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Abstract— In this work we consider an agent trying to max-
imize a submodular reward function while moving in a graph
environment. Such reward functions can be used to capture a
variety of crucial sensing objectives in robotics including, but
not limited to, mutual information and entropy. Furthermore,
the agent must satisfy a mission specified by temporal logic
constraints, which can encode many rich and complex missions
such as “visit regions A or B, then visit C, infinitely often. Never
visit D before visiting C.” We present an algorithm to maximize
a submodular reward function under these constraints and
provide an approximation for the performance of the proposed
algorithm. The results are validated via simulation.

I. INTRODUCTION

In a surveillance mission an agent visits a set of locations
to increase situational awareness. A major goal in such mis-
sions is to plan the optimal path of the agent with respect to a
performance metric. Mutual information or entropy are some
commonly used metrics in surveillance scenarios (e.g., [1],
[2], [3], [4], [5], [6]), and they exhibit a property called
submodularity. Intuitively, submodular functions exhibit the
property of diminishing returns (i.e., adding a new observa-
tion increases the function’s value more if a few observations
are made so far than if many observations have already
been made). Greedy algorithms have proven performance
bounds for the maximization of submodular functions [7],
making such algorithms an attractive and convenient tool
when sensing goals are expressed as submodular functions.

Recently, there has been an increased interest in de-
veloping efficient algorithms optimizing submodular objec-
tive functions (e.g., [8], [9], [10]). The authors in [11]
addressed the problem of finding an optimal path for a
single agent maximizing a submodular function (over the
visited regions) and developed a recursive-greedy algorithm
with theoretical approximation guarantees. This recursive-
greedy approach was extended to multi-agent scenarios with
resource constraints [10] and single-agent scenarios with
multiple tours [9]. Moreover, a recent study [12] proposed
a cost-benefit algorithm optimizing submodular functions
while considering other costs (e.g., coverage cost, visit cost).

In some surveillance missions, while an agent is op-
timizing a performance measure, it may also be subject
to trajectory constraints such as avoiding some regions or
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visiting regions in a specific order. As the complexity of
these constraints increases, it is hard to formulate them in
a classical optimization setup. Temporal logics (TL), which
are rich and expressive specification languages, can capture
such complex constraints. For example, Linear Temporal
Logic (LTL) can express a persistent surveillance task as
follows: “visit regions A or B, then C, infinitely often.
Never visit D before visiting C.” Motion planning subject to
TL formulas has been extensively studied in the literature
(e.g., [13], [14], [15], [16], [17], [18]). Typically, model
checking algorithms [19] are used to find a high-level plan,
which is then implemented by a low-level controller.

Recent work using TL planning for information gathering
includes [20], [21], [22]. These works in general do not
produce an optimal solution due to the limited lookahead
horizons. Specifically, they use closed-loop planning in the
belief space online, but provide no performance guarantees.
In this work we compute the entire path offline and provide
an approximate solution with performance guarantees. More-
over, task planning and sequencing under some set, counting,
and ordering constraints was discussed in [23], which differs
from our work by considering a brute-force approach to find
a path satisfying the constraints.

The problem we consider is to satisfy a surveillance
mission in a discretized environment while maximizing a
submodular set function. The mission is specified using TL
constraints, and we seek a principled manner of searching
over only those paths which satisfy the specification. By op-
timizing submodular functions, our solution is applicable to
a broad class of sensing and information gathering scenarios,
and by considering TL constraints, the proposed method can
deal with numerous rich and complex mission specifications.
This method mitigates the complexity of such problems and
has a guaranteed optimality bound on the performance. To
the best of our knowledge, the work presented in this paper
is the first effort of optimizing submodular functions subject
to TL constraints with theoretical bounds.

II. PRELIMINARIES

A. Notation

For two sets A and B, we denote their Cartesian product
as A×B. Let An = A×A× . . .×A, where the Cartesian
product × is taken n times. The cardinality of a set A is
written |A|. For v ∈ A and t ∈ N, v0:t is a sequence of
length t + 1 from At+1. For two sequences χ1 ∈ At1 and
χ2 ∈ At2 , we denote their concatenation as χ1 ∪ χ2. We
denote the concatenation of k > 2 such sequences as χ1:k.
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We denote a directed graph G = (V,E), which consists of
a set of nodes V and a set of directed edges E ⊆ V ×V . For
two nodes v1, v2 ∈ V , let d (v1, v2) be the graph distance
between those nodes, which is defined as the shortest path
between them.

B. Temporal logic (TL) constraints

We consider the agent’s mission specified as a fragment
of syntactically co-safe LTL (scLTL) specification φ. Given
a set of atomic propositions AP , scLTL formulas are induc-
tively defined as [24]:

φ = p|¬φ|φ1 ∧ φ2|φ1Uφ2| © φ1|♦φ1 , (1)

where p ∈ AP is an atomic proposition, and φ, φ1, and
φ2 are scLTL formulas. The boolean operators ¬ and ∧
are negation and conjunction, respectively. The temporal
operators U , ©, and ♦ denote until, next, and eventually,
respectively. The interested reader is referred to [24] for a
full description of the syntax and semantics of this logic.
Given an scLTL formula φ, we can convert it to a finite
state automaton (FSA) using off-the-shelf tools [25].

Definition II.1 (Finite State Automaton). A finite state
automaton is a tuple A = (Q, q0,Σ,∆A, FA), where

• Q is a finite set of states;
• q0 ∈ Q is an initial state;
• Σ is a finite input alphabet;
• ∆A : Q×Σ→ Q is a deterministic transition function;
• FA ⊆ Q is a set of accepting states.

A run of an FSA for an input word σ0, σ1, . . . σn−1 ∈ Σn

is a sequence of states q0, q1, . . . qn ∈ Qn+1, where qi+1 =
∆A (qi, σi) for all i < n in the run. An FSA accepts an input
word of length n if and only if the final state of the run is
in its set of accepting states, i.e., qn ∈ FA.

C. Submodular functions

In this work we consider a global reward function f (·) :
2V → R that an agent is trying to optimize with respect
to a set V , such as mutual information, entropy, or duration
of time since last visit [26]. Such reward functions exhibit
a property called submodularity, i.e., ∀A ⊆ B ⊆ V and
v ∈ V \B:

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) . (2)

This property can be understood intuitively as a type of
diminishing returns. More importantly, these functions have
provable optimality bounds for greedy approaches [8]. To
evaluate the incremental benefit of adding some element v
to a set R, we define the residual reward function, fR (·),
where

fR (v) = f (R∪ {v})− f (R) . (3)

III. PROBLEM FORMULATION

A. Agent motion model

For our problem, we consider an environment modeled
as a graph G = (V,E), with V representing a set of
regions of interest and E representing the feasible travel
between those regions. The agent’s objective is to maximize
a submodular reward function while moving through its
environment, without violating its TL constraints.

Definition III.1 (Deterministic Transition System). A
deterministic transition system (TS) is a tuple T =
(V, v0, Act,∆), where

• V is a finite set of states from G;
• v0 ∈ V is the initial state;
• Act is a finite set of actions;
• ∆ : V ×Act→ V is a deterministic transition function.

The motion of the agent is modeled using a deterministic
transition system whose states are the nodes in the environ-
ment graph. At each time step, the agent selects an action
and moves in the environment. For simplicity, we assume that
each action takes one time step to complete. The methods
presented in this paper also extend to the case in which the
transition system is weighted, with the weights representing
the relative travel time or cost for the different transitions.
Such weights are omitted to keep the exposition and notation
as simple as possible. Thus, the agent’s movement through
the environment via a set of actions a1, a2 . . . an ∈ Actn

corresponds to a sequence of states v0, v1, v2, . . . vn ∈ V n+1.

B. Problem statement

For a specificaton φ over V , we assume a deadline on
satisfaction B, which corresponds to an energy budget for
the agent’s motion. That is, the agent may take B transitions
to satisfy φ1. The specification is given over the set of nodes
in the environment V , including the base vb ∈ V , at which
the agent starts and finishes each tour of the environment.
Thus, the specification enforces an ordering over a subset of
nodes in V , while the agent is permitted to visit the other
nodes regardless of order.

Problem III.1. Given an environment graph G = (V,E),
an agent operating in G and modeled as a transition system
T = (V, v0, Act,∆), a specification φ over V , a budget B
on satisfaction of φ, and a submodular reward function f :
2V → R, find a sequence of agent states v0:B that solves the
following optimization problem:

max
v0:B

f
(
v0:B

)
(4)

and satisfies specification φ.

Example 1. Consider the environment in Fig. 1, which is
abstracted as a graph. An agent begins at a base located at

1For a weighted transition system, this requirement corresponds to the
sum of the weights of a path being less than or equal to B.
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Fig. 1: Example environment abstracted as a graph. Obstacles
are indicated in gray.

vb and must visit nodes v3 and v4 before returning to the
base. Then its specification φ is written

♦v3 ∧ ♦v4 ∧ ♦vb ∧ (vb =⇒ vbU (¬vbUv3)) ∧ (vb =⇒ vbU (¬vbUv4)) .

(5)

If its budget B were 8 time units, the agent can take 8
transitions while trying to ensure that φ is satisfied and
f
(
v0:B

)
is maximized. One f (·) of interest could be time

since last visit, which is a modular function2. The time since
the agent’s last visit to node i as of time t is written αi (t),
and it evolves according to

αi(t) =

{
0 if the agent visits node vi at time t,
αi(t− 1) + 1 otherwise.

(6)

The objective function then becomes

f
(
v0:B

)
= −

B∑
t=1

|V |∑
i=1

αi (t) , (7)

a modular function that we wish to maximize. The residual
reward with respect to no surveillance is

fR
(
v0:B

)
= f

(
∅ ∪ v0:B

)
− f (∅) , (8)

where f (·) is given by (7). It is (8) that our algorithm
will use in its maximization. This function quantifies the
improvement in (7) that a path yields in comparison to no
surveillance.

IV. SOLUTION

A. Solution overview

The solution we propose is inspired by the algorithm in
Meliou et al. [9], which builds on work by Chekuri and
Pal [11]. In general, planning under TL constraints uses
graph algorithms on the product of the automaton A and the
transition system T , which has |V ||Q| nodes. Rather than
planning over a product of A and T , we plan over a subset
of T by looking at the appropriate edges in A, reducing
the complexity of our proposed solution. In [9], the authors
presented a nonmyopic solution to a persistent mission on

2This function can be formulated as a linear function over a set of states
(see [13]), which is a type of modular function [27].

an environment graph. They searched for a solution over
multiple tours on an environment graph, thereby creating
a larger graph out of multiple copies of the environment
graph. We use a similar approach, but rather than copying
the environment graph, we examine reachable states in T in
a product automaton that corresponds to the same state in
the FSA A. Thus, rather than searching over multiple tours,
we search over the edges of A.

Assumption 1. We assume the following about the FSA A:

• A is deterministic;
• A is acyclic (except for self-loops for individual states);
• transitions between states in A have only one label from

Σ.

Assumption 1 implies the following: first, we consider
a deterministic FSA for which each transition is uniquely
defined by its source state and input so the expressed
specification does not contain any uncertainty. For example,
a surveillance mission such as “eventually visit region a
and eventually visit region b” can actually be expressed
by a deterministic FSA as in Fig. 2(a). If the specification
results in a nondeterministic FSA, well-known algorithms
can be used to make them deterministic, at the cost of some
computational complexity [28].3Second, we consider an FSA
that does not contain any cycles other than the self-loops for
individual states. The proposed algorithm can in principle
handle such loops, but we avoid them here to simplify the
complexity analysis.4 Finally, we assume that the transitions
between the states in A have only one label because our TL
formula is given over the nodes in the environment graph
and the edges in A are labeled with precisely one node in
the environment graph. In other words, the transitions in A
are uniquely defined by a node in T (see Sec. III-A for more
details).

Overall, the proposed method, which is planning over the
edges of A, becomes possible because of Assumption 1
because it allows us to enforce forward progress in A. In
particular, this assumption allows us to consider a subgraph
of T located at each node in A, with transitions to other
nodes in A occurring for visiting specific nodes in T . Our
planning takes place in these subgraphs of T , using the
algorithm from [11]. Our solution also exploits the fact that
greedy approximations have provable bounds to allow us to
perform a forward search type of dynamic program along the
edges of A. This approach allows us to calculate a theoretical
bound for our solution (Sec. IV-F). We provide a simple
example below to illustrate the main idea of our algorithm.

Example 2. Consider an agent operating on the graph
environment in Fig. 2(b). Let the agent’s specification be

♦a ∧ ♦b , (9)

3Note, this discussion of determinism pertains to the specification, not
the robot motion. Addressing stochasticity in robot motion is outside the
scope of this work.

4In the worst case, consider such loops should increase the complexity
by a linear factor of B, the maximum number of possible transitions in A.
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(a) (b)

(c) (d)

Fig. 2: 2(a) FSA A encoding ♦a ∧ ♦b; 2(b) simple labeled
TS T ; 2(c) subset of T corresponding to taking edge with
label a (in blue) from the in state in A; 2(d) subset of T
corrseponding to taking edge with label b (in red) from the
in state in A. Each time the recursive greedy algorithm is
called, it operates a subset of T such as those in 2(c) or 2(d).

which corresponds to “visit nodes a and b.” The specification
is encoded in the FSA A (Fig. 2(a)). For example, traversing
the edge shown in blue in Fig. 2(a) corresponds to traveling
from vb to the node labeled a and hence, planning on the
subset of T shown in Fig. 2(c). Likewise, traversing the red
edge in Fig. 2(a) corresponds to finding a path from vb to the
node labeled b in Fig. 2(d). In this way, we can repeatedly
call the recursive planner of Chekuri and Pal [11] on the
subsets of T , like those in Figs. 2(c) and 2(d), instead of
using it on the product of A and T .

B. Construction of product automaton

Although we plan over the subsets of T , the first step in
our solution is the construction of a product automaton for
the agent. This allows us to determine which subsets of T are
relevant for each edge in the FSA A. Given a specification
φ, we construct an FSA A, and takes it product with the TS
T .

Definition IV.1 (Product Automaton). Given a TS T and an
FSA A, we can define a product automaton P = T × A as
a tuple P = (S, s0, ActP ,∆P , FP ), where
• S ⊆ V ×Q is a finite set of states;
• s0 = (v0, q0) is an initial state;
• ActP ⊆ Act is a set of input actions;
• ∆P : S × ActP → S is a deterministic transition

function;
• FP ⊆ V × FA is a set of accepting states.

The transition function is defined as s′ = ∆P (s, a) for s =
(v, q) , s′ = (v′, q′) ∈ S and a ∈ ActP if and only if v′ =
∆ (v, a) and q′ = ∆A (q, v).

After constructing the product automaton, we compute the
distance to satisfaction D (s) [14] for all nodes in P . This
distance is equal to the shortest path d (s, s′) for s′ ∈ FP
through the product automaton. Computing D (·) for all

nodes allows us to keep track of the necessary budget to
complete the mission specified by φ.

C. Main algorithm

We now introduce the main algorithm for optimizing a
submodular reward function (Alg. 1), which we call the
Single Agent Constrained Path Planner (SACPP). This al-
gorithm proceeds from the initial node of the FSA and uses
the recursive greedy algorithm of Chekuri and Pal [11] to
traverse each edge in the FSA, checking among feasible
budgets. When two or more paths converge, the path with
higher reward per unit budget expended is chosen.

In lines 1-11, the algorithm is initialized. During those
steps, the product automaton is constructed and pruned, and
the distance to acceptance is computed for each state in the
product. If the distance to acceptance from the initial state
is greater than the allotted budget B, there is no solution.
Otherwise, a copy of the states in A is created, called
ToCheck, that keeps track of states in the FSA that have
not been checked. Likewise, a set called Next is initialized
to contain node q0, the initial FSA state. Finally, three sets
are built, B (q), fR (q), and R (q). For each node q ∈ Q,
these sets store information for each node in the FSA that the
algorithm visits, namely the budget expended to reach that
node, the reward collected to reach it, and the path taken to
get there, respectively.

The main while loop (lines 12-45) executes until entries
in B (q), fR (q), and R (q) have been computed for all
q ∈ Q, at which point, the path with maximum reward
among all paths reaching an accepting state is returned. The
loop executes by creating the set of nodes current from the
previously constructed set Next, and removing those same
nodes added to current from the set to be checked (lines 13-
15). For each node in q ∈ current, all possible transitions
are checked by iterating over all symbols in Σ (line 16). If
a transition to a state q′ is possible, since transitions in the
FSA correspond to visiting one and only one state in T , the
corresponding product states s and s′ are known (17-20). The
minimum feasible budget bMin is D (s)−D (s′) while the
maximum feasible budget bMax is the difference between
the total budget B and B (q) (the budget expended to reach
q and therefore to reach s) and D (s′) (lines 21-22).

For each edge in the automaton A, we find the range of
feasible budgets b ∈ [bMin, bMax] that can be subtracted
from the overall budget B to traverse that edge. Each call to
the recursive planner builds a listM of paths for each corre-
sponding feasible budget b. The parameter corresponding to
the depth of the recursion, iter, is set to d1 + log be (line 24)
to maintain our performance guarantee (see Sec. IV-F). If q′

is not an accepting state (i.e., q /∈ FA), the path that has the
maximum ratio of reward to budget is chosen (line 29). The
path yielding the maximum reward is not chosen because
the reward functions under consideration are monotonic, so
the maximum reward path would almost certainly expend
the entire feasible budget, potentially yielding less optimal
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results for the other edges to be checked5. If, however,
q′ ∈ FA, the path with maximum reward is chosen, since
there are no further edges in the FSA to check (line 27)6.

If q′ has not already been visited by the algorithm, then
the budget, reward and path chosen in line 27 or 29 is added
to B (q′), fR (q′), and R (q′), respectively (lines 30-32). If
q′ has already been visited, then the path with higher value
of fR (q′) is chosen if q′ ∈ FA (lines 33-35), otherwise the

path with the higher value of
fR(q′)
B(q′) is chosen (lines 37-38).

Finally, if all incoming edges to q′ have been checked, it
is added to Next, the set of nodes to check for the next
iteration of the while loop.

Algorithm 1 Single Agent Constrained Path Planner.
1: function SAPP

Input: T , A, B
2: Construct product automaton P = T × A;
3: Compute distance to acceptance D (s)∀s ∈ S;
4: Prune unreachable states from P;
5: if D (s0) > B then return no solution;
6: ToCheck ← Q;
7: Next← q0;
8: B (q0)← 0; . used budget
9: stateV (q0)← v0; . initial state

10: fR (q0)← 0; . collected reward
11: R (q0)← ∅; . for residual reward calculation
12: while ToCheck is not empty do
13: current← Next;
14: ToCheck ← ToCheck \Next;
15: Next← ∅;
16: for q, σ ∈ current× Σ do
17: q′ ← ∆A (q, σ);
18: s← {(q, stateV (q))};
19: stateV (q′)← σ;
20: s′ ← {(q′, stateV (q′))};
21: bMin← D (s)−D (s′);
22: bMax←≤ B −B (q)−D (s′);
23: for bMin ≤ b ≤ bMax do
24: iter = d1 + log be;
25: M (q′, b)← RP (s, s′, b,R (q) , iter, P );
26: if q′ ∈ FA then
27: χ← arg max {fR (m) |m ∈M};
28: else
29: χ← arg max {fR (m) /b (m) |m ∈M};
30: if B (q′) is empty then
31: Update B (q′), fR (q′), R (q′);
32: else
33: if q′ ∈ FA then
34: if fR (q′) < fR (R (q) ∪ χ) then
35: Update B (q′), fR (q′), R (q′);
36: else
37: if fR(q′)

B(q′) < fR(R(q)∪χ)
B(q)∪c(χ) then

38: Update B (q′), fR (q′), R (q′);
39: if All incoming edges for q′ have been checked then
40: Next← Next ∪ q′;

return arg maxq∈FA
fR (R (q));

5The choice to use the path with the best ratio instead of best absolute cost
is not necessary for our algorithm’s theoretical performance, but improves
results in practice.

6Note that the path χ is a sequence of b+ 1 states using budget b.

D. Recursive Planner
The recursive planner is presented in Alg. 2. It is based

on the recursive greedy algorithm in [11]. For considerations
of length, we curtail our discussion of this algorithm to
the difference from their algorithm. The original paper [11]
should be consulted for further details. The main difference
is that we prune the set of states we are considering as
candidates for our path. The set cands (line 6 in Alg. 2)
contains our initial and final nodes si and sj , as well as any
nodes that share the same automaton state as si. Intuitively,
this is the subgraph of P corresponding to one state in FSA
A. Note that it is, at largest, a copy of the entire graph of
T . Thus, our planning is at most carried out over T , rather
than over the entire product automaton.

Algorithm 2 Single Agent Recursive Planner. Used for
planning portion of Alg. 1. Adapted from Chekuri and
Pal [11].

1: function RP
Input: si, sj , b, R, iter, P
Output: path

2: if d (si, sj) > b then return no solution;
3: path← greedyPath (si, sj);
4: Base case: iter = 0 return path;
5: cands← {{si, sj} ∪ {sk = (vk, qk)} |qk = qi};
6: for sk ∈ cands do
7: for 1 ≤ b1 ≤ b do
8: path1 ← RR (si, sk, b1,R, iter − 1);
9: b2 ← b− b1;

10: R2 ←R∪ path1;
11: path2 ← RR (sk, sj , b2,R2, iter − 1);
12: if fR (path1 ∪ path2) > fR (path) then
13: path← path1 ∪ path2;

return path

E. Complexity
The initial solution in [11], a recursive greedy algorithm

we will refer to as RG, had a complexity of O
(

(nB)
logn

)
,

and the nonmyopic solution presented in [9] had complexity
of O

(
B2T (nB)

logn
)

, where n is the number of nodes in
the environment graph, T is the number of tours (i.e., copies
of the environment graph), and B is the overall budget for
the set of tours. Our proposed solution has complexity of
O
(
B|Σ||Q| (|V |B)

log |V |
)

, where Σ is the input to the FSA
and Q are the states of the FSA. To compare this complexity
with that of [11] and [9], it should be noted that |V | = n.
In our algorithm, the RG algorithm is called at most for
each element of Q, each element of Σ, and a budget from
1 to B, hence our complexity is the complexity of RG
multiplied by B|Σ||Q|. If we were to use the RG algorithm
to conduct a search over the entire product automaton,
the complexity would instead be O

(
(B|V ||Q|)(log |V ||Q|)

)
.

Thus, the exponent in our complexity is reduced by a factor
of log |Q|.
F. Optimality

To present the theoretical bound of our approach with
respect to the optimal solution, we must first introduce
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Lemma 1, which gives us an approximation guarantee on
Alg. 2.

Lemma 1. [11] Given a pair of initial and final nodes
(s0, sf ) in a graph, a search depth iter, a set R for comput-
ing the residual reward, and a budget B, let χ∗ be the optimal
path between s0 and sf with a length of at most B. Let χ
be a B-length path between s0 and sf returned by Alg. 2. If
iter ≥ d1 + logBe, then fR (χ) ≥ 1

d1+logBefR (χ∗).

Lemma 1 follows directly from Lemma 3.2 in [11]. This
lemma will allow us to prove our result below in Theorem 1,
since we call Alg. 2 in Alg. 1 to compute our overall solution.

Theorem 1. Let χ1:k be a path consisting of sub-paths
χ1, . . . , χk returned by Alg. 1, consisting of k edges in A,
and returning reward fR (χ1:k). Let fR (χ∗1:k) be the optimal
reward for traversing the same k edges. Denote the depth of
the recursion for the kth call to Alg. 2 as iterk. Then if
iterk ≥ d1 + logBke,

fR (χ1:k) ≥ d1 + logBke
d2 + logBke

min

(
β1:k−1,

1

d1 + logBke

)
fR (χ∗1:k) ,

(10)

where β1:k−1 is the approximation guarantee for the first
k−1 edges in A and Bk is the budget allocated for traversing
the kth edge.

Proof. Given a budget B1, let χ1 be the path returned by
Alg. 1. Assume that iter1 ≥ d1 + B1e. In light of Lemma 1,

fR (χ1) ≥ 1

d1 + logB1e
fR (χ∗1) , (11)

where χ∗1 is the optimal path for the same starting and ending
nodes as χ1. Likewise, we can say that

fR′ (χ2) ≥ 1

d1 + logB2e
fR′ (χ∗2) , (12)

where R′ = R∪χ1, and χ∗2 is the optimal path for the same
starting and ending nodes as χ2, if iter2 > d1 + logB2e.

The remainder of our proof follows the same structure as
the proof Lemma 3.2 in [11]. We will denote χ1∪χ2 as χ1:2

and χ∗1 ∪ χ∗2 as χ∗1:2. Starting from (12), we write

fR′ (χ2) ≥ 1

d1 + logB2e
(fR (χ∗2 ∪ χ1)− fR (χ1)) (13)

≥ 1

d1 + logB2e
(fR (χ∗2)− fR (χ1 ∪ χ2)) , (14)

where the first inequality follows from the definition of
fR′ (χ∗2), and the second inequality follows from monotonic-
ity of f . Then we can add (11) and (14) to get

fR (χ1:2) ≥ 1

d1 + logB1e
fR (χ∗1)

+
1

d1 + logB2e
(fR (χ∗2)− fR (χ1:2)) ,

(15)

which, by rearranging terms, becomes
fR (χ1:2) ≥
d1 + logB2e
d2 + logB2e

(
1

d1 + logB1e
fR (χ∗1) +

1

d1 + logB2e
fR (χ∗2)

)
.

(16)

Finally, if we let 1
α12

denote min
(

1
d1+logB1e ,

1
d1+logB2e

)
we get the result

fR (χ1:2) ≥ d1 + logB2e
d2 + logB2e

(
1

α12
fR (χ∗1:2)

)
. (17)

Following this same process recursively, for k copies of
the recursive greedy algorithm, we find the bound

fR (χ1:k) ≥ d1 + logBke
d2 + logBke

min

(
β1:k−1,

1

d1 + logBke

)
fR (χ∗1:k) ,

(18)

where χ1:k is the path from the initial to the kth node in
the FSA, χ∗1:k is the optimal such path, and β1:k−1 is the
optimality bound at iteration k − 1.

Theorem 1 provides a lower bound on the performance
of Alg. 1. More specifically, it gives a guarantee on the
performance for choosing the same path through A, using
the same budget allocation for each segment of the path.
Note, this guarantee is not relative to the global optimal,
but the optimal for the same choice of edges and budgets
for traversing FSA A. This is because we concatenate
sequences that are themselves approximate optimal solutions
between two nodes. The concatenation of these sequences
introduces an additional sub-optimality that we quantify with
Theorem 1.

Remark 1. The approximation guarantee in Theorem 1
depends on the fact that for the kth call to Alg. 2, iterk ≥
d1 + Bke. In Alg. 1, iter is specified in line 24 as exactly
d1 + B1e. This flexible assignment of iter results in a
significant speed-up of the algorithm, without sacrificing the
performance bound. Alternately, the user could specify a
fixed value of iter to be used at every call to Alg. 2, which
could be used to improve performance, at the cost of of
computational speed.

V. SIMULATION AND RESULTS

To investigate the efficacy of our results, we ran simu-
lations for minimizing the duration of time since last visit,
given by (7). We considered a transition system T consisting
of 9 nodes (Fig. 1). The agent began at the base vb with a
budget B = 8. The mission φ was specified by (5), which is
“eventually visit nodes v3, v4, and vb, and don’t return to vb
until visiting v3 and v4”. The FSA encoding (5) contained 5
nodes. After pruning unreachable states, the resulting product
automaton consisted of 33 nodes.

The results of two simulations are summarized in Table I.
In the first, we considered the problem with the TL con-
straints mentioned above. We used Alg. 1, which terminated
in about 30 seconds and returned a total residual reward of
88. Recall that the residual reward (8) is the improvement in
the reward function (7) with respect to evaluating it for the
empty set.

The budget B was split into three budgets B1, B2, and B3
since two intermediate nodes v3 and v4 need to be visited
before visiting vb. For example, one way of splitting the
budget is allocating B1 for the sub-path from vb to v3, B2
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Alg. 1 (with TL) RG [11] (without TL)
Run time (s) ∼30 ∼2500
Residual reward fR 88 92
Fraction of optimal ≥ 1

4
≥ 1

4

TABLE I: Summary of simulation results.

for the sub-path from v3 to v4, and B3 for v4 to vb. This
simulation results in a performance guarantee of fR (χ1:3) ≥
1
4fR (χ∗1:3).

In the second simulation, we considered the problem with-
out the TL constraints, using the same transition system for
the agent, and only requiring it to start at the base and return
to the base. This case is expected to return a better reward
than the case with TL constraints (since Alg. 1 conducts a
search over a restricted set of paths, which may eliminate the
ones with higher rewards). We ran the RG algorithm [11],
which terminated in approximately 42 minutes and returned
a total residual reward of 92. In this case, the approximation
guarantee was obtained as fR (χ) ≥ 1

4fR (χ∗).
Running the RG algorithm on the complete product au-

tomaton would be computationally prohibitive, hence our
comparison of the RG algorithm in the absence of TL
constraints.

VI. CONCLUSION

In this paper we considered an agent moving in a dis-
cretized environment to maximize a submodular reward
function while satisfying temporal logic constraints. Our
main contribution was extending the recursive-greedy algo-
rithm proposed in [11] for cases involving complex mis-
sion specifications expressed as temporal logics. Typically,
the problems containing temporal logics are tackled by
constructing a product automaton of the transition system
(i.e., motion model) and the automaton encoding the de-
sired specification. Using existing methods for maximizing
submodular functions in conjunction with planning on the
product automaton would be computationally infeasible. As
opposed to the standard approach of solving over the entire
product automaton, we proposed a solution conducted over
a portion of the transition system with the relevant edges in
the automaton. This approach exhibits a significantly lower
complexity than a solution obtained from the overall product
automaton. We presented a theoerical bound regarding the
performance of the algorithm and illustrated the proposed
approach via simulations. As future work, we plan to extend
these results for multi-agent systems.
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