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B I O C O M P U T A T I O N   

We now know that approximately
30,000 to 40,000 genes effec-
tively control and regulate the
human body. The recent com-

pletion of a rough draft of the human genome and
the complete sequence of Drosophila melanogaster,
Caenorhabditis elegans, Mycobacterium tuberculosis,
and numerous other sequencing projects provide
a vast amount of genomic data for further refine-
ment and analysis.1 These landmarks in human
scientific achievement promise remarkable ad-
vances in our understanding of fundamental bio-
logical processes. To achieve this goal, we must
develop the ability to model, analyze, and predict
the effect of the products of specific genes and ge-
netic networks on cell and tissue function.2

Traditional models and simulations of meta-
bolic and cellular control pathways are based on
either continuous or discrete dynamics.3–5 How-
ever, many important biological systems are hy-
brid—they involve both discrete and continuous
dynamics. At the molecular level, the funda-

mental process of inhibitor proteins turning off
the transcription of genes by RNA polymerase
reflects a switch between two continuous
processes.6 This is perhaps most clearly mani-
fested in the classic lambda switch system, where
we see two biological processes. At the cellular
level, we can best describe cell growth and divi-
sion in a eukaryotic cell as a sequence of four
processes, each one a continuous process trig-
gered by a set of conditions.7 At the intercellular
level, we can even view cell differentiation as a
hybrid system.8

In all of these examples, a hybrid approach
that combines elements of discrete and continu-
ous dynamics is necessary to model, analyze, and
simulate the system’s richness. To understand
how a network of biochemical reactions imple-
ments and controls cellular functions and the
genetic regulatory apparatus, we must develop a
new set of theories, algorithms, and methodolo-
gies that combine the two fundamentally differ-
ent ways of characterizing such systems.

We advocate modeling biological systems as
stochastic, networked hybrid systems that con-
sist of discrete and continuous components with
complex interactions.9–11 Even in many contin-
uous biological systems characterized by differ-
ential equations, a hybrid model offers a com-
putationally tractable approach to modeling,
analysis, and synthesis. Networks model the in-
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teraction between hybrid subsystems. Significant
nondeterministic fluctuations in the exogenous
variables and structural components within the
dynamic system that we cannot model deter-
ministically underscore the need to consider sto-
chastic models for such systems. We should
adopt a similar perspective for complex, com-
puter-controlled electromechanical systems. Ro-
botics, avionics, and embedded systems are in-
trinsically hybrid.12,13 The control software’s
complexity coupled with the communication
networks and their interaction with the physical
environment make designing and analyzing such
embedded systems a great challenge, particularly
in safety-critical applications.14 No systematic
approach to designing and developing such hy-
brid systems exists today.

In this article, we describe the enabling tech-
nologies needed to understand and predict the
integrated functions of cellular regulatory net-
works. We describe the models and abstract
principles of organization, design, control, and
coordination. We also outline a research agenda
that emphasizes hybrid modeling of biological
systems, the use of formal methods and algo-
rithms for simulation and analysis, and a soft-
ware environment for analysis and design.

Modeling biomolecular networks

The genetic circuits and biomolecular net-
works considered here and elsewhere are re-
markably similar to the hybrid systems encoun-
tered in engineering. Our approach to modeling
the different elements and their interactions is
based on modern concepts in software engi-
neering and control theory.

Species and processes 
Central to our approach are the concepts of

agents and modes. An agent is a dynamic system
that interacts with other agents through well-de-
fined input and output ports. Agents operate
concurrently. All species—proteins, cells, and
DNA—are dynamic systems and therefore mod-
eled as agents (see Figure 1). We call them S-
agents to distinguish them from process agents
or P-agents, which capture the dynamics involved
in transcription, translation, protein binding,
protein–protein interactions, and cell growth.
The inputs of P-agents are the quantities (con-
centrations or numbers) of different species rel-
evant to the process; outputs are rates. S-agents
describe the accumulation or degradation of
species in terms of concentration or simply num-

bers. An S-agent’s description necessarily in-
volves differential equations or update equations.
These equations take as inputs the rates of dif-
ferent processes and yield species’ quantity. As
Figure 1 shows, concurrent processes govern the
species. The processes communicate with each
other and influence each other’s behavior. A sim-
ilar picture occurs at the intercellular level,
where we can view cells as S-agents interacting
with each other through different processes that
capture intercellular signaling or simple growth
based on nutrient availability.

Agents and modes
Each agent is characterized by a continuous

state x ∈ ℜn and a collection of discrete modes
denoted by Q. Each mode is characterized by a
set of ordinary differential equations that govern
the evolution of the continuous state x and a set
of invariants that describe the conditions (typi-
cally algebraic constraints on the continous state)
under which the ODEs are valid. We can write
the ODEs as 

, (1)

where qi ∈ Q ⊂ Z is the agent’s mode, and z ∈
ℜp is the information from other agents avail-
able through the input/output ports. A mode’s
definition includes transitions among its sub-
modes. A transition specifies source and desti-
nation modes, the enabling condition, and the
associated discrete update of variables. Each
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Figure 1. A biomolecular network represented by P-agents and 
S-agents. The outputs of P-agents are inputs to S-agents; the inputs
are outputs of S-agents. External signals can be inputs to P-agents,
and outputs of S-agents can signal agents external to this network.
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mode can have submodes; there is generally a hi-
erarchy of modes that typifies most systems.

As an illustrative example, consider the de-
scription of the agent in Figure 2. It consists of
two discrete modes q1 and q2; the continuous
variable x, which evolves under the differential
equation ẋ= f1(x) in discrete mode q1; and ẋ= f2(x)
in mode q2. The invariant sets associated with
locations q1 and q2 are g1(x) ≤ 0 and g2(x) ≤ 0, re-
spectively. The hybrid system continuously
evolves in discrete mode q1 according to the dif-
ferential equation ẋ = f1(x) as long as x remains
inside the invariant set g1(x) ≤ 0. Transitions be-
tween modes are governed by a set of  guards
called a guard set. Each guard is typically an al-
gebraic constraint on the state. If, during the
continuous flow, it happens that x belongs in the
guard set G12(x) ≤ 0, then the transition from q1
to q2 is enabled. A state jumps from q1 to q2, and
the system evolves according to the differen-
tial equation in mode q2 as long as the invariant 
g2(x) ≤ 0 is satisfied.

Typed variables—discrete or analog—charac-
terize an agent. Analog variables are updated con-
tinuously, whereas discrete variables are updated
only on initialization and mode switches. An
agent’s variables are partitioned into read,
write, and private to allow modular specifi-
cations. Private variables represent those that are
internal to the agent and depict its internal state.

At the lowest level, differential equations such
as in Equation 1 can describe the evolution of en-
tities such as proteins. A generic formula for any
molecular species (messenger RNA, protein, pro-
tein complex, or small molecule) reflects this:15

dX/dt = synthesis – decay ± transformation ±
transport. (2)

The synthesis term represents transcription for
mRNA and translation for proteins; the decay cat-
egory represents a first-order degradation process.

Many molecules undergo transformations such
as cleavage or ligand-binding reactions—many
participate in transport processes such as diffusion
through a membrane. However, at low concen-
trations, we cannot justify continuous rate equa-
tions based on concentrations. We must use sto-
chastic process models that predict the numbers
of molecules of different species.16,17

The hybrid structure in the models arises in
two ways. First, a certain activity might be trig-
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Figure 2. A simple hybrid system.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Φ
(X

, κ
, ν

)

Switch
ν = 2 
ν = 4 
ν = 10

Figure 3. The function Φ(X, κ, ν) for κ = 30 and a piecewise continuous abstraction.
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gered by an increase in concentration of a pro-
tein or other species above a specified threshold.
This leads to switching between active and dor-
mant states. Second, different models might be
more appropriate at different levels of concen-
tration. The process models must incorporate
this ability to switch between differential equa-
tions and the discrete update equations used in
stochastic models.

Continuous versus hybrid models
A promoter, the region of DNA that is needed

for the initiation of gene transcription, typically
has multiple regulatory sites, both positive and
negative, distributed throughout its regulatory
region. We generally model regulation with two
functions:18

, (3)

and

, (4)

where X is the concentration of some species
with a regulatory effect on the transcription of
mRNA m, νXm is called the cooperativity coeffi-
cient, and κXm is the concentration of X at which
transcription of m is “half-maximally” activated.
Figure 3 shows the graph of function Φ, the so-
called sigmoid function.

The curve describing the regulation of tran-
scription in Figure 3 is merely a convenient way
of modeling the turning off of gene expression at
low concentrations and the turning on at high
concentrations. Little experimental data confirms
the sigmoid curve’s exact shape in the figure and
we lack the data needed to estimate parameters
such as κ and ν (as in Equation 3). In the absence
of such data, it is simpler to pursue piecewise con-
stant approximations that map the degree of gene
transcription activation (inhibition) to intervals of
activator (inhibitor) concentration. Figure 3 shows
a two-step model that effectively turns off gene ex-
pression completely below a certain concentration
of the regulator and turns it on completely above
that concentration. We can also imagine a more
sophisticated n-step approximation based on n ex-
perimental data points. From a system-analysis
viewpoint, dealing with such piecewise constant
functions to describe transcription is definitely ad-
vantageous. They let us abstract a nonlinear sys-
tem as a switched, lower dimensional system that
could be easier to analyze because of the sigmoid
nonlinearity’s absence.

We can use approximations similar to Figure 3
at different levels in the system hierarchy. These
approximations lead to abstractions that are con-
ceptually similar and computationally more
tractable, but the ability to validate the fidelity
of these models through analysis and experi-
mentation is also necessary.

Charon: A programming language for
hybrid systems

We developed the programming language
Charon19 for modeling and analyzing hybrid sys-
tems (see Figure 4). The language incorporates
ideas from concurrency theory (languages such
as CSP20), object-oriented software design no-
tations (such as Statecharts21 and UML22), and
formal models for hybrid systems (such as hy-
brid automata and hybrid I/O automata23).

Charon’s key features are

• Architectural hierarchy. The building block for
describing the system architecture is an agent
that communicates with its environment by
sharing variables. The language supports
composing agents to model concurrency, hid-
ing variables to restrict information sharing,
and instantiating agents to support reuse.

• Behavior hierarchy. The building block for de-
scribing control flow inside an atomic agent
is a mode, which is basically a hierarchical
state machine. A mode can have submodes
and transitions connecting them. Variables
are declared locally inside any mode with
standard scoping rules for visibility. Modes
connect to each other only through well-de-
fined entry and exit points. We allow sharing
of modes so that the same mode definition
can be instantiated in multiple contexts. To
support exceptions, the language allows group
transitions from default exit points that apply
to all enclosing modes.

• Discrete updates. Guarded actions label the
transitions that connect modes to specify dis-
crete updates. Actions can have calls to exter-
nally defined Java functions, which we can use
to write complex data manipulations. They
also lets us mimic stochastic aspects through
randomization.

• Continuous updates. Some of the variables in
Charon are analog, and they flow continuously
during updates that model the passage of time.
We can constrain the evolution of analog vari-
ables in three ways: differential constraints
(equations such as ẋ = f(x, u)), algebraic con-
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straints (such as y = g(x, u)), and invariants (such
as |x – y| ≤ ε) that limit the allowed flow dura-
tion. Such constraints are declared at different
levels of the mode hierarchy.

Charon’s modular features allow succinct and
structured description of complex systems. Lan-
guages such as Shift24 and Stateflow (see www.
mathworks.com) support similar features, but in
Charon, modularity is not solely apparent in
syntax. We are developing analysis tools (such as
simulation) to exploit this modularity. Further-
more, Charon has formal foundations support-
ing compositional refinement calculus, which al-
lows relating different models of the system in a
mathematically precise manner. A formal math-
ematical description lets us develop tools for
computing equilibria and for analyzing proper-
ties such as stability and reachability.

Software tools for system biology

Recent efforts have addressed the complexity
of developing continuous system models and
simulators for genetic networks.25 Thousands of
differential equations with hundreds of modes
and inequality constraints will characterize hy-
brid system models for biology and robotics. Ac-
curacy is extremely important in such systems.
Unlike continuous or discrete systems, small er-
rors in detecting the violation of unilateral con-
straints can completely change the state’s ensu-
ing time history.

Many important issues arise in the context of
hybrid systems simulation. First, accurately sim-

ulating systems of differential equations with in-
equalities of state is important. Failure to detect
events can have disastrous effects on the global
solution due to the problem’s discontinuous na-
ture. Second, complex multiagent systems have
multiple spatial and temporal timescales. Multi-
rate numerical integration methods26 that let us
simulate the individual components of a set of cou-
pled ODEs at different rates are extremely rele-
vant. Models properly specified and programmed
in Charon will explicitly describe spatiotemporal
hierarchy and concurrency in multiagent systems,
thus allowing efficient simulation. Finally, we must
consider simulating systems of stochastic differ-
ential equations.

In our previous work, we developed a control-
theoretic approach that correctly detects an
event for certain classes of constraints and guar-
antees that the ODE is never evaluated on the
opposite side of the switching surface (g(x)  = 0).

To exploit spatiotemporal hierarchy, we have
considered systems that naturally exhibit a hi-
erarchical structure and a model in a language
such as Charon that preserves this hierarchical
structure. Commercial packages such as Matlab
don’t do this. Elsewhere27 we present a method
that exploits hierarchy to improve efficiency
without degrading the system’s accuracy.

Our ultimate goal is to develop a simulation
technique that can simulate each agent asyn-
chronously when the agent is far from the nearest
constraint surface, allowing each agent to be in-
tegrated with its own largest acceptable step size
and increasing the simulation’s overall efficiency.
As the system of agents approaches constraints
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Figure 4. The architectural hierarchy in Charon is based on agents. (a) New agents are formed by the parallel composition
of two or more agents. (b) Modes describe the behavioral hierarchy. The sequential composition of modes models the
switching between behaviors.
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that affect one or more of them, the relevant lo-
cal time clocks automatically synchronize to
properly detect and localize the violation of con-
straints in state space and in time.27

Formal verification
Model checking is emerging as a powerful

technique for detecting logical errors, thus en-
suring higher safety and reliability for embedded
software. In model checking, a high-level model
is compared to a correctness requirement to re-
veal inconsistencies. Model checking is largely
automated and relies on an exhaustive state-space
analysis of the model. Researchers originally de-
veloped reachability and verification tools for fi-
nite-state discrete systems; they have recently ex-
tended them to special classes of hybrid systems
such as timed automata, linear hybrid automata,28

and piecewise linear systems.
We are interested in the organism’s survival in

the biological realm where we consider a
metabolomechanical system—the cell and the em-
bedded computer—to be the genetically encoded
program. This approach to formal analysis lets re-
searchers establish useful properties of models of
biomolecular networks and provide useful feed-
back for designing biological experiments. For ex-
ample, in a regulatory network, we might hypoth-
esize if the concentration of protein A in the
environment stays between cl and ch, then the con-
centration of regulatory protein B stays below an
activation threshold δ. Affirmation or violation of
such hypotheses by model checking can help us
understand the behavioral interdependencies of
complex pathways. Similarly, reachability analysis
can establish biological properties—for example,
we can establish the existence of cellular rhythms
or the stability of a mode of operation.

There are many recent and significant advances
on computing reachable sets for hybrid systems.
You can use HyTech to verify linear hybrid au-
tomata. CheckMate and d/dt can handle more
complex systems.29 In particular, CheckMate can
help compute reachable sets for nonlinear systems
of low dimension. The package d/dt can handle
linear differential inclusions and lends itself to the
analysis of our switched linear system.

Control
Nonlinear control theory offers analytical tools

for establishing properties such as small-time lo-
cal controllability, global controllability, and sta-
bility.30 These tools can be valuable in establish-
ing the relationship between inputs or signaling
mechanisms and regulated variables in biology.

Traditional control theory mostly enables the
design of controllers in a single mode of opera-
tion in which the task and the system model are
fixed.30 When operating in unstructured or dy-
namic environments with many different sources
of uncertainty, designing controllers that guar-
antee performance, even in a local sense, is diffi-
cult if not impossible.31 In contrast, we also
know that designing reactive controllers or be-
haviors that react to simple stimuli or commands
from the environment is relatively easy. We can
see successful applications of this idea in sub-
sumption architectures and their derivatives in
robotics.32,33 Similarly, biology is full of exam-
ples of such simple controllers—in some cases
they are well understood.6,34 Although control
and estimation theory let us model each behavior
as a dynamical system and provide us with de-
sign and analysis tools, we currently do not have
tools for more complex systems that involve

• switches in behavior or sequential composi-
tion of modes; 

• hierarchical composition of modes; or 
• parallel composition of agents (or concur-

rent operation of behaviors).

There is potentially a lot to gain by specializ-
ing existing tools and facilitating analysis of bio-
logical systems. Applications of geometric con-
trol theory could yield insight into the regulation
of proteins along the hybrid system’s flow. Tools
from optimal control theory could synthesize
open loop controls that might point experimental
biologists to new paradigms for experimentation.

Issues of robustness and fault tolerance are of
special importance. Biological systems have
built-in mechanisms that provide robustness and
fault tolerance. It is particularly important to un-
derstand how random fluctuations affect regu-
lation in hybrid systems where precision and re-
liability are required.35

Case study: Quorum sensing in V.
fischeri

A good illustration of a multicellular network
is the cell-density-dependent gene expression
seen in prokaryotes. In this process, a single cell
can sense when a quorum of bacteria—a mini-
mum population unit—is achieved. Under these
conditions, the quorum efficiently performs cer-
tain behavior such as bioluminescence, the best-
known model for understanding the mechanism
of cell-density-dependent gene expression.
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Vibrio fischeri is a marine bacterium found both
as a free-living organism and as a symbiont of
some marine fish and squid. As a free-living or-
ganism, V. fisheri exists at low densities and appears
to be nonluminescent. As a symbiont, the bacte-
ria live at high densities and are usually lumines-
cent. In a liquid culture, the bacterium’s level of
luminescence is low until the culture reaches mid
to late exponential phase. Later, in stationary
phase, the bioluminescence level decreases. The
transcriptional activation of the lux genes in the
bacterium controls this luminescence.

The lux regulon36 is organized in two tran-
scriptional units: OL and OR (see Figure 5). OL
contains the luxR gene that encodes the protein
LuxR, a transcriptional regulator of the system.
(We use italics to indicate the genes and roman
text to denote the protein the gene expresses.) OR
contains seven genes luxICDABEG. The tran-
scription of the luxI gene produces the protein
LuxI, which is required for endogenous produc-
tion of the autoinducer Ai, a small membrane-
permeable signal molecule (acyl-homoserine lac-
tone). The genes luxA and luxB code for the
luciferase subunits, and luxC, luxD, and luxE code
for proteins of the fatty acid reductase, which
generates aldehyde substrate for luciferase. The
luxG gene is thought to encode a flavin reduc-
tase. Along with LuxR and LuxI, cAMP receptor
protein (CRP) plays an important role in con-
trolling luminescence.

The network of biochemical reactions in the

cell is as follows. The autoinducer Ai binds to
protein LuxR to form a complex Co, which binds
to the lux box in Figure 5. The lux box is in the
middle of a regulatory region between the two
transcriptional units (operons). This region also
contains a binding site for CRP. The transcrip-
tion from the luxR promoter is activated by the
binding of CRP to its binding site—the tran-
scription of the luxICDABEG by the binding of
Co to the lux box.37 However, growth in the lev-
els of Co and cAMP/CRP inhibit luxR and luxI-
CDABEG transcription, respectively. These
feedback loops are shown through dotted arrows
with + and – signs in Figure 5.

Model
Our model of bioluminescence in V. fischeri

consists of nine state variables, each represent-
ing the evolution of an S-agent. x0 represents the
cell population, whereas the x1 through x8 rep-
resent nanomolar concentrations of mRNAs and
proteins. This model is described by15

(5)

where

kG = kg(1 – x0/x0max) (6)

and xi are nonnegative real numbers:

x0 = scaled population (population × vb/V),
x1 = mRNA transcribed from OL,
x2 = mRNA transcribed from OR,
x3 = protein LuxR,
x4 = protein LuxI,
x5 = protein LuxA/B,
x6 = protein LuxC/D/E,
x7 = autoinducer Ai,
x8 = complex Co. (7)

Table 1 gives the parameters in Equation 5.38

cCRP denotes the CRP concentration in the bac-
terium.

Our hybrid model is obtained by approximat-
ing the functions Φ and Ψ by piecewise constant
functions. Assume m levels of activation of the
luxICDABEG gene at c0, c1, ..., cm–1 with c0 = 0
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Figure 5. A portion of DNA showing the luxR (transcribed from the
leftward operon OL) and luxICDABEG (transcribed from the rightward
operon OR) genes and the binding sites for complex Co and CRP.
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and cm–1 = 1. The luxICDABEG gene’s level of
activation is ci when 

, where

and .

Similarly, for the luxR gene, we assume n steps
at d0, d1, ..., dn–1, d0 = 0, dn–1 = 1, and the activa-
tion is at level dj when 

.

The continuous, nine-dimensional system is
now replaced by a hybrid system with mn dis-
tinct modes. (More specifically, this is an exam-
ple of a switched system, a special case of a hybrid
system.) The modes are indexed by i = 1, ... , m –
1 and j = 1, ... , n – 1, and a seven-dimensional
system describes dynamics in each mode.

Figure 6a shows log-linear plots of numerical
simulations of the continuous system, for a con-
stant cCRP of 10nM. The population (bottom)
grows from 105/ml to 109/ml over approximately
15 hours then remains constant for an additional
20 hours. For all the species, there is a short initial
adjustment period when protein, complex, and Ai
concentrations reach a nearly constant state at low
population density, which lasts for roughly eight
hours. LuxR is abundant, ready to sense increases
in Ai. On the other hand, Co, LuxI, Ai, and total
luminescence are low. As the population grows,
Ai production begins to rise above the back-
ground, which triggers the formation of LuxR: Ai
complex Co. Increasing Co activates the positive
feedback loop of OR, LuxI, and Ai. The concen-
trations of these components increase rapidly as
does the total luminescence, and this is what we
expect to get through experiments.37

Figure 6b shows the simulation results of the
switched model obtained from Equation 5 by re-
placing the sigmoids with piecewise constant
functions with three steps (m = n = 3). The plots
closely resemble the continuous simulations.
The final equilibrium values are also in good
agreement between the two models, thus argu-
ing for the hybrid approximation’s validity.

Stability analysis
For the full continuous system in Equation 9,

deriving the equilibria and studying their stabil-
ity for arbitrary parameters are difficult due to
the essentially nonlinear behavior of the activa-
tion functions. For the simplified hybrid system,
the nonlinearities involve products of the con-

tinuous state variables. We considered a fully
grown population (x0 is constant). Carefully an-
alyzing the timescales governing the system
shows that the mRNA dynamics are fast com-
pared to other dynamics,38 and we can assume
the corresponding mRNA concentrations are
constant in each mode (i,j):

.

(8)

The system’s dynamic properties in mode (i,j)
are completely determined by the time evolu-
tion of the reduced system:

, (9)

where A is a constant 4 × 4 matrix, bij is a 4 × 1
vector dependent on the mode (i,j), and g is a 4 ×
1 vector, which is quadratic in x3 and x7. The in-
variant sets as described earlier are given by

.
(10)

As shown elsewhere,37 each mode (i,j) has a
unique equilibrium. Studying each equilibrium
point’s stability reduces to examining the eigen-
values of the Jacobian matrix for each mode. We
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Table 1. Model parameters: notation and description.

Parameter Description

Tc Maximum transcription rate
Tl Maximum translation rate
HRNA RNA half-life
Hsp Stable protein half-life
Hup Unstable protein half-life
HAI Ai half-life
rAII Rate constant at which LuxI makes Ai
rAIR Rate constant Ai binding to LuxR
rCo Rate constant of Co dissociation
νCRPr Cooperativity coefficient for CRP
κCRPr Half maximum conc. for CRP
νCo-icdabeg Cooperativity coefficient for Co
κ Co-icdabeg Half maximum conc. for Co
b Basal transcription rate
vb Volume of a bacterium
V Volume of solution
kg Growth rate
x0max Maximum population
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implemented this set of calculations in a Mathe-
matica notebook and showed that all equilibrium
points are stable.

This stability result is a local one. In other
words, this computation simply shows that un-
der small perturbations from an equilibrium, the
system will return to the equilibrium point.
However, we can do better. We used the vanish-
ing perturbation technique in our previous
work39 to construct an ellipsoidal region of at-
traction around the equilibrium point’s origin.

Besides stability, another interesting question
for both biologists and control engineers would
be what makes the system switch among modes.
Or, from a synthesis viewpoint, what parameters
or variables can we artificially modify to promote
the production of luciferase, the proteins that
eventually result in luminescence. Analyzing the
system in Equation 9 gives us some insight into
this. For example, a careful inspection of the di-
rectional derivatives of the output x5 along the
flow of the system shows that this variable is di-
rectly affected by the transcription of luxICD-
ABEG (x2), indirectly by the production of CRP,
and even more indirectly by the production of
the Ai(x8). From a synthetic biology standpoint,
we now have three avenues to increase the pro-
duction of luciferase.

Reachability analysis
Another interesting question from a biolo-

gist’s standpoint relates to reachability. For ex-
ample, can a cell population from a specified
initial condition reach an equilibrium that cor-

responds to luminescence? The equilibrium’s
stability does not answer this question because
it only indicates that if the system reaches a re-
gion around the stable point, then it will move
to the equilibrium point.

This is a so-called reachability problem.
Consider the mutant of V. fischeri described
elsewhere37 that disrupts the operon structure
and thus the regulatory system described ear-
lier. In the mutant, the luxR gene is deleted
from its normal location, and a copy is placed
in a plasmid (a separate piece of DNA) and in-
corporated back into V. fischeri. The plasmid
copy of luxR is under a different promoter’s
control, which yields a constant high rate of
transcription unaffected by any of the mole-
cules described earlier. We assume a constant
concentration of protein LuxR (justified in this
model), and the CRP concentration is low
(regulation kept at d0 = 0). The model becomes
linear with the nontrivial dynamics in mode 
(i, j) being described by

, (11)

where is a constant 3 × 3 matrix,
and bij is a 3 × 1 vector that depends on the mode.
Although the associated Jacobian’s eigenvalues
show that the equilibrium points are asymptoti-
cally stable,37 the stability result is not a global
one. The eigenvalue analysis tells us that if the
system starts from a point within a region of at-
traction around the equilibrium of the mode (i,j),
it converges to the equilibrium point. However,

x x x x A
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Figure 6. Time evolution of concentrations (in nM) during population growth: proteins LuxR (solid), LuxI (dotted), 
Ai (dot-dashed), Co (dashed), and total luminescence (long dashes): (a) continuous model, (b) switched model. (c)
Population growth curve. The switch history for the hybrid model is dotted.
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even if the dynamics are linear, it does not tell us
anything about initial conditions that could lie
elsewhere (possibly in a different mode). This is
the main motivation for reachability analysis.

We are interested in computing the set of
states that converge to the equilibrium point xe

lum

in the luminescent mode. Figure 7 shows the re-
sults of a reachability analysis performed with
d/dt, a software package that uses polyhedra to
over- or underapproximate reachable sets of hy-
brid automata. For our problem, we need an un-
derapproximation because we must make sure
that all the states in the computed set go to the
equilibrium xe

lum.

We envision the link between hy-
brid systems of technology and
biology to strengthen. The scal-
able nature of computational

tools such as Charon will enable the unified and
improved modeling of biological cellular net-
works, leading to better understanding and pro-
viding us with the opportunity to determine how
local biological changes can affect global behav-
ior. Conversely, a good understanding of the ro-
bustness of noisy biological networks will lead
to new approaches to designing networked em-
bedded systems. Efforts such as ours can only
succeed if they are closely tied to research in ex-

perimental biology. Our goal is to provide the
analytical and computational tools that biologists
can use in a fashion that complements experi-
mental research.
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