ΠN , we want to automatically synthesize
an optimal control policy C that maximizes the probability
PrCM(ϕ) for the system M =M1|| . . . ||MN to satisfy ϕ.

Example 1: Consider a mobility-on-demand system [22]
where a vehicle needs to transfer passengers between N − 1
stations as shown in Figure 1. The vehicle is modeled by an
MDPMN = ({st1, . . . , stN−1}, Act,PN , ιinit,N ,ΠN , LN )
where sti corresponds to station i. Each action α ∈ Act
corresponds to a path the vehicle can take. ΠN is defined as
the set of labels of all the stations. In this case, the labeling
function LN essentially maps each station to its label. Station
i is modeled by an MDP Mi = (Si, Act,Pi, ιinit,i,Πi, Li)
whose state s ∈ Si captures the number of passengers wait-
ing at the station. Each proposition in Πi describes the ab-
stract state of the station, e.g., the level of crowdedness. Note

st2
st1 st3

Fig. 1. The mobility-on-demand example.

that the number of passengers waiting at each station depends
on both the passenger arrival rate and the action taken by the
vehicle. In this case, a control policy for the system needs
to ensure that station 1 (e.g., the most important station)
always remains uncrowded whereas all the other stations
cannot be crowded for more than 1 time step consecutively.
In addition, we may also require that the vehicle visits each
station infinitely often. In this case, the specification ϕ is
given by ϕ = �¬c1 ∧

∧
i∈{2,...,N−1}�(ci =⇒ #¬ci) ∧∧

i∈{1,...,N−1}�3sti where for each i ∈ {1, . . . , N}, ci ∈
Πi is a label that indicates that station i is crowded.

Remark 1: Control actions in Act do not necessarily
affect the behaviors of all the agents. For example, there
may exist an agent i with Pi(s, α, s′) = Pi(s, α′, s′) for all
α, α′ ∈ Act and s, s′ ∈ Si, i.e., the transition probability
between each pair of states remains the same for all actions.
In [16], [17], such an agent is referred to as an “environment”
agent. In this paper, however, we do not distinguish between
an “environment” agent and a “robot.” In addition, an action
may affect multiple agents; hence, the agents may not be
completely independent.

IV. MDP CONTROL FROM LTL SPECIFICATIONS

A typical approach to solve the control policy synthesis
problem defined in Section III is to first compute the com-
position of all the system components to obtain the complete
system. Based on Definition 3, the complete system can be
modeled by the MDP M1|| . . . ||MN . We denote this MDP
by M = (S,Act,P, ιinit,Π, L). Next, we apply existing
results for synthesizing control policies for MDP from LTL
specifications [3], [12]. Roughly, this involves constructing
the product MDP and extracting an optimal control policy
for the product MDP as briefly described next. We refer the
reader to [3], [12] for more details

A. Construction of Product MDP
Let Aϕ = (Q, 2Π, δ, qinit, Acc) be a DRA that accepts

all and only words over Π that satisfy ϕ. The first step for
synthesizing a control policy for M from specification ϕ is
to obtain a finite MDP Mp = (Sp, Actp,Pp, ιp,init, Q, Lp)
as the product of M and Aϕ, defined as follows.

Definition 5: Let M = (S,Act,P, ιinit,Π, L) be an
MDP and let A = (Q, 2Π, δ, qinit, Acc) be a DRA. The
product of M and A is the MDP Mp =M⊗A defined by
Mp = (Sp, Act,Pp, ιp,init,Π, Lp) where Sp = S × Q and
Lp(〈s, q〉) = L(s). Pp is defined as

Pp(〈s, q〉, α, 〈s′, q′〉) =

 P̃p(〈s, q〉, α, 〈s′, q′〉)
if q′ = δ(q, L(s′))

0 otherwise
,

where P̃p(〈s, q〉, α, 〈s′, q′〉) = P(s, α, s′). For the rest of
the paper, we refer to P̃p : Sp × Act × Sp → [0, 1] as the
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intermediate transition probability function forMp. Finally,

ιp,init(〈s, q〉) =
{
ι̃p,init(〈s, q〉) if q = δ(qinit, L(s))
0 otherwise ,

where ι̃p,init(〈s, q〉) = ιinit(s). For the rest of the paper, we
refer to ι̃p,init : Sp → [0, 1] as the intermediate initial state
distribution for Mp.

Consider a path r
Cp
Mp

= 〈s0, q0〉〈s1, q1〉 . . . on Mp gen-

erated under some control policy Cp. We say that rCpMp
is

accepting if and only if qinitq0q1 . . . is an accepting run on
Aϕ, i.e., there exists a pair (H,K) ∈ Acc such that (1) there
exists n ≥ 0 such that for all m ≥ n, qm 6∈ H , and (2) there
exist infinitely many n ≥ 0 such that qn ∈ K.

Stepping through the above definition shows that given
a path r

Cp
Mp

= 〈s0, q0〉〈s1, q1〉 . . . on Mp generated under
some control policy Cp, the corresponding path s0s1 . . . on
M generates a word L(s0)L(s1) . . . that satisfies ϕ if and
only if rCpMp

is accepting. Hence, each accepting path of
Mp uniquely corresponds to a path of M whose word
satisfies ϕ. In addition, a control policy Cp on Mp induces
the corresponding control policy C on M. The details for
generating C from Cp can be found, e.g. in [3], [12].
B. Control Policy Synthesis for Product MDP

From probabilistic verification [3], it has been shown that
the maximum probability forM to satisfy ϕ is equivalent to
the maximum probability of reaching a certain set of states of
Mp known as accepting maximal end components (AMECs).
Before defining AMECs, we first provide the definition of
maximal end components (MECs) as follows.

Definition 6: An end component of an MDP M =
(S,Act,P, sp,init,Π, L) is a pair (T,A) where ∅ 6= T ⊆ S
and A : T → 2Act such that (1) ∅ 6= A(s) ⊆ Act(s)
for all s ∈ T , (2) the directed graph induced by (T,A) is
strongly connected, and (3) for all s ∈ T and α ∈ A(s),
{t ∈ Sp | Pp(s, α, t) > 0} ⊆ T .

An end component (T,A) is maximal if there is no end
component (T ′, A′) 6= (T,A) such that T ⊆ T ′ and A(s) ⊆
A′(s) for all s ∈ T . Based on iterative computations of
strongly connected components (SCCs), the set of all MECs
can be computed with the worst-case time complexity that
is quadratic in the size of the MDP [3].

Definition 7: Let M = (S,Act,P, sp,init,Π, L) be an
MDP and A = (Q, 2Π, δ, qinit, Acc) be a DRA. An ac-
cepting maximal end component of Mp = M ⊗ A is a
maximal end component (T,A) of Mp such that for some
(H,K) ∈ Acc, H ∩ T = ∅ and K ∩ T 6= ∅.

An AMEC (T,A) of Mp has the important property that
starting from any state in T , there exists a finite memory
control policy for Mp to keep the state within T forever
while visiting all states in T infinitely often with probability
1. Hence, the maximum probability for M to satisfy ϕ
is equivalent to the maximum probability of reaching SG,
where SG contains all the states in the AMECs of Mp.
Thus, our next step is to compute the maximum probability
of reaching SG. For the rest of the paper, we use LTL-like
notations to describe events in MDPs. In particular, 3SG
denotes the event of reaching some state in SG eventually.

For each s ∈ Sp, let xs denote the maximum probabil-
ity of reaching a state in SG, starting from s. Formally,
xs = supCp PrCpMp

(s |= 3SG). Well-known techniques for
computing the probability xs for each s ∈ Sp include linear
programming (LP) and value iteration [3]. LP-based tech-
niques yield an exact solution but they typically do not scale
as well as value iteration. On the other hand, value iteration
is an iterative numerical technique. This method works by
successively computing the probability vector (x(k)

s )s∈Sp for
increasing k ≥ 0 such that limk→∞ x

(k)
s = xs for all s ∈ Sp.

SCC-based value iteration (SCC-VI) has been proposed
to speed up value iteration [23], [24]. It can be shown
that given all the SCCs CMp

1 , . . . , C
Mp
m of Mp, an order

OMp among C
Mp

1 , . . . , C
Mp
m can be generated such that

the probability values of states in C
Mp

j that appears after
C
Mp

i in OMp cannot affect the probability values of states
in C

Mp

i . Hence, we can apply value iteration to each SCC
separately, according to the order in OMp . When processing
C
Mp

i , we exploit the order in OMp and existing values of xt
for each state t ∈ Sp \ C

Mp

i that is an immediate successor
of states in C

Mp

i to determine the set of s ∈ CMp

i where
x

(k+1)
s needs to be updated from x

(k)
s . Processing of SCC

C
Mp

i terminates when all x(k)
s , s ∈ C

Mp

i converges. We
refer the reader to [23], [24] for more details.

Once the vector (xs)s∈Sp is computed, a finite memory
control policy Cp for Mp that maximizes the probability
for M to satisfy ϕ can be constructed as follows. First,
consider the case whenMp is in state s ∈ SG. In this case, s
belongs to some AMEC (T,A) and the policy Cp selects an
action α ∈ A(s) such that all actions in A(s) are scheduled
infinitely often. (For example, Cp may select the action for s
according to a round-robin policy.) Next, consider the case
when Mp is in state s ∈ Sp \ SG. In this case, Cp picks an
action to ensure that PrCpM(s |= 3SG) = xs can be achieved.
If xs = 0, an action in Actp(s) can be chosen arbitrarily.
Otherwise, Cp picks an action α ∈ Actmaxp (s) such that
Pp(s, α, t) > 0 for some t ∈ Sp with ‖t‖ = ‖s‖ − 1. Here,
Actmaxp (s) ⊆ Actp(s) is the set of actions such that for all
α ∈ Actmaxp (s), xs =

∑
t∈Sp P(s, α, t)xt and ‖s‖ denotes

the length of a shortest path from s to a state in SG, using
only actions in Actmaxp .

V. INCREMENTAL COMPUTATION OF CONTROL POLICIES

The automatic synthesis procedure described in the previ-
ous section suffers from the state explosion problem as the
compositionM1|| . . . ||MN , whose size grows exponentially
with N , needs to be constructed, leading to an exponential
blow up of the state space. In this section, we propose
an incremental synthesis approach, where we progressively
compute a sequence of control policies, by taking into
account only a small subset of agents initially and succes-
sively adding more agents to the synthesis procedure in each
iteration until we hit the computational resource constraints.
Hence, even though the complete synthesis problem cannot
be solved due to the computational resource limitation, we
can still obtain a reasonably good control policy.
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Let N = {1, . . . , N}. Initially, we consider a small subset
N0 ⊂ N of agents. For each agent i 6∈ N0, we compute the
ordered set SCC(Mi) of all SCCs and the set MEC(Mi)
of all MECs of Mi and construct a simplified model M̃i

that essentially assumes that agent i is stationary under all
the control actions (i.e., we take into account the presence
of agent i but do not consider its full model). Formally,
M̃i = ({sM̃i}, Act, P̃i, ι̃init,i,Πi, L̃i) where sM̃i ∈ Si can
be chosen arbitrarily, P̃i(sM̃i , α, sM̃i) = 1, for all α ∈ Act,
ι̃init,i(sM̃i) = 1 and L̃i(sM̃i) = Li(sM̃i). Note that the
choice of sM̃i ∈ Si may affect the performance of our
incremental synthesis algorithm; hence, it should be chosen
such that it is the most likely state of Mi.

The composition MN0 =
∣∣∣∣∣∣
i∈N0

Mi ||
∣∣∣∣∣∣
i∈N\N0

M̃i is

then constructed. Note that since M̃i is typically smaller than
Mi, MN0 is typically much smaller than M1|| . . . ||MN .
We identify the ordered set SCC(MN0) of all SCCs and the
set MEC(MN0) of all MECs of MN0 . Then, following the
steps for synthesizing a control policy described in Section
IV, we construct MN0

p = MN0 ⊗ Aϕ. We also store the
intermediate transition probability function P̃N0

p and the
intermediate initial state distribution ι̃N0

p,init of MN0
p . At the

end of the initialization period (i.e., iteration 0), we obtain a
control policy CN0 that maximizes the probability for MN0

to satisfy ϕ.
Our algorithm then successively adds more full models

of the rest of the agents to the synthesis procedure at
each iteration. In iteration k > 0, we consider the set
Nk = Nk−1 ∪ {l} of agents for some l ∈ N \ Nk−1

and let MNk =
∣∣∣∣∣∣
i∈Nk

Mi ||
∣∣∣∣∣∣
i∈N\Nk

M̃i. Following the

similar procedure as in iteration 0, we identify the ordered
set SCC(MNk) of all SCCs and the set MEC(MNk) of
all MECs of MNk and construct MNk

p = MNk ⊗ Aϕ,
while storing its intermediate transition probability function
P̃Nk
p and its intermediate initial state distribution ι̃Nk

p,init.
Finally, we obtain a control policy CNk that maximizes the
probability for MNk to satisfy ϕ. Note that CNk can be
applied to the complete system M by considering CNk to
be only a function of states of agents in Nk. The probability
for the complete systemM to satisfy ϕ under CNk can then
be efficiently computed using probabilistic verification [3].

The process outlined in the previous paragraph terminates
at iteration k̄ when one of the following conditions hold: (1)
Nk̄ = N, (2) the complete system under policy CNk̄ satisfies
ϕ with probability 1, or (3) the computational resource
constraints are exceeded. This idea also appears in [16].
However, in [16], we consider the case where only one
agent (i.e., the robot) is modeled by a finite MDP while
the other agents (i.e., the environment agents) are modeled
by finite Markov chains. The approach proposed in [16] then
allows us to incrementally compute the product MDP and a
control strategy that maximizes the probability of reaching
a given set SG of “goal” states, while avoiding unneces-
sary computation by exploiting the objects computed in the
previous iteration. Since only co-safety formulas ϕ were

considered, the set SG in [16] could be easily identified from
the set of final states of the deterministic finite automaton that
recognizes the good prefixes of ϕ. In this paper, we consider
the case where all the agents are modeled by finite MDPs and
we allow any specification that can be expressed in LTL (not
necessarily the co-safety fragment). The computation of the
AMECs of MNk

p for each iteration k is therefore necessary
to identify SG.

Consider an arbitrary iteration k ≥ 0 and let l be the
index such that Nk+1 = Nk ∪ {l}. First, note that a
state sp of MNk

p is of the form sp = 〈s, q〉 where s ∈
S0 × S1 × . . .× SN and q ∈ Q. For s = 〈s0, s1, . . . , sN 〉 ∈
S0 × S1 × . . . × SN , i ∈ {0, . . . , N} and r ∈ Si, we
define s|i←r , 〈s0, . . . , si−1, r, si+1, . . . , sN 〉, i.e., s|i←r
is obtained by replacing the ith element of s by r. The
following lemma shows thatMNk+1

p , P̃Nk+1
p and ι̃Nk+1

p,init can
be incrementally constructed from MNk

p , P̃Nk
p and ι̃Nk

p,init.
This allows us to avoid computing MNk+1 .

Lemma 1: Let MNk
p = (SNk

p , Act,PNk
p , ιNk

p,init,Π,
LNk
p ). Suppose Πi ∩ Πj = ∅ for all i 6= j. Then, MNk+1

p

= (SNk+1
p , Act,PNk+1

p , ι
Nk+1
p,init,Π, L

Nk+1
p ) where S

Nk+1
p =

{〈s|l←r, q〉 | 〈s, q〉 ∈ SNk
p and r ∈ Sl} and for any s =

〈s0, . . . , sN 〉, s′ = 〈s′0, . . . , s′N 〉 ∈ S0×. . . SN and q, q′ ∈ Q,
• PNk+1

p (〈s, q〉, α, 〈s′, q′〉) = 0 if
q′ 6= δ(q, LNk+1

p (〈s′, q′〉)). Otherwise,
PNk+1
p (〈s, q〉, α, 〈s′, q′〉) = P̃Nk+1

p (〈s, q〉, α, 〈s′, q′〉),
where the intermediate transition probability function
is given by P̃Nk+1

p (〈s, q〉, α, 〈s′, q′〉) = Pl(sl, α, s′l)
P̃Nk
p (〈s̃, q〉, α, 〈s̃′, q′〉) for any 〈s̃, q〉, 〈s̃′, q′〉 ∈ SNk

p

such that s̃|l←sl = s and s̃′|l←s′l = s′,
• ι

Nk+1
p,init(〈s, q〉) = 0 if q 6= δ(qinit, L

Nk+1
p (〈s, q〉)).

Otherwise, ιNk+1
p,init(〈s, q〉) = ι̃

Nk+1
p,init(〈s, q〉), where the

intermediate initial state distribution is given by
ι̃
Nk+1
p,init(〈s, q〉) = ιinit,l(sl)ι̃Nk

p,init(〈s̃, q〉) for any 〈s̃, q〉 ∈
SNk
p such that s̃|l←sl = s, and

• L
Nk+1
p (〈s, q〉) =

(
LNk
p (〈s̃, q〉)\Ll(s̃l)

)
∪Ll(sl) for any

〈s̃, q〉 ∈ SNk
p such that s̃|l←sl = s.

The following two lemmas then show how the set of MECs
of MNk+1

p can be incrementally constructed.
Lemma 2: For any maximal end component (TNk

p , ANk
p )

of MNk
p , TNk

p ⊆ {〈s, q〉 | s ∈ TNk , q ∈ Q} for some
maximal end component (TNk , ANk) of MNk .

Proof: Since (TNk
p , ANk

p ) is an end component of
MNk

p , it can be easily checked from the definition of product
MDP that (TNk , ANk) is an end component ofMNk where
TNk = {s | 〈s, q〉 ∈ TNk

p } and for each s ∈ TNk , ANk(s) =⋃
q s.t. 〈s,q〉∈TNk

p
ANk
p (〈s, q〉). Hence, we can conclude that

for any 〈s, q〉 ∈ TNk
p , s ∈ TNk and q ∈ Q where

(TNk , ANk) is the end component of MNk associated with
the end component (TNk

p , ANk
p ) of MNk

p .
Lemma 3: For any maximal end component (TNk+1 ,

ANk+1) of MNk+1 , TNk+1 ⊆ {s|l←r | s ∈ TNk , r ∈ T l}
for some maximal end component (TNk , ANk) ofMNk and
some maximal end component (T l, Al) of Ml.

Proof: Since (TNk+1 , ANk+1) is an end component
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of MNk+1 , from the definition of parallel composition
of MDPs, it can be shown that (TNk , ANk) is an end
component of MNk and (T l, Al) is an end component
of Ml where TNk = {s|

l←sM̃l
| s ∈ TNk+1} T l =

{sl | 〈s0, . . . , sN 〉 ∈ TNk+1}, for each s ∈ TNk , ANk(s) =⋃
s̃ s.t. s̃|

l←sM̃l
=sA

Nk+1(s̃) and for each s ∈ T l, Al(sl) =⋃
s̃ s.t. s̃l=sl A

Nk+1(s̃). Hence, we can conclude that for any
s ∈ TNk+1 , s|

l←sM̃l
∈ TNk and sl ∈ T l where TNk , ANk

and (T l, Al) are maximal end components ofMNk andMl,
respectively.

Based on Lemma 1–3, Algorithm 1 summarizes our ap-
proach for incremental computation of control policies. It
relies on construction of AMECs of a subset of states of the
product MDP. Algorithm 2 adapts the AMECs computation
algorithm [3] to allow such partial construction of AMECs.
The correctness of Algorithm 1 can be directly derived from
Lemma 1–3 and the correctness of the AMECs computation
algorithm [3] as formally stated below.

Proposition 1: Algorithm 1 correctly returns MNk+1
p ,

P̃Nk+1
p , ι̃Nk+1

p,init, SCC(MNk+1), MEC(MNk+1) and CNk+1 .

Algorithm 1: Incremental control policy synthesis

Input: MNk
p , P̃Nk

p , ι̃Nk
p,init, SCC(MNk), MEC(MNk),1

Aϕ, Ml, SCC(Ml), MEC(Ml)
Output: MNk+1

p , P̃Nk+1
p , ι̃Nk+1

p,init, SCC(MNk+1),2

MEC(MNk+1), CNk+1

Compute MNk+1
p , P̃Nk+1

p and ι̃Nk+1
p,init from MNk

p , P̃Nk
p3

and ι̃Nk
p,init as described in Lemma 1

MEC(MNk+1) := ∅4

foreach TNk ∈ MEC(MNk) do5

foreach T l ∈ MEC(Ml) do6

Add {s|l←r | s ∈ TNk , r ∈ T l} to MEC(MNk+1)7

goal := ∅8

foreach TNk+1 ∈ MEC(MNk+1) do9

Compute AMEC(MNk+1
p , TNk+1 ,Aϕ) using10

Algorithm 2
foreach T

Nk+1
p ∈ AMEC(MNk+1

p , TNk+1 ,Aϕ) do11

foreach s ∈ TNk+1
p do12

Add s to goal13

Incrementally compute SCC(MNk+1) and CNk+1 using14

the algorithm presented in [16], which takes
SCC(MNk), SCC(Ml), MNk+1

p and goal as input
Return: MNk+1

p , P̃Nk+1
p , ι̃Nk+1

p,init, SCC(MNk+1),15

MEC(MNk+1), CNk+1

VI. EXPERIMENTAL RESULTS

Case Study 1: We revisit the mobility-on-demand prob-
lem described in Example 1. Suppose there are 3 stations.
The models of the vehicle and the stations are shown
in Figure 2. The DRA Aϕ automatically generated using
ltl2dstar [21] contains 37 states.

We apply the LP-based and SCC-based value iteration
techniques described in Section IV to synthesize a control

Algorithm 2: Computing AMECs of a sub-MDP

Input: Aϕ = (Q, 2Π, δ, qinit, Acc),1

MNk+1
p = (SNk+1

p , Act,PNk+1
p , ι

Nk+1
p,init,Π, L

Nk+1
p ),

TNk+1 ⊆ SNk+1

Output: AMEC(MNk+1
p , TNk+1 ,Aϕ)2

foreach s ∈ SNk+1
p do3

A(s) := Act(s)4

AMEC := ∅; AMECnew := {TNk+1 ×Q}5

while AMEC 6= AMECnew do6

AMEC := AMECnew; AMECnew := ∅7

foreach T ∈ AMEC do8

R := ∅9

Compute the set SCC of nontrivial SCCs of10

(T,Act,PNk+1
p , ι

Nk+1
p,init,Π, L

Nk+1
p )

foreach C ∈ SCC do11

foreach s ∈ C do12

A(s) := {α ∈ A(s) | ∀t s.t. PNk+1
p (s, α, t) >13

0, t ∈ C}
if A(s) = ∅ then14

Add s to R15

while R 6= ∅ do16

Pick an arbitrary s ∈ R17

Remove s from R and T18

foreach t ∈ T, β ∈ A(t) s.t. PNk+1
p (t, β, s) > 019

do
Remove β from A(t)20

if A(t) = ∅ then21

Add t to R22

foreach C ∈ SCC do23

if ∃(H,K) ∈ Acc s.t. T ∩ C ∩H = ∅ and24

T ∩ C ∩K 6= ∅ then
Add T ∩ C to AMECnew25

Return: AMEC26

policy that maximizes the probability that the complete
system M = M1||M2|| . . . ||M4 satisfies ϕ. In this case,
the product MDPMp =M⊗Aϕ contains 2997 states. The
time required for each step of computation is summarized
in Table I1. Both approaches generate a control policy that
ensures that M satisfies ϕ with probability 1. The total
computation times for the LP-based and SCC-based value it-
eration techniques are 64.55 and 74.67 seconds, respectively.

Next, we apply the incremental technique described in
Section V. We let N0 = {4}, i.e., the full model of the vehi-
cle is considered whereas for the stations, only the simplified
models are used during initialization. For each i ∈ {1, 2, 3},

1The computation time is implementation dependent. In this section,
we compare the computation times of various approaches under the same
implementation of Mp, SCCs, AMECs, probability vector and control
policy computation in Python. These computation times can be improved
by using a more efficient implementation.
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Technique Mp SCCs AMECs Prob
vector

Control
policy Total

Single pass,
LP 26.5 - 23.22 14.79 0.04 64.55

Single pass,
SCC-VI 26.5 24.68 23.22 0.24 0.04 74.67

Incremental 0.14 3× 10−5 0.04 0.001 0.0005 0.18

TABLE I
MOBILITY-ON-DEMAND: TIME REQUIRED (IN SECONDS) FOR

COMPUTING VARIOUS OBJECTS DURING CONTROL POLICY SYNTHESIS.

we let sM̃i = cl0. The product MDP MN0
p = MN0 ⊗ Aϕ

then contains only 111 states. The initialization step takes
0.18 seconds, generating a control policy that ensures thatM
satisfies ϕ with probability 1. Hence, the synthesis process
can be terminated with the total computation time of only
0.18 seconds.

Remark 2: In the case where there are multiple vehicles
providing mobility on demand, the incremental approach will
arbitrarily pick a policy for the vehicles whose full models
have not been incorporated in the synthesis procedure. Sup-
pose the synthesis procedure needs to be terminated due to
the computational resource constraints. In this case, we can
have these vehicles follow some preassigned policy.

Case Study 2: As another example, consider the prob-
lem illustrated in Figure 3 where an autonomous vehicle
needs to go through a pedestrian crossing while there
are 5 pedestrians who are already at or approaching the
crossing. The vehicle is modeled by an MDP M6 whose
state describes the cell occupied by the vehicle. For each
i ∈ {0, . . . , 4}, We define L6(ci) = c6i . The set Act
captures the motion primitive of the vehicle and is defined
as Act = {α0, α1} where α0 and α1 correspond to the
case where the vehicle applies the brake and the throttle,
respectively. Pedestrian i is modeled by an MDPMi whose
state describes the cell occupied by the pedestrian and whose
labeling function is defined as Li(cj) = cij for each j ∈
{0, . . . , 4}. The models of the vehicle and the pedestrians are
shown in Figure 3. The desired property of the system is that
the vehicle never collides with any pedestrian and the vehicle
eventually reaches cell c4. This property can be expressed in
LTL as ϕ = �

∧
i∈{1,...,5},j∈{0,...,4} ¬(c6j ∧ cij)∧3c64. In this

case, Aϕ generated using ltl2dstar [21] contains 3 states.

st1

st2

st3

α1, 1 α2, 1

α3, 1

α2, 1

α1, 1

α3, 1
α3, 1

α2, 1

α1, 1

(a) Vehicle model M4.

cl0 cl1 cl2

αi, 1

ᾱi, p
1
i

ᾱi, p
2
i

ᾱi, p
3
i

ᾱi, p
4
i

αi, 1

ᾱi, p
5
i

ᾱi, 1

αi, 1

(b) Station models Mi, i ∈ {1, 2, 3}. p1i , . . . , p5i > 0 are
defined such that Mi is a valid MDP. ᾱi can take any value
in Act \ {αi}. State cl2 is labeled as crowded.

Fig. 2. The mobility-on-demand example.

c4
c3

c0
c1
c2

(a) The road and its partition

c1 c2 c3

α0, 0.6
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α0, 0.4

α1, 0.4
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α1, 0.4

α0, 0.6
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(b) Pedestrian model M5
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(c) Pedestrian models
M1, . . . ,M4
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α0
0.9
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α0
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α1
0.9

α0
1
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1

(d) Vehicle model M6

Fig. 3. The autonomous vehicle example.

The computation times required for control policy syn-
thesis using the LP-based and SCC-based value iteration
techniques described in Section IV are provided in Table
II. Both approaches yield the probability of 0.54 that ϕ is
satisfied under the synthesized control policy.

Let N0 = {6},N1 = {1, 6},N2 = {1, 2, 6}, . . . ,N5 =
{1, . . . , 6}, i.e., we successively add pedestrian 1, 2, . . . , 5
respectively, in each iteration. We consider 2 approaches:
(1) the incremental approach described in Section V, and
(2) the non-incremental approach where a control policy
is recomputed from scratch once a pedestrian is added
to the synthesis procedure in each iteration. For approach
(2), we apply the LP-based technique since from Table II,
it is the faster technique to solve this problem. For both
approaches, 6 control policies CN0 , . . . , CN5 are generated
for MN0 , . . . ,MN5 respectively. The probabilities that the
complete system M satisfies ϕ under these control policies
are computed to be PrC

N0

M (ϕ) = 0.1, PrC
N1

M (ϕ) = 0.12,
PrC

N2

M (ϕ) = 0.14, PrC
N3

M (ϕ) = 0.15, PrC
N4

M (ϕ) = 0.16, and
PrC

N5

M (ϕ) = 0.54.
The comparison of various techniques discussed above

is illustrated in Figure 4. For the incremental and non-
incremental techniques, a jump in the probability occurs each
time a new control policy is computed. Note that our incre-
mental approach performs significantly better than any other
techniques, generating an optimal solution within 21 seconds
while the second fastest approach takes approximately 81
seconds to arrive at a solution with similar quality. This is
largely due to the efficiency of our incremental construction
of SCCs and AMECs. In addition to generating an optimal
solution much more efficiently than other techniques, another
key advantage of our incremental approach is its anytime
nature. For large problems that cannot be fully solved,
our incremental approach may still provide a reasonable,
potentially sub-optimal solution.

Remark 3: In [16], [17], a similar autonomous vehicle
problem as in Case Study 2 was considered. However, the
pedestrians were modeled by Markov chains, preventing us
from capturing the interaction between the pedestrians and
the vehicle. Hence, the pedestrians behaved exactly the same
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Technique Mp SCCs AMECs Prob
vector

Control
policy Total

LP 7.8 - 59.46 13.74 0.29 81.29
SCC-VI 7.8 55.04 59.46 0.91 0.29 123.5

TABLE II
AUTONOMOUS VEHICLE: TIME REQUIRED (IN SECONDS) FOR

COMPUTING VARIOUS OBJECTS WHEN CONTROL POLICY SYNTHESIS IS

SOLVED IN A SINGLE PASS.

Fig. 4. Comparison of computation time and probability of satisfying
the specification when control policies are synthesized using different
techniques.

way no matter whether the vehicle applied the throttle or the
brake, which is not reasonable. Modeling the pedestrians by
MDPs allows us to capture such an interaction.

VII. CONCLUSIONS AND FUTURE WORK

An anytime algorithm for synthesizing a control policy
for multi-agent systems with the objective of maximizing
the probability of satisfying a given LTL specification is
proposed. The agents are modeled as Markov decision pro-
cesses and their interaction is captured by parallel com-
position. The proposed algorithm progressively computes a
sequence of control policies, by taking into account only
a small subset of agents initially and successively adding
more agents to the synthesis procedure in each iteration
until the constraint on computational resources is exceeded.
Incremental construction of various objects needed to be
computed during the synthesis procedure is also proposed
to avoid unnecessary computation and exploit the objects
computed in the previous iteration. The application of our
approach is demonstrated in two case studies: mobility on
demand and autonomy. In both case studies, our approach
is able to obtain an optimal solution significantly faster than
existing approaches. The anytime nature of our approach also
provides an additional benefit. For large problems that cannot
be fully solved, our incremental approach may still provide
a reasonable, potentially sub-optimal solution.

Future work includes examining an effective approach to
determine an agent to be added in each iteration. Such an
agent may be picked based on the result from probabilistic
verification. We are also considering integrating incremen-
tal synthesis with a complementary approach, namely dis-
tributed synthesis, where the synthesis problem is broken up
into a set of smaller problems, each for each subsystem.
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