
Managing non-determinism in symbolic
robot motion planning and control

Marius Kloetzer and Calin Belta
Center for Information and Systems Engineering

Boston University
15 Saint Mary’s Street, Boston, MA 02446

{kmarius,cbelta}@bu.edu

Abstract— We study the problem of designing control strate-
gies for non-deterministic transitions systems enforcing the
satisfaction of Linear Temporal Logic (LTL) formulas over their
set of states. We focus on finite transition systems with inputs,
which are often encountered when solving motion planning
problems by using discrete quotients induced by a given
partition of the state space. Our approach solves the problem
conservatively using LTL games, and consists of the following
three steps: (1) the original transition system is transformed
into a transition system on which an LTL game can be played,
(2) a solution of the LTL game on the new transition system
is obtained, and (3) an interface between this solution and
the initial transition system is constructed. The correctness
of the method is ensured by design. The advantages and
conservativeness of our approach are discussed and illustrated
by simple examples.

I. INTRODUCTION

Motion planning and control of robots with nontrivial
dynamics or kinematics is usually a two step process. In
the first step, a (cellular) decomposition of the C-space is
constructed, and a “discrete” path is generated by a search
in the quotient graph [1], [2]. In the second step, a reference
trajectory compatible with the robot dynamics or kinematic is
generated, and robot control laws are designed to follow the
trajectory. A very attractive alternative to this is simultaneous
planning and control, in which the generation of the discrete
solution in the partition quotient is performed at the same
time with the assignment of vector fields in the regions of
the partition (robot control laws), while taking into account
the restrictions imposed by robot under-actuation and speed
constraints [3], [4], [5], [6]. In addition, enrichment of the
specification language from the classical planning task “go
from A to B” to temporal logic specifications (e.g., “visit
either A or B”, “reach A and then B infinitely often”) leads to
symbolic approaches to simultaneous planning and control,
where discrete abstractions are used to provide a formal link
between the continuous robot control system and the discrete
representation of the environment, and algorithms resembling
model checking are used to provide a solution to the discrete
problem [7], [8].

All the approaches enumerated above for simultaneous
planning and control face a common problem: the restric-
tions imposed by the robot dynamics or kinematics can,
in general, lead to non-deterministic representations of the

discrete problem. For example, the “prepares” relationship
between a collection of policies in [4] results in non-
determinism of the discrete abstraction. Recent results in
control of affine systems in simplices [9] and of multi-affine
systems in rectangles [10] show that even though controllers
determining the transition of a robot to a specific neighbor
might fail to exist, controllers guaranteeing the transition to
a set of neighbors can be found. In the transition system
corresponding to the discrete part of the problem, this means
non-determinism.

Motivated by the above, in this paper we focus on the dis-
crete part of simultaneous motion planning and control, and
consider the following problem: given a non-deterministic
transition system with inputs, and a Linear Temporal Logic
(LTL) formula over its set of states, determine a set of
initial states and a control strategy so that the produced
trajectory satisfies the formula. This problem is quite general,
and, to the best of our knowledge, there is no available
computational framework providing a solution. However,
it is related to LTL games [11]. Also, it is possible that
solutions can be found by using results from the control
of discrete event systems from specifications given as ω-
regular expressions (languages) over inputs [12] or by using
tree automata on infinite objects [13].

In this work, we advocate the use of LTL games [11] for
the construction of a (conservative) solution to the problem.
Our fully automatic computational framework consists of
three main steps. First, we convert the original transition
system into a form in which an LTL game can be played.
Second, we find a solution to the LTL game in the form of a
feedback automaton. Third, the solution of the game is used
to generate a control strategy for the initial transition system.
We illustrate our approach for the case of a triangulated
planar environment, where the assignment of affine feedback
controllers in the triangles using the method developed in [9]
leads to non-determinism.

The remainder of the paper is organized as follows.
Section II provides some definitions necessary throughout
the paper. The problem is formulated in Section III and our
solution is presented in Section IV. Simulation results are
given in Section V and we conclude with final remarks in
Section VI.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThD11.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3110Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

II. PRELIMINARIES

For a finite set A, we use |A|, Aω , and 2A to denote its
cardinality, the set of all infinite words over A, and its power
set (the set of all its subsets), respectively.

A. Transition Systems and Linear Temporal Logic

Definition 1: [Non-deterministic transition system] A fi-
nite non-deterministic transition system is a tuple T =
(Q,Σ, δ, h,O), where:

• Q is a finite set of states,
• Σ is a finite input alphabet,
• δ : Q × Σ → 2Q is a transition function,
• h : Q → O is the observation map,
• O is the set of observables.
For a given state q ∈ Q, the set of available (feasible)

inputs is denoted by Σq (i.e., Σq is the set of σi ∈ Σ for
which |δ(q, σi)| ≥ 1). An input word σ ∈ Σω is denoted by
σ = σ1σ2σ3 . . . A trajectory or run of T produced by an
input word σ starting from q is an infinite sequence r ∈ Qω ,
r = r1r2r3 . . . with the property that r1 = q and ∀i ≥ 1,
ri+1 ∈ δ(ri, σi). A trajectory r of T produces a word w ∈
Oω defined as w = w1w2w3 . . ., wi = h(qi), for all i ≥ 1.

A transition system T = (Q,Σ, δ, h,O) for which the
observation map is identity (i.e., the states are of interest
Q = O, and can be observed) is denoted for simplicity by
T = (Q,Σ, δ).

Definition 2: [Syntax of LTL formulas] An LTL formula
over O is recursively defined as follows:

• Every observable o ∈ O is a formula, and
• If φ1 and φ2 are formulas, then ¬φ1, φ1 ∨ φ2, ©φ1,

φ1Uφ2 are also formulas.
The semantics of LTL formulas are given over words of

transition system T .
Definition 3: [Semantics of LTL formulas] The satisfac-

tion of formula φ at position i ∈ N of word w, denoted by
wi � φ, is defined recursively as follows:

• wi � o if o = wi,
• wi � ¬φ if wi � φ,
• wi � φ1 ∨ φ2 if wi � φ1 or wi � φ2,
• wi � ©φ if wi+1 � φ,
• wi � φ1Uφ2 if there exist a j ≥ i such that wj � φ2

and for all i ≤ k < j we have wk � φ1

A word w satisfies an LTL formula φ, written as w � φ, if
w1 � φ.

The symbols ¬ and ∨ stand for negation and disjunction.
The Boolean constants � and ⊥ are defined as � = π ∨¬π
and ⊥ = ¬�. The other Boolean connectors ∧ (conjunction),
⇒ (implication), and ⇔ (equivalence) are defined from ¬
and ∨ in the usual way. The unary temporal operator ©
is called next, and the binary temporal operator U is called
the until operator. Two useful additional temporal operators,
”eventually” and ”always” can be defined as ♦φ = �Uφ
and �φ = φU⊥, respectively. Formula ♦φ means that φ
becomes eventually true, whereas �φ indicates that φ is true
at all positions of a trajectory.

Remark 1: In general, the semantics of LTL formulas are
given over infinite words in the power set of a set of atomic
propositions. We use the simplified semantics of Definition
3 motivated by the problem formulated in Section III.

A Büchi automaton is a finite state automaton accepting
infinite strings. The definition of a Büchi automaton and its
acceptance condition is beyond the scope of this paper, and
we refer the interested reader to [13]. For any LTL formula,
there exists a non-deterministic Büchi automaton accepting
all and only the runs satisfying it [14] (this automaton is also
called a generator of the LTL formula).

B. LTL Games

An LTL game is defined on a graph G = (V,E, h,O),
where V is the set of vertices, E ⊆ V ×V is the set of edges,
O is a set of observables, and h : V → O is an observation
map. The game specification is an LTL formula over the
observable set O [15] (see also [11] for the case of graphs
with no observables). There are two players in the game: P
(the player) and A (the adversary). The set of vertices V is
partitioned in two sets: Vp, which is the set of states from
which the player can choose a move (an edge leading to the
next vertex), and Va, which is the set of states from which
the adversary has a choice of an edge. We assume that the
current vertex from set V is always known, and not just its
observable.

An (infinite) play consists of an infinite sequence of states
resulted from an infinite sequence of transitions (edges)
chosen by the two players. The player P wins a play if the
produced word w ∈ Oω satisfies the LTL formula. Starting
from a given initial state, the player has a winning strategy if,
whenever the current state is in Vp, she manages to choose
edges such that she wins the current play, no matter what
edges the adversary chooses when the current state is in Va.
The goal of an LTL game is to find a set of initial states
Ws ⊆ V from where the player has winning strategies and
a winning strategy for plays starting in those initial states.

The standard algorithm for solving an LTL game involves
the transformation of the non-deterministic Büchi automaton
corresponding to the LTL formula into a deterministic gen-
erator [16]. Motivated by the simplicity of exposition and by
some complexity issues, we assume that the LTL formulas
we are dealing with accept deterministic Büchi generators
(there are cases when this is not true [17], and algorithms
for solving LTL games become more complicated). For more
details of the steps involved in solving LTL games the
interested reader is referred to [16], [15].

The result of solving an LTL game on G = (V,E, h,O)
(as outlined above) is a set of initial states Ws ⊆ V (if
non-empty) and a winning strategy W, which is a strategy
(as in Definition 4) guaranteeing the satisfaction of the LTL
formula whenever the initial state is in the set Ws.

Definition 4: A strategy is an automaton W =
(S, V,O, s0, τ, π), where:

• S is the finite set of states (the memory),
• V is the input alphabet,
• O is the set over which the LTL formula φ was defined,

ThD11.4

3111Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

• s0 ∈ S is the initial state (initial memory),
• τ : S × O → S is the memory update function,
• π : S×Vp → V is the function giving the chosen move

when the current state of G is in Vp.
The states S result from the states of the deterministic

automaton (e.g., Büchi) corresponding to the LTL formula.
The current vertex of G gives the input of W and it is used
for generating the player’s moves, while the corresponding
observable is used for updating the internal memory of W .
Thus, given the current state (memory) of W , the strategy π
depends on the current state of G, while the memory update
function τ depends only on the observable of this state.

The relation between graphs and transition systems is
immediate. When playing an LTL game on a transition
system, instead of choosing the next state, we choose an
input producing the desired transition. This is possible if
player’s states have only deterministic outgoing transitions,
and then the function π from the winning strategy will take
values in the input set of the transition system instead of V .

III. PROBLEM FORMULATION AND APPROACH

In this paper we consider the following problem:
Problem 1: Given a non-deterministic transition system

T = (Q,Σ, δ) and an LTL formula φ over Q, find a set
of feasible initial states Q0 ⊆ Q and a control strategy such
that formula φ is satisfied by all resulting infinite words.

Remark 2: If the transition system T was deterministic
(i.e., δ : Q × Σ → Q), then a solution to Problem 1
could be found by using an idea similar to model checking
[18], [7], [19]: the LTL formula φ is transformed into a
Büchi automaton Bφ and the product automaton T × Bφ is
computed. In this product automaton an accepting run with
a specific structure is found and projected to a run of T .
Since T is deterministic, a control strategy implementing the
desired run can be constructed.

We propose to use the framework of LTL games to provide
a solution to Problem 1. For this, we need to reformulate
the problem from a graph to a transition system, and then
define a partition of the set of states into player’s states and
adversary’s states.

Remark 3: One quick way of solving this would be to
label as adversary’s state each state from where there exists
at least one input yielding a non-determinist transition.
However, such an approach would be pretty conservative,
because if such an adversary’s state had more than one
feasible input, we wouldn’t use our freedom of choosing
one from these inputs and thus restricting the set of possible
next states.

Our approach involves three main steps. First, we create a
new transition system Tg with observables, where we choose
the player’s states by looking for states and inputs with
deterministic behavior. Tg will, in general, have more states
and inputs than T , and its observable set will be Q. Second,
we search for a winning strategy for the LTL game on Tg .
Finally, when such a strategy exists, we adapt it to a control
strategy providing at each step the input to be applied to our
initial transition system T .

IV. CONTROL STRATEGY USING LTL GAMES

We start by transforming T into another transition system
Tg = (Qg,Σg, δg, hg, Q), where:

• Qg is the finite set of states, partitioned into sets Qp

(player’s states) and Qa (adversary’s states),
• Σg is the new alphabet, Σ ⊆ Σg ,
• δg : Qg × Σg → 2Qg is the transition function,
• hg : Qg → Q is the observation map.

The construction of Tg is described in Section IV-A. Here
we give some definitions and outline how the game is played.
The transition function δg is defined as:

• its restriction to Qp ×Σg is deterministic, i.e. ∀q ∈ Qp

and ∀σ ∈ Σg , |δg(q, σ)| ≤ 1,
• its restriction to Qa×Σg is non-deterministic, and there

is only one feasible (enabled) input in every state from
Qa, i.e. ∀q ∈ Qa, there exists an unique input σ ∈ Σg

such that |δg(q, σ)| ≥ 2 and all other inputs σ′ ∈ Σg \
{σ} are not feasible at q (or |δg(q, σ′)| = 0).

These properties of δg show that when the current state is
in Qp, the player P can always choose the next state from
a feasible set (by applying a feasible input), and when the
current state is in Qa, P has no control on the next state
(we only know that the next state will be in a subset of Qg ,
given by the unique feasible input). Thus, the structure of Tg

is appropriate for an LTL game as described in Section II-B.
By solving the LTL game over Tg with winning condition
φ, one can obtain a set of winning initial states, Ws ⊆ Qg ,
and, if Ws �= ∅, a winning strategy in the form of a finite
automaton, similar to the one from Definition 4. When Ws is
nonempty, the winning strategy is W = (S,Qg, Q, s0, τ, π),
where:

• S is a finite set of states,
• Qg is the input alphabet,
• Q is the set over which the LTL formula φ was defined,
• s0 ∈ S is the initial state,
• τ : S × Q → S is the memory update function,
• π : S × Qp → Σg is the function giving the choice of

the next applied input (move) when the current state of
Tg is in the set Qp.

The difference between this winning strategy and the one
from Definition 4 is that here π takes values in Σg instead of
Qg . Because of the mentioned properties of δg , every move
the player should make when the play is in Qp corresponds
to an unique input from Σg . In order to obtain an input to
be applied to Tg in every state, the map π is extended to
S × Qg , by letting π(s, q) = σ, where σ ∈ Σg is the only
feasible input in state q, ∀q ∈ Qa.

The winning strategy given by automaton W is imple-
mented in a feedback form. At each step, the following
actions are performed (a step is the interval between two
successive transitions of Tg): (1) it reads the current state of
Tg , (2) according to function π, it applies an input from the
set Σg to Tg , and (3) it updates its state according to function
τ . If the initial state of Tg is in the set Ws, this feedback
control strategy guarantees that the game will be won. Note

ThD11.4

3112Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

q1 q2

q3 q4

a

a

a

a

b

b q4

a

a

b1

b
2

q1

q4
1

q1
1 q2

1

q3
1

b2

a

aa

b q4

q4

q2

q3

(a) (b)

Fig. 1. (a) Transition system T : q1 and q3 are det states, q2 is ndet, and q4

is mix. (b) Obtained Tg : q4 from T was split in two ndet states in Tg and two
new inputs appeared in Σg . In Tg , the observables are placed near the states,
and the adversary’s states are doubly encircled. All deterministic transitions
are represented with continuous lines, non-deterministic ones with dashed
lines, and each input is placed near the corresponding transition(s).

that this feedback controller assumes that we can always read
the current state of Tg and not only its observable.

A. Construction of Tg

We present here the main ideas used for transforming the
initial transition system T into the new transition system Tg .
Due to space constraints, we do not include any algorithm
and we refer to [20] for full pseudo-codes.

For creating the states and the observation map of Tg ,
we label the states from Q by a function l : Q →
{det, ndet,mix}: a state with only deterministic outgoing
transitions or without outgoing transitions is labelled with
det, a state with only one feasible input, for which the
outgoing transitions are non-deterministic, is labelled with
ndet, and a state with more feasible inputs, from which at
least one yields non-deterministic transitions, is labelled with
mix. Each mix state is split in one or more ndet states and
at most one det state in the new transition system Tg (for
simplicity of writing, we assume that the attributes ndet and
det for states of Tg have exactly the same meaning as in T).
The observable of all these new states is the old mix state.
Each det (respectively ndet) state from T corresponds to a
det (respectively ndet) state in Tg . Thus, Tg will have only
det (in the subset Qp) and ndet states (in the subset Qa). For
a better understanding we present in Fig. 1 a simple example
of transforming a transition system T into Tg .

The input alphabet Σg and the transition function δg are
created after the set of states Qg = Qp ∪Qa is obtained. Tg

has a larger input set than T because the det states from T
must remain det in Tg . This can be explained by following
the example in Fig. 1: in T , the det state q3 has a transition
with input b to the mix state q4. q3 corresponds to one state
of Tg (q1

3), but q4 is split in two states (q1
4 and q2

4). Since
we need deterministic transitions for going from q1

3 to either
q1
4 or q2

4 , we introduce the new inputs b1 and b2. Thus, by
applying b1 when Tg is in q1

3 , the next state is q1
4 and there

is only one next feasible input (a). In T this has the effect of
applying input b while in q3 and enforcing input a when q4

is reached. Similarly, when b2 is applied to Tg while in q1
3 ,

this induces the sequence of inputs b, b starting from q3 in
T . Although the adversary has full control on the transitions
from q1

4 and q2
4 in Tg , the player has control in going to either

q1
4 or q2

4 , thus restricting the adversary’s power. Following the
same idea, each det state of Tg (including those obtained by
splitting mix states of T) might add some new inputs to the
alphabet Σg . In order to adapt these new inputs to inputs of
T , a map α : Σg → Σ is created, which will be used by the
controller for T . For all inputs in set Σ, α is just the identity
map.

The ndet states of Tg (from adversary’s set Qa) will not
add new inputs. Each of these states will have only one
feasible input (from set Σ), and thus the adversary power in
these states comes only from the non-determinism induced
by that feasible input.

B. Solution to Problem 1

We now have all the necessary information to present the
solution to Problem 1. The set of initial states of T from
where the controller guarantees the satisfaction of the LTL
formula φ is:

Q0 = {q ∈ Q | ∃q′ ∈ Ws s.t. hg(q′) = q} (1)

The set Q0 from (1) is in accordance with the solution
of the LTL game for the transition system Tg: if the initial
state of Tg is in the set Ws, then the strategy generated by
automaton W guarantees the satisfaction of formula φ by
any produced run of Tg . Of course, Q0 = ∅ if and only
if Ws = ∅, case when we conclude that we cannot solve
Problem 1.

If Q0 �= ∅, the control strategy for the transition system
T will be a feedback controller, which will also include the
interface between T and the play on Tg , supervised by W .
Again, we briefly describe the operations performed by this
controller and we refer to [20] for an algorithm accompanied
by detailed explanations.

At each discrete step, a correct state of Tg is first picked:
this state must be in concordance with the previous state of
Tg and the previously applied input, and its observable must
equal the current state of T . Then, based on the winning
strategy W , an input for Tg is found, which is then adapted
to an input for T by using map α. Whenever the resulted
input for Tg is in the set Σg \Σ, the adversary’s power in the
next state of T will be reduced (for example, see the case
depicted in Fig. 1, when input b1 or b2 appears).

For a better understanding, we complete the example from
Fig. 1 by considering the formula φ = ♦(q4∧♦q1), meaning
”visit q4 and then q1”. By using the presented approach,
we obtain Q0 = {q3, q4}. When T starts from q3, the first
two inputs applied by the controller are b, a (corresponding
to input b1 of Tg). If the resulted state is q3, the input a
will be applied and q1 is reached. After q1 is visited, the
controller will keep applying any of the feasible inputs in
the visited states (in our implementation, a will be always
applied). Note that by trying to solve the same problem by
using the approach from either Remark 2 or Remark 3, we
would get no solution for the problem (in the first case there
are no deterministic transitions out of q4, and in the second
case, once q4 is reached, the adversary can keep choosing
the self-loop in this state).

ThD11.4

3113Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

C. Conservativeness and Complexity

Our approach is conservative in the following sense: when
creating the transitions of Tg from ndet (adversary’s) states,
we don’t restrict the set of inputs to be applied to T at the
next discrete step. For illustrating this, consider the example
in Fig. 1 and the formula φ = ♦q1. Our approach gives
Q0 = {q1, q3, q4}, while one can observe that φ can be
also satisfied by starting from q2 and keep applying input
a, which eventually leads to q1 being visited. However,
approaches from Remarks 2 and 3 give only strategies from
Q0 = {q1, q3}. This problem does not appear in the case of
det states of Tg, because of the inputs in {Σg \ Σ}, which
restricts the set of choices for the next input. If there are no
transitions between mix and ndet states of T , then this source
of conservativeness does not appear.

Another source of conservativeness in our approach is
that we assumed an LTL formula over the states of T . A
more general setting would involve a transition system T
with an observation map and an LTL formula over the set of
observables. If states of T having the same observable were
indistinguishable (not like in the case of Tg), the proposed
method wouldn’t be suitable, because we couldn’t find a
state of Tg (with the correct observable) and be sure that
the feasible inputs in that state are also feasible in the real
state of T . However, this formulation is motivated by our
particular motion planning application, where we assume that
the environment is partitioned and the resulting regions are
labelled (see example in Section V).

Finally, when our approach fails in providing a solution,
we declare Problem 1 to be unfeasible. Other approaches
could use an iterative procedure obtaining at each step a finer
discrete representation (tailored to a specific problem) and
trying to solve Problem 1 for that refined transition system.

The upper bound complexity of the presented approach
is in general high, because an LTL game on a graph Tg is
solvable in polynomial time in the size of the graph and in
double-exponential time in the size of the LTL formula [21],
[22]. However, there have been isolated some LTL fragments
accepting deterministic Büchi automata and guaranteeing a
much lower complexity [22].

V. CASE STUDY

To illustrate the approach proposed in the paper, we
consider a simple planning and control problem for a planar
continuous system evolving in a rectangular triangulated
environment (see Fig. 2). The dynamics, rectangular bounds,
and control constraints are given in equation (2). We assume
that the environment is partitioned in 8 triangles (labelled
by qi, i = 1, . . . , 8 in Fig. 2), and the task is specified by
the LTL formula φ = ♦q4 ∧ ♦q7. In other words, the task
requires that regions q4 and q7 be visited (in any order) by
the trajectories of the closed loop system.

ẋ =
[−0.3 0.4

0.2 − 0.5

]
x +

[
1 0
0 1

]
u +

[
0.5
0.5

]
,

x ∈ [−3, 4] × [−3, 3], u ∈ [−1, 1] × [−1, 1]
(2)

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

Fig. 2. Triangular partition (thin black lines) and two continuous trajectories
starting from region q3 and satisfying formula φ.

q2

q1

q4

q8

q7

q3

q6

q5

�
1 7

� 7

� 2

�
2

�
4

�
4 6

�

1
8

�
8

�
4

�
8

�
8

�
6 7

�
7

� 7

� 5

Fig. 3. Transition system T corresponding to the partition in Fig.
2. Deterministic transitions are represented with continuous lines, non-
deterministic ones with dashed lines, and each input is placed near the
corresponding transition(s).

A formal definition of the semantics of the formula over
continuous trajectories of the closed loop system is beyond
the scope of this paper, and can be found in [19]. However,
intuitively, a trajectory satisfies the formula if the word
produced by the sequence of regions visited by the system
as time evolves satisfies the formula. As in [7], [19], we
start by constructing a transition system T with states Q =
{q1, . . . , q8} corresponding to the partition elements and with
transitions capturing the ability of designing affine feedback
controllers such that a triangle is either left in finite time to
a neighbor, or becomes an invariant for the closed loop sys-
tem. The construction of such controllers is computationally
efficient, since it can be reduced to operations on polyhedral
sets [19].

However, unlike in [7], [19], we don’t restrict our attention
to controllers making a triangle an invariant or driving all
initial states in a triangle to one neighbor (this automatically
induces a deterministic quotient, with transitions labelled by
the corresponding controllers). Enabled by recent results on
control of affine systems in simplices [9], we exhaustively
check for existence of controllers making a triangle an
invariant, driving all initial states in a triangle to a neighbor,
two neighbors, and three neighbors. While dramatically

ThD11.4

3114Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

reducing the conservativeness of the approach, it induces a
non-deterministic transition system. The obtained transition
system T is shown in Fig. 3, where the labels (inputs) stand
for affine feedback controllers with an obvious meaning.
Note that, motivated by the particular form of the formula
(which is a reachability type formula) we do not consider
the controllers corresponding to invariance, and, therefore,
T does not have any self transitions.

By using the approach from Section IV, we conclude
that the formula φ can be satisfied by trajectories starting
from any triangle qi, i = 1, . . . , 8. The LTL formula φ
accepts a deterministic Büchi generator B with 4 states,
and the constructed transition system Tg has 11 states. The
winning strategy W has 4 states and it is automatically
generated, together with the set Q0, after providing the inputs
T and B. When implementing the (discrete) controller to the
continuous system [19], a discrete transition in T takes place
when the current triangle is left, and each input to be applied
to T is mapped to an affine feedback controller as described
in [9], applied as long as the continuous trajectory evolves
in the current triangle.

The most interesting case is that of trajectories initiating
in triangle q3, because its corresponding discrete state has
only non-deterministic outgoing transitions. We show two
continuous trajectories starting in region q3 and correspond-
ing to the winning strategy we found as in Section IV. Even
though the continuous trajectories reach different sequences
of triangles, they both satisfy the formula. Only the first
part of each trajectory is shown (because the trajectories
are infinite); after region q7 is hit, the trajectories will keep
oscillating between triangles q7 and q2.

Solving the same problem by ignoring the non-
deterministic transitions of T and using the approach from
Remark 2, one would obtain that the formula could be
satisfied by starting from any triangle except q3 (note that
state q3 doesn’t have deterministic outgoing transitions in
T). By using the method from Remark 3, the adversary
would have control on all the outgoing transitions from
states q2, q3, q4, q5, and winning strategies exist only when
starting from states q6, q7, q8. In the later case, q7 will be
first visited, and then q4 (if q4 was visited first, a smart
adversary would keep the play between states q4 and q3,
and thus the game would be lost).

VI. CONCLUSIONS

In this paper, we developed a control strategy for a non-
deterministic transition from a specification given as an LTL
formula over its set of states. The method is based on LTL
games, and consists of three steps: the construction of a
new transition system, the solution of an LTL game, and
the generation of the control strategy for the initial system.
The problem is motivated by and applied to planning and
control of continuous systems from symbolic specifications
given as temporal logic formulas.

VII. ACKNOWLEDGMENTS

This work was partially supported by NSF CAREER
0611926 and NSF 0611925 at Boston University.

The authors wish to thank Paulo Tabuada for useful
discussions on this topic.

REFERENCES

[1] J. C. Latombe, Robot Motion Planning. Kluger Academic Pub., 1991.
[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Boston, 2005.

[3] S. Lindemann and S. LaValle, “Computing smooth feedback plans over
cylindrical algebraic decompositions,” in Proceedings of Robotics:
Science and Systems, Cambridge, USA, June 2006.

[4] D. Conner, H. Choset, and A. Rizzi, “Integrated planning and con-
trol for convex-bodied nonholonomic systems using local feedback
control policies,” in Proceedings of Robotics: Science and Systems,
Cambridge, USA, June 2006.

[5] C. Belta, V. Isler, and G. J. Pappas, “Discrete abstractions for robot
planning and control in polygonal environments,” IEEE Trans. on
Robotics, vol. 21, no. 5, pp. 864–874, 2005.

[6] M. Kloetzer and C. Belta, “A framework for automatic deployment
of robots in 2D and 3D environments,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing, China, 2006.

[7] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of
the 2005 IEEE Conference on Decision and Control, Seville, Spain,
December 2005.

[8] M. Kloetzer and C. Belta, “Hierarchical abstractions for robotic
swarms,” in IEEE International Conference on Robotics and Automa-
tion, Orlando, FL, 2006.

[9] L. Habets, P. Collins, and J. van Schuppen, “Reachability and control
synthesis for piecewise-affine hybrid systems on simplices,” IEEE
Trans. Aut. Control, vol. 51, pp. 938–948, 2006.

[10] L. Habets, M. Kloetzer, and C. Belta, “Control of rectangular multi-
affine hybrid systems,” in 45th IEEE Conference on Decision and
Control, San Diego, CA, 2006.

[11] W. Thomas, “Infinite games and verification,” in Proceedings of the
International Conference on Computer Aided Verification, CAV’02,
2002, pp. 58–64.

[12] R. Kumar and V. K. Garg, Modeling and Control of Logical Discrete
Event Systems. Boston, MA: Kluwer, 1995.

[13] W. Thomas, “Automata on infinite objects,” in Handbook of Theoreti-
cal Computer Science, Volume B: Formal Models and Sematics, J. van
Leeuwen, Ed. Amsterdam: Elsevier, 1990, pp. 133–191.

[14] J. R. Büchi, “On a decision method in restricted second order
arithmetic,” in Proceedings of the International Congress on Logic,
Methodology and Philosophy of Science 1960, E. N. et al., Ed.
Stanford, CA: Stanford University Press, 1962, p. 112.

[15] S. L. Torre, “Deciding games in LTL fragments,” Seminar - Centre
Fédéré en Vérification, Belgium, March 2004.

[16] W. Thomas, “Automata theoretic foundations of infinite games,”
Spring School on Infinite Games and Their Applications, Bonn, March
2005.

[17] S. Safra, “Complexity of automata on infinite objects,” Ph.D. disser-
tation, The Weizman Institute of Science, Rehovot, Israel, 1989.

[18] G. Holzmann, The Spin Model Checker, Primer and Reference Manual.
Reading, Massachusetts: Addison-Wesley, 2004.

[19] M. Kloetzer and C. Belta, “A fully automated framework for control
of linear systems from LTL specifications,” in The 9th International
Workshop on Hybrid Systems: Computation and Control, 2006, pp.
333–347.

[20] ——, “Managing non-determinism in symbolic robot motion
planning and control,” Boston University, Tech. Rep., 2006,
http//iasi.bu.edu/∼techrep/LTL-nondet.pdf.

[21] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” in
Proceedings of the 16th ACM Symposium on Principles of Program-
ming Languages, 1989, pp. 179–190.

[22] R. Alur and S. L. Torre, “Deterministic generators and games for LTL
fragments,” in 16th IEEE Symposium on Logic in Computer Science,
LICS’01, 2001, pp. 291–300.

ThD11.4

3115Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:55:16 UTC from IEEE Xplore. Restrictions apply.

