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Abstract— In this paper, we focus on discrete-time
continuous-space Piecewise Affine (PWA) systems, and study
properties of their trajectories expressed as temporal and logical
statements over polyhedral regions. Specifically, given a PWA
system and a Linear Temporal Logic (LTL) formula over
linear predicates in its state variables, we attempt to find the
largest region of initial states from which all trajectories of
the system satisfy the formula. Our method is based on a
classical algorithm for the iterative computation of simulation
quotients augmented with model checking. We show that the
determinism inherent in the problem and the particular linear
structure of the invariants and of the dynamics can be exploited
in a computationally attractive algorithm. We illustrate the
application of our method to the computation of basins of
attraction for the two equilibria of a PWA model of a two-
gene network.

Index Terms— piecewise affine systems, transition systems,
simulation quotients, LTL model checking, gene networks

I. INTRODUCTION

Temporal logics [19] and model checking [16] were
developed for specifying and verifying the correctness of
digital circuits and computer programs. However, due to
their resemblance to natural language, their expressivity, and
the existence of off-the-shelf algorithms for model checking,
temporal logics have the potential to impact several other
areas of engineering. Analysis of systems with continuous
dynamics based on qualitative simulations and temporal logic
was proposed in [37], [11], [17]. Control of linear systems
from temporal logic specifications has been considered in
both discrete time [39] and continuous time [28]. The use of
temporal logic for task specification and controller synthesis
in mobile robotics has been advocated as far back as [3], and
recent results include [32], [35], [20], [29]. In the area of
systems biology, the qualitative behavior of genetic circuits
can be expressed in temporal logic, and model checking can
be used for analysis, as suggested in [4], [6].

In this paper, we focus on piecewise affine systems in
discrete time and continuous space (called PWA for short),
which can be seen as evolving along different affine dynam-
ics (in discrete time) in different non-overlapping polytopal
regions of the (continuous) state space. Such systems are
particularly attractive for three main reasons. First, they
are quite general, since they can approximate nonlinear
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dynamics with arbitrary accuracy [31], and are proven to be
equivalent with several other classes of hybrid systems [24].
Second, there exist computationally attractive techniques
for the identification of such systems from input-output
data, which include Bayesian methods [25], bounded-error
procedures [7], clustering-based methods [21], Mixed-Integer
Programming [36], and algebraic geometric methods [40].

Third, PWA systems seem to be particularly suited as
models for gene networks (the states are concentrations
of species, such as mRNAs, proteins, and small molecule
species). Indeed, for most networks, the dynamics are affine,
with the exception of the gene regulation function (GRF),
which captures the relation between the concentrations of
the transcription factors and the activity of a gene. However,
recent experimental techniques based of fluorescent reporter
genes [23] allow for the collection of a large amount of input-
output data relating the transcription factor concentrations
and the gene activity. Using one of the above identification
techniques, this data can then be used to construct a piece-
wise affine representation of GRFs, which leads to an overall
PWA model of a gene network.

A rich spectrum of properties of gene networks are
naturally expressed in Linear Temporal Logic (LTL) [19]
formulas over linear predicates in the state variables. Exam-
ples include reachability, safety and invariance. However, the
PWA systems have an infinite number of states, and model
checking cannot be used directly. We use the polytopes from
the definition of the PWA system and the linear predicates in
the formula to define equivalence classes, and model check
the produced quotients. Our method is iterative, and based on
the notions of transition system, simulation, and bisimulation
[16]. Specifically, in this paper, given a PWA system Σ in a
bounded polytope PN in R

n (assumed to be a invariant for
Σ), and an LTL formula φ over linear predicates, we find
(if possible) the largest subset Pφ of PN with the property
that all trajectories originating in Pφ satisfy the formula. We
show the application of our method to the computation of
basins of attraction for the two equilibria of a PWA model
of a two-gene network.

From a theoretical and computational point of view, this
work can be seen in the context of literature focused on
the construction of finite quotients of infinite systems (see
[2] for a review), and is closely related to [34], [39], [28].
Unlike counterexample guided refinement [15], [1], which
eliminates spurious runs in the abstraction, our approach
relays on the iterative construction of a bisimulation. Al-
gorithm 3 (Section III) is an extension of the algorithm
for the construction of the coarsest proposition preserving
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bisimulation proposed in [9] (also Algorithm 2 from [2]).
One of the main contributions of this paper is to show
that all the steps of this algorithm are computable for PWA
systems, and can be reduced to operations on polyhedral
sets, which can be performed efficiently [30]. The embedding
of discrete time systems into transition systems is inspired
from [34], [39]. However, while the focus in [34], [39] is
on characterizing the existence of bisimulation quotients,
in this work we focus on computation of simulation and
bisimulation quotients, while including the model checking
process. Unlike [13], where specifications of the system are
verified by model checking approximate quotient transition
system, here we compute exact reachability mappings but
no explicit periodic sampling is assumed as in [38], [27].
Our previous work [28] considered continuous time linear
control systems, while in this paper we study discrete time
affine systems.

From an application point of view, this paper relates to [5],
[8], [12], [18], where temporal logics are used to specify
properties of biomolecular networks. These works aim at
checking whether a system satisfies dynamical properties for
given (sets of) initial conditions. In contrast, we search for
the largest set of initial conditions for which the given prop-
erties are satisfied. Our approach yields more informative
results, since we obtain regions of initial conditions for which
the system satisfies the properties, instead of simple Yes/No
answers.

II. PRELIMINARIES

A. Polytopes and Affine Functions

Let N ∈ N and consider the N - dimensional Euclidean
space RN . A full dimensional polytope P̄N is defined as the
convex hull of at least N + 1 affinely independent points
in R

N . A set of M ≥ N + 1 points v1, . . . , vM ∈ R
N

whose convex hull gives P̄N and with the property that
vi, i = 1, . . . , M is not contained in the convex hull of
v1, . . . , vi−1, vi+1, . . . , vM is called the set of vertices of
P̄N . A polytope is completely described by its set of vertices:

P̄N = Conv{v1, . . . , vM}, (1)

where Conv denotes the convex hull. Alternatively, P̄N can
be described as the intersection of at least N + 1 closed
half spaces. In other words, there exist a K ≥ N + 1 and
ai ∈ R

N , bi ∈ R, i = 1, . . . , K such that

P̄N = {x ∈ R
N | aT

i x + bi ≤ 0, i = 1, . . . , K} (2)

Forms (1) and (2) are referred to as V- and H- representa-
tions of the polytope, respectively. Given a full dimensional
polytope P̄N , there exist algorithms for translation from
representation (1) to representation (2) [33], [22]. A facet
of a polytope P̄N is the intersection of P̄N with one of its
supporting hyperplanes aT

i x + bi = 0, i = 1, . . . , K from
equation (2).

A polytope P̄N without its facets is called an open
polytope. We use the notation PN for open polytopes. i.e.,
PN = int(P̄N ) and P̄N = cl(PN), where int and cl stand
for interior and closure, respectively.

A function f : R
N → R

m is called affine if it can be
written as f(x) = Ax + b, A ∈ R

m×N , b ∈ R
m, for all

x ∈ R
N . If P̄N is a full dimensional polytope in R

N with
set of vertices {v1, . . . , vM} and f : R

N → R
m is an affine

function, then it is easy to prove that

f(P̄N) = Conv{f(v1), . . . , f(vM )}, (3)

i.e., the image of a polytope through an affine function is the
convex hull of the vertex images through the affine function.

In the particular case N = m, if matrix A is nonsingular,
then the vertices, facets, and interior of the polytope map
through the affine transformation to the vertices, facets, and
interior of the image of the polytope, respectively. Therefore

f(int(P̄N)) = int(f(P̄N )) (4)

B. Transition Systems, Simulations, and Bisimulations

Definition 1: A transition system is a tuple T = (Q,→
, Π, �), where Q is a set of states, →⊆ Q×Q is a transition
relation, Π is a finite set of atomic propositions, and �⊆
Q × Π is a satisfaction relation.

A transition (q, q′) ∈→ is also denoted by q → q′.
The transition system T is called finite if its set of states
Q is finite, and infinite otherwise. The transition system
T is called non-blocking if, for every state q ∈ Q, there
exists q′ ∈ Q such that (q, q′) ∈→ (i.e., the relation → is
total). In this paper only non-blocking transition systems are
considered. The transition system T is called deterministic
if, for all q ∈ Q, there exists at most one q′ ∈ Q such that
(q, q′) ∈→ (the case q = q′ is included in the definitions
above).

For an arbitrary proposition π ∈ Π, we define [[π]] = {q ∈
Q|q � π} as the set of all states satisfying it. Conversely, for
an arbitrary state q ∈ Q, let Πq = {π ∈ Π | q � π}, Πq ∈ 2Π,
denote the set of all atomic propositions satisfied at q. A
trajectory or run of T starting from q is an infinite sequence
r = r(1)r(2)r(3) . . . with the property that r(1) = q,
r(i) ∈ Q, and (r(i), r(i+1)) ∈→, for all i ≥ 1. A trajectory
r = r(1)r(2)r(3) . . . defines a word w = w(1)w(2)w(3) . . .,
where w(i) = Πr(i). The set of all words generated by the
set of all trajectories starting at q ∈ Q is called the language
of T originating at q and is denoted by LT (q). A subset P
of the state set Q (P ⊆ Q) is called a region of T . The
set of all words generated by all runs of T originating at all
states of P is called the language of T originating at P and
is denoted by LT (P ). The language of the transition system
T is defined as LT (Q).

For an arbitrary region P , we define the set of states
Pre(P ) that reach P in one step as

Pre(P ) = {q ∈ Q | ∃p ∈ P, q → p} (5)

An equivalence relation ∼⊆ Q × Q over the state space
of T is proposition preserving if for all q1, q2 ∈ Q and all
π ∈ Π, if q1 ∼ q2 and q1 � π, then q2 � π. Among the
several proposition preservation equivalence relations that
can be defined, propositional equivalence defined as q1 ∼ q2

if and only if Πq1
= Πq2

is of special interest. A proposition
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preserving equivalence relation naturally induces a quotient
transition system T/

∼
= (Q/

∼
,→

∼
, Π, �

∼
). Q/

∼
is the

quotient space (the set of all equivalence classes). The tran-
sition relation →

∼
is defined as follows: for P1, P2 ∈ Q/

∼
,

P1 →
∼

P2 if and only if there exist q1 ∈ P1 and q2 ∈ P2

such that q1 → q2. The satisfaction relation is defined as
follows: for P ∈ Q/

∼
, we have P �

∼
π if and only if there

exist q ∈ P such that q � π. It is easy to see that

LT (P ) ⊆ LT/∼

(P ), (6)

for any P ∈ Q/
∼

(with a slight abuse of notation, we use
the same symbol P to denote both a state of T/

∼
and the

corresponding region of equivalent states of T ). The quotient
transition system T/

∼
is said to simulate the original system

T , which is written as T/
∼
≥ T .

Definition 2: A proposition preserving equivalence rela-
tion ∼ is a bisimulation of a transition system T = (Q,→
, Π, �) if for all states p, q ∈ Q, if p ∼ q and p → p′, then
there exist q′ ∈ Q such that q → q′ and p′ ∼ q′.
If ∼ is a bisimulation, then the quotient transition system
T/

∼
is called a bisimulation quotient of T , and the transition

systems T and T/
∼

are called bisimilar, denoted by T/
∼

�

T . An immediate consequence of bisimulation is language
equivalence, i.e., LT (P ) = LT/∼

(P ), for all P ∈ Q/
∼

.

C. Linear Temporal Logic and Model Checking

Definition 3: [Syntax of LTL formulas] A (propositional)
linear temporal logic (LTL) formula over Π is recursively
defined as follows:

• Every atomic proposition π ∈ Π is a formula, and
• If φ1 and φ2 are formulas, then φ1 ∨ φ2, ¬φ1, ©φ1,

φ1Uφ2 are also formulas.
The semantics of LTL formulas are given over words in

the language of the transition system T .
Definition 4: [Semantics of LTL formulas] The satisfac-

tion of formula 1 φ at position i ∈ N of word w, denoted by
w(i) � φ, is defined recursively as follows:

• w(i) � π if π ∈ w(i),
• w(i) � ¬φ if w(i) � φ,
• w(i) � φ1 ∨ φ2 if w(i) � φ1 or w(i) � φ2,
• w(i) � ©φ if w(i + 1) � φ,
• w(i) � φ1Uφ2 if there exist a j ≥ i such that w(j) � φ2

and for all i ≤ k < j we have w(k) � φ1

A word w satisfies an LTL formula φ, written as w � φ, if
w(1) � φ. The transition system T satisfies formula φ from
region P ⊆ Q, written as T (P ) � φ, if and only if w � φ
for all w ∈ LT (P ). Note that the same symbol is used to
express the satisfaction of a predicate or a formula.

The symbols ¬ and ∨ stand for negation and disjunction.
The boolean constants 
 and ⊥ are defined as 
 = π ∨ ¬π
and ⊥ = ¬
. The other Boolean connectors ∧ (conjunction),
⇒ (implication), and ⇔ (equivalence) are defined from ¬
and ∨ in the usual way. The temporal operators © and U

1We use the same notation � for the satisfaction of propositions by the
states of transition systems and for the satisfaction of formulas by words
and transition systems. The significance should be clear from the context

is called the next and until operators. Formula ©φ holds for
a word w(1)w(2)w(3)... if and only if formula φ holds for
the suffix w(2)w(3).... Formula φ1Uφ2 intuitively means that
(over a word) φ2 will eventually become true and φ1 is true
until this happens. Two useful additional temporal operators,
”eventually” and ”always” can be defined as ♦φ = 
Uφ
and �φ = φU⊥, respectively. Formula ♦φ means that φ
becomes eventually true, whereas �φ indicates that φ is true
at all positions of w. More expressiveness can be achieved by
combining the temporal operators. Examples include �♦φ
(φ is true infinitely often) and ♦�φ (φ becomes eventually
true and stays true forever).

Given a finite transition system T = (Q,→, Π, �) and
a formula φ over Π, checking whether the words of T
starting from a region P satisfy φ (T (P ) � φ) is called
model checking. If we denote by Lφ the set of all words
(language) satisfying φ, then model checking means deciding
the language inclusion LT (P ) ⊆ Lφ. Packages for model
checking, such as ’NuSMV’ [14], have been previously
developed and are readily available.

If T/
∼

is a quotient of T , then for any equivalence class
P ∈ Q

∼
and formula φ, we have:

T/
∼

(P ) � φ ⇒ T (P ) � φ. (7)

In addition, if ∼ is a bisimulation, then

T/
∼
(P ) � φ ⇔ T (P ) � φ (8)

Properties (7) and (8) (which follow immediately from
(6)) allow one to model check finite quotients and extend the
results to the (possibly infinite) original transition system.

Definition 5: A region P ⊆ Q of a transition system T
is the largest region that satisfies a formula φ if and only
if q ∈ P ⇔ T (q) � φ. Therefore T (P ) � φ, and no states
outside of P satisfy the formula.

III. ITERATIVE CONSTRUCTION AND
VERIFICATION OF SIMULATION QUOTIENTS

Using the Pre operator defined in Equation (5), a charac-
terization of bisimulation can be given as follows: a propo-
sition preserving equivalence relation ∼ is a bisimulation
if and only if Pre(P ) is either empty or a finite union of
equivalence classes, for all equivalence classes P . This leads
to the following iterative procedure for the construction of
the coarsest bisimulation ∼ [10], [26]:

Algorithm 1 Coarsest bisimulation ∼ of T preserving Π

Initialize ∼ with propositional equivalence
while there exist P, P ′ ∈ Q/

∼
such that ∅ ⊂

P
⋂

Pre(P ′) ⊂ P do
P1 := P

⋂
Pre(P ′);

P2 := P \ Pre(P ′);
Q/

∼
:= Q/

∼
\ {P}

⋃
{P1, P2};

end while
return ∼;

In order to execute an iteration of the algorithm, one must
be able to represent (possibly infinite) state sets, perform
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Boolean operations, check emptiness, and compute the pre-
decessor operation Pre on the representation of the state sets.
In general, the bisimulation Algorithm 1 does not terminate.
If the algorithm terminates, then T/

∼
is a finite bisimulation

quotient (T/
∼

� T ), and can be (equivalently) used for
model checking instead of T (see Equation (8)).

However, the satisfaction of an LTL formula φ by T might
be decided even though the bisimilation algorithm does not
terminate. Indeed, the equivalence relation produced at each
step of Algorithm 1 can be used to construct finite simulation
quotients T/

∼
, which can then be model checked against an

LTL formula (see Equation (7)). A similar idea was used in
[13] for the universal fragment ACTL of CTL.

Combining the bisimulation procedure (Algorithm 1) with
model checking at each iterative step leads to Algorithm 2.
The algorithm attempts to find the largest region Pφ ⊆
Q that satisfies an LTL formula φ. The initial partition
given by propositional equivalence is iteratively refined and
the produced finite quotient transition systems are model
checked against both φ and ¬φ, partitioning the set of states
Q into two subsets: Pφ (the set of all states satisfying the
formula) and P¬φ (the set of all states satisfying the negation
of the formula).

If such partition exists and is constructed in a finite number
of iterations, then all runs of the system satisfying the
formula originate in Pφ and no such runs originate outside
of it. Therefore, Pφ is the largest region satisfying φ. If there
exists a quotient state P ∈ Q/

∼
, P �∈ Pφ, P �∈ P¬φ, then

∃w1, w2 ∈ LT/∼

(P ) such that w1 � φ and w2 � ¬φ. If the
states of P also happen to violate the bisimulation property
of Definition 2, then they will be split by the bisimulation
procedure. It is possible that, after the refinement, one of the
subregions of P satisfies φ, while the other satisfies ¬φ, in
which case they can be included in Pφ and P¬φ respectively.

The possible outcomes of running Algorithm 2 are the
following:
• The algorithm terminates returning the sets Pφ and P¬φ

and Pφ ∪P¬φ = Q. In that case Pφ is the largest set P
such that T (P ) � φ, and there are no satisfying runs,
originating outside of Pφ (Pφ can also be empty, in
which case there are no states of T satisfying φ).

• The algorithm terminates because the maximum number
of iterations is exceeded but Pφ ∪ P¬φ �= Q. Since
further refinement might be possible, and there might
be satisfying runs, originating outside of Pφ, in general,
Pφ is not the largest satisfying set.

• The algorithm terminates, since the quotient has been
refined enough to be bisimilar with the original system,
but Pφ ∪ P¬φ �= Q. This can occur whenever all states
of an equivalence class do not violate the bisimulation
properties of Definition 2, but due to non-determinism,
have multiple trajectories, some satisfying φ and others
¬φ. Those trajectories would not be separated by addi-
tional refinement, since the quotient is already bisimilar,
and so, Pφ cannot be expanded. Therefore, by Definition
5, it is the largest satisfying set.

Although a partition of all states in Q corresponds only to

Algorithm 2 Determine the largest P such that T (P ) � φ

Initialize ∼ with propositional equivalence;
repeat

Pφ := ∅;
P¬φ := ∅;
Construct T/

∼
;

for every Pt ∈ Q/
∼

do
if T/

∼
(Pt) � φ then

Pφ := Pφ ∪ Pt;
else if T/

∼
(Pt) � ¬φ then

P¬φ := P¬φ ∪ Pt;
end if

end for
if Pφ ∪ P¬φ = Q then

return Pφ, P¬φ;
end if
P1 := P

⋂
Pre(P ′);

P2 := P \ Pre(P ′);
Q/

∼
:= Q/

∼
\ {P}

⋃
{P1, P2};

if number of iterations exceeds limit then
return Pφ, P¬φ;

end if
until there are no P, P ′ ∈ Q/

∼
such that ∅ ⊂

P
⋂

Pre(P ′) ⊂ P
return Pφ, P¬φ;

the first outcome of the algorithm, the property that all runs
originating in Pφ and none of the runs originating in P¬φ
satisfy the formula holds for all cases.

The bisimulation procedure (Algorithm 1) is used for
the construction of Algorithm 2 and, therefore, the same
operations must be computed. With the exception of model
checking, which is a well studied problem when applied
to finite quotients, no new operations are required in order
to extend Algorithm 1 to Algorithm 2. To show this, we
describe how the quotient transition system T/

∼
can be

constructed. The set of states Q/
∼

includes all equivalence
classes, as induced by the propositional equivalence relation
∼. The set of propositions Π is inherited from T . The
satisfaction of propositions by states of the quotient follows
naturally from the properties of propositional equivalence,
which is used to construct it, i.e., if q ∈ P, P ∈ Q/

∼

then ΠP = Πq . We also note that, if an equivalence class
is split, all newly formed equivalence subclasses inherit the
satisfaction of the parent. We have already assumed that the
Pre operation and set intersections can be computed, since
they were used in the bisimulation procedure. Therefore, we
can use the same operations to induce the transitions of T/

∼

as follows:

(P, P ′) ∈→
∼

if and only if P ∩ Pre(P ′) �= ∅ (9)

Consequently, Algorithm 2 requires no additional opera-
tions, and can be implemented, provided that Algorithm 1
can be implemented.

Partitioning all states of a non-deterministic transition
system into satisfying a formula and its negation is not
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always possible, even if a finite bisimulation quotient exists.
In practice, however, many transition systems of interests,
such as embeddings of PWA systems, are deterministic,
where finding a bisimulation is equivalent to partitioning the
states with respect to a formula.

A property that follows from the system being non-
blocking and deterministic, is that an equivalence class of the
quotient having multiple outgoing transitions is partitioned
by the Pre of its successors. This provides a strategy
for refining a quotient and motivates the introduction of
some changes in Algorithm 2 in order to optimize it for
deterministic systems.

Proposition 1: If a transition system T is non-blocking
and its quotient T/

∼
is deterministic, then the equivalence

relation ∼ is a bisimulation.
Proof: Assume by contradiction that ∼ is not a bisim-

ulation. Then, there exist P, P ′ ∈ Q/
∼

, q1, q2 ∈ P , and
q′1 ∈ P ′ such that q1 → q′1 and there does not exist q′2 ∈ P ′

such that q2 → q′2. However, since T is nonblocking, there
exists q′′2 ∈ Q and P ′′ ∈ Q/

∼
, P ′′ �= P ′ such that q2 → q′′2 ,

q′′2 ∈ P ′′. In the quotient T
∼

, this induces P → P ′ and
P → P ′′, which implies that T/

∼
is non-deterministic.

Proposition 2: An equivalence relation defined on a deter-
ministic, non-blocking transition system T is a bisimulation
if and only if the quotient T/

∼
is deterministic.

Proof: From Proposition 1 it follows that if the quotient
is deterministic then the equivalence relation is a bisimula-
tion. Assume by contradiction that T/

∼
is not deterministic.

Then, there exist P, P ′, P ′′ ∈ Q/
∼

such that P → P ′ and
P → P ′′. However, since ∼ is a bisimulation, there exists
q, q′, q′′ ∈ Q, q ∈ P, q′ ∈ P ′, q′′ ∈ P ′′ such that q → q′ and
q → q′′, which implies that T is non-deterministic.

If a quotient T/
∼

is deterministic, then for a given formula
φ and an equivalence class P , T/

∼
(P ) � φ or T/

∼
(P ) �

¬φ. This follows from the fact that in a deterministic system
only one trajectory and therefore one word is possible
starting at any given state.

Following the results described above we can propose a
modification of Algorithm 2 that applies to non-blocking,
deterministic transition systems and labels all states as ei-
ther satisfying a formula φ or its negation ¬φ. Similar to
Algorithm 2, this algorithm refines a quotient and performs
model checking with a formula of interest at each step. In
this case, however, refinement is done as iterative elimination
of nondeterminism. If the quotient system is refined enough
to be deterministic, we have shown in Proposition 1 that it
is bisimilar with the original transition system (and, in fact,
from Proposition 2 it follows that it is bisimilar only when
it becomes deterministic).

As in Algorithm 2, if Pφ ∪ P¬φ = Q then Pφ is the
largest set satisfying the formula. However, if Pφ∪P¬φ �= Q,
because of the deterministic property, we know that bisimu-
lation was not achieved and the preset number of iterations
was exceeded. This property also allows us to have an infinite
loop in the algorithm, since achieving a bisimulation is
equivalent to partitioning all states into satisfying φ or ¬φ.

The changes that were introduced for the construction

Algorithm 3 Determine the largest P of a deterministic
system such that T (P ) � φ

Initialize ∼ with propositional equivalence;
Initialize Pφ := ∅;
Initialize P¬φ := ∅;
while TRUE do

Construct T/
∼

;
if number of iterations exceeds limit then

return Pφ, P¬φ;
end if
for every Pt ∈ Q/

∼
, Pt �∈ Pφ, Pt �∈ P¬φ do

if T/
∼
(Pt) � φ then

Pφ := Pφ ∪ Pt;
else if T/

∼
(Pt) � ¬φ then

P¬φ := P¬φ ∪ Pt;
end if

end for
if Pφ ∪ P¬φ = Q then

return Pφ, P¬φ;
end if
for every P ∈ Q/

∼
, P �∈ Pφ, P �∈ P¬φ do

OUT := {P ′|P → P ′};
if |OUT | > 1 then

Prefined := ∅
for every P ′ ∈ OUT do

Prefined := Prefined

⋃
{P

⋂
Pre(P ′)};

end for
Q/

∼
:= Q/

∼
\ {P}

⋃
{Prefined};

end if
end for

end while

of Algorithm 3 do not require the computation of any
new operations. As for general transition systems, the Pre
operator is used for refinement, and it can also be applied to
the construction of the quotient transition systems.

In this algorithm, once an equivalence class is labeled
it is memorized and no longer considered for refinement
or model checking. We do not need to refine a state that
has been found to satisfy the formula or its negation, since
all or no trajectories, respectively, originating at that state
satisfy the formula. We do not need to model check that
state any more, because additional refining anywhere else in
the system would not change the satisfaction of a formula
by the state. This optimization limits the explosion of states
that have to be considered as refinement progresses.

Another useful feature of the algorithm is that equivalence
classes are refined in parallel, i.e., all classes that need
refinement are split once at every iteration. This guarantees
that, if the execution of Algorithm 3 is terminated, because a
preset number of iterations is exceeded, the refinement would
not be concentrated in only one region.

IV. FINITE QUOTIENTS OF PWA SYSTEMS

Let PN ,P l
N , l ∈ L be a set of open polytopes in R

N ,
where L is a finite index set, such that P l1

N

⋂
P l2

N = ∅ for
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all l1, l2 ∈ L, l1 �= l2 and
⋃

l∈L P̄ l
N = P̄N .

A discrete-time continuous-space piecewise affine (PWA)
system is defined as:

Σ : xk+1 = Alxk + bl, xk ∈ P l
N , l ∈ L, k = 0, 1, 2, . . . ,

(10)
where Al ∈ R

N×N , bl ∈ R
N , for all l ∈ L. We assume that

the matrix Al is nonsingular for any l ∈ L and that PN is
an invariant for the trajectories of (10), i.e., if x ∈ PN , then
Alx + bl ∈ PN , for all l ∈ L.

We are interested in studying properties of trajectories of
system (10) specified in terms of a set of linear predicates
of the form

Π = {πi |πi : cT
i x + di < 0, i = 1, . . . , K}, (11)

where x, ci ∈ R
N and di ∈ R. Informally, the semantics

of system (10) will be given in terms of satisfaction of
propositions from (11) in the following sense: a trajectory
x0x1x2 . . . produces a word w0w1w2 . . ., where each wi ∈
2Π lists the propositions from Π which are satisfied by xi.
Then such words can be checked against satisfaction of LTL
formulas φ over Π.

Specifically, we consider the following problem:
Problem 1: Given a discrete-time continuous-space piece-

wise affine system (10) and an LTL formula φ over a set of
linear predicates (11), find the largest set Pφ ⊆ PN such that
all trajectories of (10) originating in Pφ satisfy formula φ.

To formally define the satisfaction of a formula φ over Π
by system Σ, we embed Σ into a transition system:

Definition 6: The embedding transition system for system
Σ and the set of predicates Π is defined as Temb =
(Qemb,→emb, Πemb, �emb), where

• Qemb =
⋃

l∈L P l
N ,

• (x, x′) ∈→emb if and only if there exists l ∈ L such
that x ∈ P l

N and x′ = Alx + bl,
• Πemb = L

⋃
Π,

• �emb is defined as follows: if π = l ∈ L, then x �emb π
if and only if x ∈ P l

N ; if π = πi ∈ Π, then x �emb π
if and only if cT

i x + di < 0,

Given a subset P ⊆ Qemb, we say that all trajectories of
Σ originating in P satisfy formula φ if and only if Temb(P )
satisfies φ.

The embedding transition system Temb has infinitely many
states and cannot be model checked. We note that, since
regions with different dynamics never overlap, the transition
system Temb is deterministic. Therefore we can apply Al-
gorithm 3 to Temb in order to solve Problem 1. In the rest
of this section, we show that all the steps of Algorithm 3
applied to Temb are computable, and reduce to operations
on polyhedral sets.

The computation of the (initial) propositional equivalence
relation ∼ amounts to checking the non-emptiness of the
open polytopes given by the intersection of each P l

N with
all subsets of Π (recall that P l

N are pairwise disjoint). The
equivalence classes formed by all such nonempty sets will
be the states of the first quotient Qemb/∼

and all operations
with those states are polyhedral operations.

The Pre operator is used to determine transitions of the
quotient (Equation (9)), as well as to refine the equivalence
relation. We note that, in both cases, Pre is used only to
find the intersection P

⋂
Pre(P ′), where P has a transition

to P ′. If P satisfies l, P ′ = int(Conv{v1, . . . , vM}), since
the matrix Al is non-singular, using Equations (3) and (4)
we can compute the intersection as:

P
⋂

Pre(P ′) = int(P
⋂

Conv{A−1
l (vi − bl),

i = 1, . . . , M})
(12)

Therefore, the quotient transition system T/
∼

can be
constructed, and all computation involved in the execution
of Algorithm 3 is reduced to polyhedral set operations and
model checking.

The regions Pφ and P¬φ returned by the algorithm cor-
respond to regions of initial conditions of the system with
the property that that all runs originating at Pφ and no runs
originating at P¬φ satisfy the formula. If Pφ

⋃
P¬φ = PN ,

then Pφ is the largest region of initial conditions for the
system satisfying the formula.

Remark 1: There are several simplifying assumptions that
we make in the formulation and solution of Problem 1.
First, in equation (10) we assume that the matrices Al

are non-singular and the polytope PN is an invariant for
al trajectories of Σ. However, this assumption is not very
restrictive since discrete affine dynamics are usually non-
singular (or arise by discretizing continuous dynamics which
involves matrix exponentiation, which produces non-singular
matrices) and PN can be assumed large enough to contain
all possible state values in a particular process. Second, we
assume that the predicates (equation (11) are given over
strict inequalities, and only the reachability of open full
dimensional polytopes is captured in the semantics of the
embedding and of the quotients. However, this seems to be
enough for practical purposes, since only sets of measure
zero are disregarded, and it is unreasonable to assume
that equality constraints can be detected in a real world
application.

The algorithm was implemented as a software package for
MATLAB. All operations on polytopes were handled using
the MPT toolbox [30]. NuSMV was used for model checking
[14].

V. ANALYSIS OF A TWO GENE NETWORK

We applied the proposed methods to the analysis of a small
genetic network. The system (shown in Figure 1) includes
two mutually inhibiting genes and acts as a genetic switch,
allowing only one of the genes to be expressed depending
on initial conditions.

Fig. 1. A genetic switch, consisting of two mutual repressors. High levels
of one of the products shut down the expression of the other gene.
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To analyze the system, we developed a two dimensional
(N = 2) discrete time PWA model using ramp functions
to represent gene regulation. A ramp function is defined by
two threshold values, which induce three regions of different
dynamics. At low concentrations of repressor (below thresh-
old 1) the regulated gene is fully expressed, while at high
repressor concentrations (above threshold 2) expression is
only basal. For concentrations between the two thresholds
expression is graded. Since there are two repressors, two
ramp functions are used and, therefore, the system has a total
of nine rectangular invariants. We use L = {1, 2, . . . , 9} as
set of labels and denote the rectangles by P1, . . . ,P9.

In each polytope, the system has dynamics described by
Equation (10), with parameters given below.

A1 =

[
0.741 0

0 0.549

]
, b1 =

[
23.845
34.967

]

A2 =

[
0.741 −0.480

0 0.549

]
, b2 =

[
23.789
34.967

]

A3 =

[
0.741 0

0 0.549

]
, b3 =

[
4.406
34.967

]

A4 =

[
0.741 0
−0.672 0.549

]
, b4 =

[
23.845
55.735

]

A5 =

[
1.023 −0.545
−0.764 0.805

]
, b5 =

[
14.787
57.149

]

A6 =

[
0.741 0
−0.672 0.549

]
, b6 =

[
4.406
64.552

]

A7 =

[
0.741 0

0 0.549

]
, b7 =

[
23.845
3.384

]

A8 =

[
0.741 0.480

0 0.549

]
, b8 =

[
35.544
3.384

]

A9 =

[
0.741 0

0 0.549

]
, b9 =

[
4.406
3.384

]

It is easy to see that dynamics 3 and 7 have unique,
asymptotically stable equilibria inside rectangles P3 and P7.
Biologically, the equilibria correspond to the two modes of
the system (each gene can be fully expressed, while the other
is expressed only basally).

An interesting problem is finding the regions of attraction
for the two equilibria. For this, the introduction of additional
propositions is not necessary, i.e., Π = L. By exploiting
convexity properties of affine functions on polytopes, it can
be easily proved that P3 and P7 are invariants for dynam-
ics 3 and 7, respectively. From this, we can immediately
conclude that P3 and P7 are regions of attraction for the
two equilibria. Therefore, our problem reduces to finding
maximal regions satisfying LTL formulas φ1 = ”♦�P3” and
φ2 = ”♦�P7”. In other words, we want to find maximal sets
of initial conditions, that eventually reach regions P3 or P7

and stay there forever.
The first quotient of the embedding Temb (Definition 6)

determined by propositional equivalence has nine states. The
transitions in the quotient are shown in Figure 2B. For
both formulas, execution of the algorithm was limited to 30
iterations, which required less than 30 minutes on a 3.4 GHz,
P4 machine with 1GB RAM.

Performing the analysis with both LTL formulas demon-

strated the ability of the algorithm to extract an under-
approximation of the attractor regions for the two stable
equilibria. The region satisfying φ1 is shown shaded in
Figure 2C, while the region satisfying φ2 is shown shaded in
Figure 2E. It is interesting to note that the region satisfying
φ1 (Pφ1

, Figure 2C) coincides with the one satisfying ¬φ2

(P¬φ2
, Figure 2F) and vice versa. This is expected as the

equilibrium states in regions P3 and P7 are the only stable
equilibria for the system and trajectories tend towards one
of those states. Any differences between the regions Pφ1

and P¬φ2
are therefore the result of limiting the number of

iterations for the algorithm.
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Fig. 2. (A) Sample trajectories of the PWA system show convergence
towards one of the stable equilibria in P3 and P7. (B) A graphical
representation of the first quotient transition system. Regions with labels
shown in red contain a self loop. (C-F) Regions Pφ1

(C), P
¬φ1

(D), Pφ2

(E), and P
¬φ2

(F) satisfying the LTL formulas φ1, ¬φ1, φ2, and ¬φ2,
respectively.

From the results, it can be concluded that the majority of
the computation was performed in improving the refinement
between the two regions of attraction. The level of detail in
that region is higher if more iterations of the algorithm are
performed. This is the result of targeting the refinement to
specific states and refining states in parallel at each iteration.
For example, it is obvious that partitioning region P3 in
Figure 2C is unnecessary, since all subregions satisfy the
formula. Similarly, concentrating refinement only to region
P4 until it is completely refined, might not allow refinement
of regions P5 or P9 before the iteration limit is reached.

VI. CONCLUSION

We showed that simulation quotients of PWA systems can
be computed efficiently, and model checked against LTL for-
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mulas to analyze temporal logic properties for trajectories of
the initial system. Our approach is inspired by mathematical
models and queries arising in analysis of gene networks. We
showed the application of our method to the computation of
regions of attraction for a PWA model of a genetic switch. In
the future, we will focus on analysis of mathematical models
of synthetic gene networks constructed from experimental
data, analysis under parameter uncertainty, and more com-
plicated dynamics.
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(MPT),” 2004. [Online]. Available: http://control.ee.ethz.ch/∼mpt/

[31] J. N. Lin and R. Unbehauen, “Canonical piecewise-linear approxi-
maions,” IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, vol. 39, no. 8, pp. 697–699, 1992.

[32] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, 2004.

[33] T. Motzkin, H.Raiffa, G. Thompson, and R.M.Thrall, “The double
description method,” in Contributions to Theory of Games, H. Kuhn
and A. Tucker, Eds. Princeton University Press, 1953, vol. 2.

[34] G. J. Pappas, “Bisimilar linear systems,” Automatica, vol. 39, no. 12,
pp. 2035–2047, 2003.

[35] M. M. Quottrup, T. Bak, and R. Izadi-Zamanabadi, “Multi-robot
motion planning: A timed automata approach,” in Proceedings of the
2004 IEEE International Conference on Robotics and Automation,
2004, pp. 4417–4422.

[36] J. Roll, A. Bemporad, and L. Ljung, “Identification of piecewise affine
systems via mixed-integer programming,” Automatica, vol. 40, no. 1,
pp. 37–50, 2004.

[37] B. Shults and B. Kuipers, “Proving properties of continuous systems:
Qualitative simulation and temporal logic,” Artificial Intelligence,
vol. 92, no. 1-2, pp. 91–130, 1997.

[38] B. Silva and B. Krogh, “Modeling and verification of hybrid systems
with clocked and unclocked events,” in Proceedings of the 40th IEEE
Conference on Decision and Control, 2001, vol. 1, 2001, pp. 762–767.

[39] P. Tabuada and G. Pappas, “Model checking LTL over controllable
linear systems is decidable,” ser. Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds. Springer, 2003, vol. 2623.

[40] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric
approach to the identification of a class of linear hybrid systems,” in
Proceedings of the 42nd IEEE Conference on Decision and Control,
2003.

WeA03.3

2626
Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 29,2023 at 02:53:30 UTC from IEEE Xplore.  Restrictions apply. 


