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Abstract— Signal Temporal Logic (STL) is a formal lan-
guage for describing a broad range of real-valued, temporal
properties in cyber-physical systems. While there has been
extensive research on verification and control synthesis from
STL requirements, there is no formal framework for comparing
two STL formulae. In this paper, we show that under mild
assumptions, STL formulae admit a metric space. We propose
two metrics over this space based on i) the Pompeiu-Hausdorff
distance and ii) the symmetric difference measure and present
algorithms to compute them. Alongside illustrative examples,
we present an application of these metrics as design quality
measures where they are used to compare all the temporal
behaviors of a designed system, such as a synthetic genetic
circuit, with the “desired” specification.

I. INTRODUCTION

Temporal logics [1] are increasingly used for describing
specifications in cyber-physical systems such as robotics [2],
synthetic biology [3], and transportation [4]. Variants of
temporal logics, such as Signal Temporal Logic (STL) [5],
can naturally describe a wide range of temporal system
properties such as safety (never visit a “bad” state), liveness
(eventually visit a “good” state), sequentiality, and their
arbitrarily elaborate combinations.

Using model checking [1] techniques, signals or traces
can be checked to determine whether or not they satisfy a
specification. For STL in particular, the degree of satisfaction
or robustness is a quantitative measure to characterize how
far a signal is from satisfaction [6], [7] of an STL formula.
There is currently, however, no formal way to directly
compare specifications against each other. Previous related
approaches in planning and control have looked into speci-
fication relaxation, where the goal is to minimally enlarge
the specification language to include a satisfying control
policy for the system model. Various specification relaxations
have been defined including minimum violation [8] for self-
driving cars, temporal relaxation of deadlines [9], minimum
revision of Büchi automata [10], and diagnosis and repair in
reactive synthesis [11]. While language inclusion and equiv-
alence problems are of paramount importance in computer
science and control theory, they are only qualitative measures
while we are interested in quantitative metrics.
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This paper presents two metrics that can be used to
compute the distance between two STL specifications. Under
mild assumptions, we propose metrics based on the lan-
guages of STL formulae. We propose two distance functions.
The first is based on the Pompeiu-Hausdorff (PH) distance
[12], which captures how much the language of one formula
must be enlarged to include the other, and the second is based
on the symmetric difference (SD) [13], which characterizes
how much overlap there is between the two formulae. The
theoretical contributions of this paper are: 1) formalization of
STL formulae metrics based on the PH and the SD distances,
and 2) methods for computing the PH using mixed-integer
linear programming (MILP), and the SD using a recursive
algorithm based on the area of satisfaction. We discuss the
comparison of the two metrics in detail and provide examples
that highlight their differences.

This paper additionally presents an application of the
proposed metrics to a behavioral synthesis problem. We
are interested in generating designs that exhibit desired
behaviors specified in STL. For example, we study synthetic
genetic circuits. Possible circuit designs are constructed and
measured in laboratory experiments, and the resulting traces
are abstracted into STL specifications using temporal logic
inference (TLI). These formulae are compared quantitatively
against the desired design specification using the proposed
metrics. The related contribution is a design quality measure
for evaluating implementations against STL specifications. 1

II. PRELIMINARIES

Let R,R≥0, N denote the set of real, non-negative real,
and natural numbers, respectively. The absolute value of
r ∈ R is denoted by |r|, and the infinity-norm of x ∈ Rn by
‖x‖∞ := maxi∈{1,··· ,n} |xi|, where xi is the i’th component
of x. A function f : Rn → R is rectangular if f(x) = xi,
i ∈ {1, · · · , n}. A metric space (M, d) is composed of a set
M and a distance d : M×M → R≥0. We use discrete
time throughout the paper. Time intervals I = [t1, t2],
t1, t2 ∈ N, t1 ≤ t2, are interpreted as {t1, t1 + 1, · · · , t2},
and τ + I = [τ + t1, τ + t2], τ ∈ N. The continuous interval
{r|0 ≤ r ≤ 1} is denoted by U. An n-dimensional, real,
infinite-time, discrete-time signal s is a string s0s1s2 · · · ,
where st ∈ S ⊂ Rn, t ∈ N. The suffix s[t] of s at t is a
signal such that s[t]τ = st+τ , ∀t, τ ∈ N, and s[t1, t2] :=
st1st1+1 · · · st2 . The set of all signals with values in S is S .
The set of all signal prefixes with time bound T is ST :=

1The Extended version of this paper is available at
https://arxiv.org/abs/1808.03315. The software is publicly
accessible at https://github.com/CIDARLAB/stl metrics.
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{s[0, T ] | s ∈ S} . For the convenience of notation, we use
s ∈ ST to say s[0, T ] ∈ ST . The distance between two
signals s, s′ ∈ ST is d(s, s′) := supt∈[0,T ] {‖st − s′t‖∞} .
Signal Temporal Logic: The syntax of STL is [5]:

φ ::= > | π | ¬φ | φ1 ∧ φ2 | φ1UIφ2 ,

where > is the Boolean true constant; π is a predicate over
Rn in the form of f(x) ∼ µ, f : S → R, µ ∈ R, and ∼∈
{≤,≥}; ¬ and ∧ are the Boolean operators for negation and
conjunction, respectively; and UI is the temporal operator
until over bounded interval I . A predicate f(s) ∼ µ is
rectangular if f is rectangular. Other Boolean operations
are defined in the usual way. Additional temporal operators
eventually and globally are defined as ♦Iφ ≡ >UIφ and
�Iφ ≡ ¬♦I¬φ, respectively, where I is an interval. The
set of all STL formulae over signals in S is denoted by ΦS .
The STL score, also known as robustness degree is a function
ρ : S × ΦS × N→ R, which is recursively defined as [5]:

ρ(s, f(s) ∼ µ, t) =

{
µ− f(st) ∼=≤
f(st)− µ ∼=≥

,

ρ(s,¬φ, t) = −ρ(s, φ, t),
ρ(s, φ1 ∧ φ2, t) = min(ρ(s, φ1, t), ρ(s, φ2, t)),
ρ(s, φ1 UI φ2, t) = max

t′∈t+I

(
ρ(s, φ2, t

′),

min
t′′∈[t,t′]

ρ(s, φ1, t
′′)
)
,

(1)

As one can inspect from (1), a signal satisfies an STL
specification at a certain time if and only if its corresponding
STL score is positive: s[t] |= φ ⇔ ρ(s, φ, t) > 0, where
|= is read as “satisfies”. The case of ρ = 0 is usually left
ambiguous - this is never a concern in practice due to issues
with numerical precision. In this paper, we consider ρ = 0
as satisfaction, but by doing so, we sacrifice the principle of
contradiction: s[t] |= φ and s[t] |= ¬φ if ρ(s, φ, t) = 0.

The horizon of an STL formula is defined as the minimum
length of the time window required to compute its score [14]:
‖π‖ = 0, ‖φ‖ = ‖¬φ‖ , ‖φ1 ∧ φ2‖ = max{‖φ1‖ , ‖φ2‖}∥∥φ1U[t1,t2]φ2

∥∥ = t2 +max{‖φ1‖ , ‖φ2‖} (2)

The set of all STL formulae over S such that their horizons
are less than T is denoted by ΦST . Note that computing
ρ(s, φ, t) requires s[t : t + ‖φ‖], and the rest of the values
are irrelevant. Given φ ∈ ΦST , we define the bounded-time
language as: L(φ) := {s ∈ ST | ρ(s, φ, 0) ≥ 0}. Note that
L(φ) ⊂ Rn(T+1). With rectangular predicates, the bounded-
time language becomes a finite union of hyper-rectangles.

Example 1: Let S = U, and the STL formulae in ΦS20 :
φ1 = �[0,20]θ1, φ2 = �[0,20]θ2,

φ3 = ♦[0,20]θ1, φ4 = �[0,20]θ1 ∧ ♦[0,20]θ2,
φ5 = (�[0,10]θ1) ∧ (�[12,20]θ2), φ6 = �[0,16]♦[0,4]θ1

(3)

where θ1 = (x ≥ 0.2) ∧ (x ≤ 0.4), and θ2 = (x ≥ 0.2) ∧
(x ≤ 0.44). We have ‖φi‖ = 20, i = 1, · · · , 6. Two examples
of bounded-time languages are: L(φ2) =

⋂20
τ=0{0.2 ≤ xt ≤

0.44},L(φ3) =
⋃20
τ=0{0.2 ≤ xt ≤ 0.4}. Consider two

constant signals s1 and s2, where s1t = 0.3, s2t = t/20, t =
0, 1, · · · , 20. The STL scores are computed from (1). For
instance, ρ(s1, φ1, 0) = 0.1, ρ(s2, φ1, 0) = −0.6 (minimizer
at t = 20), and ρ(s2, φ3, 0) = 0.1 (maximizer at t = 6).

III. METRICS

In this section, we introduce two functions dSTL : ΦST ×
ΦST → R≥0 that quantify the dissimilarity between the
properties captured by the two STL formulae. However, it
is possible that different formulae may describe the same
properties. For example, φ1 and φ4 in (3) are describing
the same behavior, since any signal that satisfies φ1 already
satisfies φ4 and vice versa. The key idea is to define the
distance between two STL formulae as the distance between
their time-bounded languages.

Assumption 1: The set S ⊂ Rn is compact.
Assumption 2: All of the predicates are rectangular.

Bounded-time languages are constructed in finite-
dimensional Euclidean spaces. Also, since all inequalities
in the predicates are non-strict, bounded-time languages
are compact sets. Assumption 2 is theoretically restrictive,
but not in most applications - usually it is the case that all
predicates are rectangular as they describe thresholds for
state components of a system.

Definition 1: We say that the two STL formulae φ1 and
φ2 are semantically equivalent, denoted by φ1 ≡ φ2, if both
induce the same language: L(φ1) = L(φ2).
The set of equivalence classes of ΦST induced by ≡ is
denoted by ΦST / ≡. Distance functions dSTL are effectively
pseudo-metrics on ΦST , but proper metrics on ΦST / ≡,
where dSTL(〈φ1〉 , 〈φ2〉) = dSTL(φ1, φ2) is the induced
metric, 〈φ〉 is the equivalence class associated with φ, and
φ1 and φ2 are formulae in the two equivalence classes. By
definition, there is a one-to-one map between the equivalence
classes of STL formulae and their formulae. Moreover, for
any φ1, φ2 ∈ 〈φ〉, we have dSTL(φ1, φ2) = 0.

We adapt two common metrics between sets: (a) the
Pompeiu-Hausdorff (PH) distance based on the underlying
metric between signals, and (b) a measure of symmetric
difference (SD) between sets. As it will be clarified in the
paper, the choice of T , as long as it is larger than the
horizons of the formulae that are considered, does not affect
the fundamental properties of the defined metrics. In the case
of the PH distance, it does not have any effect at all. For the
SD metric, the computed distances are scaled with respect to
the inverse of T . These details are explained in Section III-B.

A. Pompeiu-Hausdorff Distance

Definition 2: The (undirected) PH distance is defined as:

dPH(φ1, φ2) = max
{
~dPH(φ1, φ2), ~dPH(φ2, φ1)

}
, (4)

where ~dPH denotes the directed PH distance:

~dPH(φ1, φ2) := sup
s1∈L(φ1)

{
inf

s2∈L(φ2)
d(s1, s2)

}
. (5)

The directed PH distance is obviously not a metric as it
is possible to have ~dPH(φ1, φ2) 6= ~dPH(φ2, φ1). We have
~dPH(φ1, φ2) = 0 if and only if L(φ1) ⊆ L(φ2). Another
way to interpret the PH distance is as follows [12]:

~dPH(φ1, φ2) = min{ε | L(φ1) ⊆ L(φ2) + εBST }, (6)
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where BST is the unit ball in ST : {s[0 : T ] | ‖st‖∞ ≤ 1, t ∈
[0, T ]}, and addition of sets is interpreted in the Minkowski
sense - ~dPH(φ1, φ2) is the radius of the minimal ball that
should be added to L(φ2) such that it contains L(φ1).

Proposition 1: The (ΦST / ≡, dPH) is a metric space.
It is possible to interpret (5) as the distance between an

STL formula and a signal: ~dPH(s, φ) := mins′∈L(φ) d(s, s′).
It is easy to see that we have ~dPH(s, φ) = 0 if and only if s ∈
L(φ). The following result is a reformulation of Definition 23
in [6], which establishes a connection between the STL score
and the notion of signed distance.

Proposition 2: Given any φ ∈ ΦST and s ∈ ST , the STL
score is a signed distance in the sense that:

ρ(s, φ, 0) =

{
−~dPH(s, φ) ~dPH(s, φ) > 0,
~dPH(s,¬φ) ~dPH(s, φ) = 0.

(7)

The following results are extensions of classical results for
signed distances [15].

Corollary 1: For any given two formulae φ1, φ2 ∈ ΦST

and a signal s ∈ ST , we have the following inequalities:∣∣|ρ(s, φ1, 0)| − |ρ(s, φ2, 0)|
∣∣ ≤ dPH(φ1, φ2)∣∣ρ(s, φ1, 0)− ρ(s, φ2, 0)

∣∣ ≤ dPH(φ1, φ2) + dPH(¬φ1,¬φ2)
Corollary 2: Given ε > 0, define ε-neighborhood of an

STL formula φ as {φ}ε =
{
φ′ ∈ ΦST |dPH(φ, φ′) ≤ ε

}
.

Then, ρ(s, φ, 0) ≥ ε implies that s |= φ′,∀φ′ ∈ {φ}ε.

B. Symmetric Difference

The SD is denoted by 4, and defined as X4Y = (X \
Y ) ∪ (Y \ X), where X and Y are two sets. It induces a
distance between compact sets as the measure of the SD [13].

Definition 3: The SD metric is defined as:

dSD(ϕ1, ϕ2) =
1

T + 1
|L(ϕ1)4L(ϕ2)|,

where | · | is the Lebesgue measure.
Proposition 3: The (ΦST / ≡, dSD) is a metric space.
We define the coverage of signal sets in the space-time

value set. Formally, we have the map P : 2ST → S × TU
such that P(S) =

⋃
s∈S

⋃
t∈[0,T ]{(st, τ) | t ≤ τ ≤ t + 1},

where S ⊆ S. For an STL formula φ, P(φ) = P(L(φ)).
Let S = Un, and p = xi ≤ µ be a rectangular predicate

with µ ∈ U and i ∈ {1, . . . , n}. The coverage of p is P(p) =(
(Ui−1 × µU× Un−i)× U

)
∪ (Un × {1 ≤ t ≤ T}).

Theorem 1: If φ1 and φ2 are two STL formulae with the
same language, then they cover the same space. Formally,
we have L(φ1) = L(φ2) implies P(φ1) = P(φ2).

However, the converse is not true in general. In particular,
it can fail for formulae containing disjunctions.

C. Comparison

While the PH distance and the SD difference are both met-
rics, they have quite different behaviors. Here, we elaborate
on these differences and show an illustrative example.

Informally, the PH distance has a stronger spatial notion,
and is closely connected to STL score, as stated in Corollary
1 and Corollary 2. On the other hand, the SD is a more
temporal notion, as the areas also capture the length of

temporal operators. It is possible that two STL formulae have
a large PH distance, but a small SD distance, and vice versa.
In applications, the choice is dependent on the user. The most
useful may be a convex combination - which is a metric by
itself - with a user-given convex coefficient.

Example 2: Consider the six STL formulae in (3). We
compute the PH and the SD distances between all pairs
of formulae using the methods proposed in Section IV.
The lower-half of the table shows the directed PH dis-
tances, where the values in i’th row and j’th column are
~dPH(φi, φj)/~dPH(φj , φi) - the PH distance is the maximum
of the two numbers, e.g., dPH(φ1, φ2) = 0.04. We have also
included the truth constant in the distance table. It is observed
that ~dPH(φi,>) = 0,∀i ∈ {1, · · · , 6}, which implies the
fact that the language of each formula is contained within
the language of >, which is the set of all signals. The
opposite direction, ~dPH(>, φ) = dPH(φ,>), is, informally,
the quantification of how restrictive φ is. It is observed that
most values are either 0.6 = max(1−0.4, 0.2−0) or 0.56 =
max(1 − 0.44, 0.2 − 0), which correspond to the extreme
signal that one language contains but the other does not, or
it is 0, indicating that one language is a subset of another.
For instance, φ3 is a “weak” specification in the sense that its
language is broad - any signal in θ1 at some time satisfies it -
so the directed distances from other formulae to φ3 are zero.
Another notable example is the relation between φ1 and φ4.
The directed PH distance is zero in both directions - the two
formulae are equivalent. This is due to the fact that any signal
that satisfies φ4, already satisfies φ1. The other direction also
trivially holds. Some pairs, like φ2 and φ3, have non-zero
PH distances in both directions. The SD distances are also
shown in upper half of Table I. Here, it can be seen that
in most cases, the SD distance is either a lot larger or a
lot smaller than the PH distance. This is largely due to the
fact that this metric is based on area which is particularly
highlighted when comparing any of the formulae to >. Since
each formula’s satisfaction space is very small in comparison
to the entire bounded signal space, each of these values is
quite large. In contrast, the SD distance between φ1 and φ5
is fairly small since the satisfaction regions for each of these
formulae cover a similar area. The SD distance between φ2
and φ3 is on the larger side as their areas of satisfaction are
quite different; however, these areas are still much closer to
each other than they are to the entire bounded satisfaction
area represented by >. Similar to the PH distance, the SD
distance between φ1 and φ4 is zero as they have completely
overlapping areas of satisfaction.

The values in Table I illustrate that there are different
situations when the PH distance might be favored over the
SD distance and vice versa. In cases where one cares about
the area covered by the satisfaction region of a formula, the
SD distance should be used. For instance, the SD could be
used to find a formula close to one that requires a signal to be
held at a particular value for a long time interval. However,
if one only cares about how close the signal bounds of the
formulae are to each other, the PH distance should be used.
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TABLE I: Example 2: PH and SD Distances

dPH

dSD > φ1 φ2 φ3 φ4 φ5 φ6

> 0 0.8 0.76 0.99 0.8 0.804 0.84
φ1 0/0.6 0 0.04 0.19 0 0.036 0.03
φ2 0/0.56 0.04/0 0 0.23 0.04 0.044 0.07
φ3 0/0.6 0.6/0 0.56/0.04 0 0.19 0.186 0.16
φ4 0/0.6 0/0 0/0.04 0/0.6 0 0.036 0.03
φ5 0/0.6 0.6/0 0.56/0.04 0/0.6 0.6/0 0 0.066
φ6 0/0.6 0.6/0 0.56/0.04 0/0.6 0.6/0 0.6/0.04 0

IV. COMPUTATION

This section presents algorithms for computing the PH and
the SD distances between STL specifications.

A. Pompeiu-Hausdorff Distance

In this section, we propose an optimization-based method
to compute the PH distance between two STL formulae.

Definition 4: Given an STL formula ϕ that contains no
negation, we define ϕε+ with the same logical structure as
ϕ with predicates replaced as follows:
• f(x) ≥ µ replaced with f(x) ≥ µ− ε;
• f(x) ≤ µ replaced with f(x) ≤ µ+ ε.

Intuitively, ϕε+ is a relaxed version of ϕ. It is easy to verify
from (1) that ρ(s, ϕε+, 0) = ρ(s, ϕ, 0) + ε,∀s ∈ ST .

Lemma 1: The following relation holds:

~dPH = min{ε ≥ 0 | L(ϕ1) ⊆ L(ϕε+2 )} (8)
The following statement provides the main result, and the
base for the computational method of this section.

Theorem 2: Given ϕ1, ϕ2 ∈ ΦST , L(ϕ1) 6= ∅, define ε∗

as the following optimum:

ε∗ = max ε,
subject to s |= ϕ1, s 6|= ϕε+2 , ε ≥ 0, s ∈ ST .

(9)

Then the following holds:

~dPH(ϕ1, ϕ2) =

{
ε∗ (9) is feasible,
0 otherwise. (10)

We convert (9) into a MILP problem. The procedure for
converting STL into MILP constraints is straightforward, see,
e.g., [16]. The encoding details are omitted here. By solving
two MILPs, we are able to obtain the PH distance. Two
MILPs can be aggregated into a single MILP, but that usually
more than doubles the computation time due to larger branch
and bound trees. Moreover, it is often useful to have the
knowledge of the directed PH distances.

Theorem 2 requires that formulae do not contain negation.
Negation elimination is straightforward: first, the formula is
brought into its Negation Normal Form (NNF), where all
negations appear before the predicates. Next, the predicates
are negated. For example, we replace ¬(x ≤ µ) by (x ≥
µ). We remind the reader that we do not consider strict
inequalities, hence ¬(x ≤ µ) and (x ≤ µ) are both true
if x0 = µ. Finally, observe that the choice of T does not
effect the values of PH distance, as long as it is larger
than the horizons of two formulae that are compared. Given
φ1, φ2 ∈ ΦST , the values of st for t > max{‖φ1‖ , ‖φ2‖}
do not have any associated constraints in (9).

(a) φ1 (b) φ5 (c) Overlap φ1 and φ5

Fig. 1: (a) and (b) show the area of satisfaction boxes for φ1 and φ5

from Example 2, respectively. The blue regions represent the boxes
that are computed for globally (�) operators. In (c), the red regions
represent the non-overlapping area and the purple regions represent
the overlapping area between φ1 and φ5. The SD distance for this
example is the area of the red regions ((2×0.2)+(8×0.04) = 0.72)
divided by the maximum time horizon which is 0.72

20
= 0.036.

Complexity: The complexity of (9) is exponential in the
number of integers, which grows with the number of predi-
cates and horizons of the formulae. However, since signal
values do not have any dynamical constraints, we found
solving (9) to be orders of magnitudes faster than comparable
STL control problems, such as those studied in [16]. All the
values obtained in Table I were evaluated almost instanta-
neously using Gurobi MILP solver on a personal computer.

B. Symmetric Difference

This section presents an algorithm for computing boxes
representing the area of satisfaction of a formula as well
as a method for determining the SD between two sets of
boxes. Each set of boxes approximates the projection (P) of
the formula and represents the valid value-space that a time-
varying signal can take such that traces that are contained
entirely within the boxes satisfy the formula.

Computing the set of boxes representing the area of
satisfaction is a recursive process that takes as input an STL
formula, φ, a set of max values, Xmax, for each signal, x ∈
X (used to normalize the signal values to a unit space), and a
discretization threshold, δ. This algorithm, AoS, is presented
in Algorithm 1. Here, box(t1, t2, x1, x2, i) = P(�[t1,t2]x1 ≤
xi ≤ x2) ⊆ S × TU creates a new box with minimum and
maximum times t1 and t2, minimum and maximum values x1
and x2, and spatial dimension i ∈ {1, . . . , n}, respectively;
overlap determines the time window of the overlap between
two boxes; combine takes two boxes and produces a set of
boxes representing the intersection of the overlapping time
window region; b.lt, b.ut, b.lv ∈ S, and b.uv ∈ S return
the lower time window, upper time window, lower variable,
and upper variable values for box b, respectively; ∗ in the
definition of a box denotes that it may restrict multiple spatial
dimensions; and the ‖ operator is used to create a “choice”
set representing that either of the two sets can be selected as
the set of boxes representing the area of satisfaction.

To address the problem of projection of formulae contain-
ing disjunction (the converse to Theorem 1), AoS utilizes
the ‖ operator. If this algorithm instead generated boxes
representing the projection of all formulae, it would be
possible for the satisfaction space represented by the boxes
to capture signals that the original formula does not allow.
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ALGORITHM 1: Convert to Area of Satisfaction Boxes (AoS)
input : STL formula φ, max value set Xmax, discretization threshold δ.
output: Set of boxes B for each signal in φ.

if φ := xi ≤ π then return box(0, 0, 0, π/xmax, i)
else if φ := xi > π then return box(0, 0, π/xmax, 1, i)
else if φ := φ1 ∧ φ2 then

Create a new set B
for each b1 ∈ AoS(φ1) and each b2 ∈ AoS(φ2) do

if overlap(b1, b2) then Add combine(b1, b2) to B
else Add b1 to B and b2 to B

return B
else if φ := φ1 ∨ φ2 then return AoS(φ1) ‖ AoS(φ2)
else if φ := �[t1,t2](φ1) then

Create a new set B
for each b ∈ AoS(φ1) do

b′ = box(b.lt+ t1, b.ut+ t2, b.lv, b.uv, ∗)
Add b′ to B

return B
else if φ := ♦[t1,t2](φ1) then

return AoS

(t2−t1)/δ∨
i=1

�[t1+δ(i−1),t1+δi](φ1)



The application in Section V highlights this problem and
presents a way of dealing with it for that particular example.

For operators such as globally (�), AoS is exact and
produces boxes bound by the time bounds of the operator that
represent the projection of the primitive. However, operators
such as eventually (♦) do not immediately lend themselves
to conversion into a set of boxes. In order to deal with this
operator, we approximate it by converting it into a disjunction
of globally predicates. Each globally predicate is generated
using a small threshold value (δ) for its time window width.
The new formula requires that the expression be true in at
least one of the smaller time windows essentially introducing
a mandatory δ “hold” time for eventually operators. The
tunability of δ allows for a user to give up some accuracy
for gains in performance of box computation and ultimately
distance comparison. Examples of computing the area of
satisfaction boxes in Example 2 are shown in Figure 1.

The SD between two sets of boxes is computed by
calculating the area of the sum of the non-intersected area
for each box set. This value is normalized by the maximum
time horizon, T , and results in the SD computation:

dSD(Bφ1
,Bφ2

) =
1

T + 1

∣∣( ⋃
b1∈Bφ1

b1
)
4
( ⋃
b2∈Bφ2

b2
)∣∣

Figure 1c illustrates how the SD between φ1 and φ5 is
computed. The SD distance is scaled by T+1

T ′+T+1 if the
maximum horizon is increased by T ′. This again shows the
temporal nature of the SD as opposed to the PH distance
which does not change.
Complexity: The complexity of Algorithm 1 depends on the
complexity of the ‖ operation, which may be exponential
depending on how it is implemented. Otherwise, the algo-
rithm is polynomial due to the box combination operations
carried out whenever a conjunction predicate is encountered.
In practice, running Algorithm 1 on formulae with a few
dozen predicates typically takes only a few seconds.

V. QUANTIFICATION OF DESIGN QUALITY

In this application, we show an example of how the
proposed metrics can be used in behavioral synthesis. Behav-
ioral synthesis is an important process in design automation
where the description of a desired behavior is interpreted and
a system is created that implements the desired behavior.
Our goal is to check if the characterized implementations
satisfy the specifications of a system. Implementations in-
clude simulations and execution traces of a system. These
implementations are characterized into formal specifications
using TLI. We show that the proposed metrics can be used
in the synthesis step to choose a design from the solution
space that can best implement the desired specification. The
specific example we have chosen to highlight this application
is the synthesis of genetic circuits in synthetic biology.

In this example, we have a set of desired behaviors in STL
which describe the various behaviors expected of a genetic
circuit. This set of behaviors is referred to as a performance
specification: Sφ. Sφ consists of 2 STL formulae: φlow and
φhigh which describe the desired amount of output produced
by the genetic circuit over time:

φlow = �[0,300](x < 40) ∧�[0,300](x > 0)

φhigh = �[0,125](x < 200) ∧�[125,300](x < 320) ∧
�[0,150](x > 0) ∧�[150,200](x > 100) ∧
�[200,300](x > 150)

In this case, the output of the circuit corresponds to the
expression of a fluorescent protein. φlow specifies that the
output must consistently be below 40 units from time 0
to 300, and φhigh specifies that that output must gradually
increase over time and must end up between 150 and 320
units between time 200 and 300. Our solution space consists
of two genetic circuits. The first circuit has a constitutive
promoter as shown in Figure 2a. Constitutive expression
removes flexibility for consistency allowing constant protein
production independent of the state or inputs of the system,
which is highlighted in Figure 2c. The second circuit has
an inducible promoter: a sugar detecting transcription factor
AraC*, which will turn on the protein production if and only
if it is in the presence of a specific input molecule (arabinose)
as shown in Figure 2b. Figure 2d shows the output of the
circuit for various concentrations of arabinose. Both of these
synthetic genetic circuits were built in Escherichia coli.
The traces were obtained from biological experiments by
measuring fluorescence.

Our goal is to choose the circuit that can “satisfy as many
behaviors as possible” in Sφ. Note that it is difficult to ex-
press the term “satisfy as many behaviors as possible” using
the syntax and semantics of STL. For instance, expressing
the desired specification as a disjunction of all the formulae
in Sφ would imply that satisfying any one specification is
sufficient for the genetic circuit to satisfy the performance
specification. Similarly, expressing the desired specification
as a conjunction of all the formulae in Sφ would imply that
at any point in time, the output of a genetic circuit must have
multiple distinct values, which is physically impossible.

1546

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 31,2023 at 20:56:31 UTC from IEEE Xplore.  Restrictions apply. 



(a) Constitutive Expression (b) Induction Circuit

(c) Constitutive Expression (d) Induction Circuit

Fig. 2: (a) and (b) show SBOL visual representations of the genetic
circuits with a constitutive promoter and an inducible promoter,
respectively. Traces in (c) and (d) were obtained by evaluating
geometric mean fluorescence at regular intervals by flow cytometry.

(a) P(φlow ∨ φhigh) (b) Bφlow ∪ Bφhigh = BSφ

Fig. 3: (a) the union of the areas of satisfaction for φlow and φhigh.
The vertical and horizontal stripe areas represent P(φlow) and
P(φhigh), respectively. (b) the boxes created for Bφlow ∪ Bφhigh .

This conundrum is highlighted in the current example.
The output of constitutive expression satisfies φlow but
cannot satisfy φhigh. The induction circuit produces traces
that can satisfy both φlow and φhigh. However, traditional
model checking techniques may not help a designer choose
the desired circuit. Using statistical model checking, for
example, the circuit with constitutive expression yields a
satisfaction likelihood of 1.0 and the induction circuit yields
a satisfaction likelihood of 0.83 against φlow ∨ φhigh. With
these results, one might think that the circuit with constitutive
expression best satisfies the performance specification.

To address the issue of satisfying as many behaviors as
possible, we treat the performance specification’s region of
satisfaction as the union of the regions of satisfaction of all
the formulae in Sφ as shown in Figure 3a. We compute this
region by taking the union of the generated boxes for each
formula that are computed using Algorithm 1. The union of
the box sets of all STL formulae in Sφ is represented as
Bφlow ∪ Bφhigh = BSφ and is shown in Figure 3b. Using
Grid TLI [17], we produce STL formulae, φcon and φind,
for each circuit using the traces shown in Figures 2c and 2d,
respectively. We then use the SD metric and get the following
values: dSD(BSφ ,Bφcon) = 0.636 and dSD(BSφ ,Bφind) =
0.304. Using the PH metric, we get: dPH(BSφ ,Bφcon) =
0.067 and dPH(BSφ ,Bφind) = 0. These results imply that

the behavior of the induction circuit is closer to the desired
specification than the circuit with constitutive expression, and
thus, it should be selected as the desired circuit.

VI. FUTURE WORK

An immediate theoretical extension is studying
continuous-time signals. By assuming Lipschitz continuity
of signals, it is possible to provide bounds between
the metrics computed in discrete-time and the ones in
continuous-time. A similar idea was used in [6] to compute
sampled-time STL scores. The second extension is relaxing
the assumption on rectangular predicates.
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