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Abstract— This paper presents an adaptive control approach
for uncertain nonlinear systems subject to safety constraints
that allows for modularity in the selection of the parameter
estimation algorithm. Such modularity is achieved by unifying
the concepts of input-to-state stability (ISS) and input-to-state
safety (ISSf) via control Lyapunov functions (CLFs) and control
barrier functions (CBFs), respectively. In particular, we propose
a class of exponential ISS-CLFs and ISSf high order CBFs that
can be combined with a general class of parameter estimation
algorithms akin to those found in the literature on concurrent
learning adaptive control. We demonstrate that the unification
of ISS and ISSf in an adaptive control setting allows for
maintaining a single set of parameter estimates for both the
CLF and CBF that can be generated by a class of update
laws satisfying a few general properties. The modularity of
our approach is demonstrated via numerical examples by
comparing performance in terms of stability and safety across
different parameter estimation algorithms.

I. INTRODUCTION

Adaptive control theory [1], [2] is concerned with simulta-
neous learning and control of uncertain dynamical systems.
In traditional adaptive control, learning often manifests it-
self as the estimation of uncertain parameters associated
with the underlying dynamical system, whereas control is
synonymous with stabilization to a set point or tracking
of a desired reference trajectory. In the context of adaptive
control of nonlinear systems, designs are often classified as
either Lyapunov-based [3] or modular [4]. Lyapunov-based
designs [1, Ch. 3-4] typically rely on the design of a control
Lyapunov function (CLF) [5] for a modified dynamical
system, where potentially destabilizing parameter estimation
errors are eliminated through the use of a Lyapunov-based
parameter update law. Such designs have the benefit of guar-
anteeing asymptotic stability (or even exponential stability
[6]–[10]), but restrict the design of the parameter estimation
algorithm since it is tightly coupled to the associated CLF.
On the other hand, modular designs [1, Ch. 5-6] decouple
the design of controller and update law: a controller and
parameter estimator satisfying a few general properties can
be combined to enforce weaker forms of stability, such
as input-to-state stability (ISS) [11]. Allowing modularity
in the estimation algorithm is motivated by the fact that
various estimation procedures may provide certain benefits
compared to Lyapunov-based update laws. For example,
least-squares based estimation algorithms generally exhibit
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faster convergence than gradient descent based estimation
algorithms employed in Lyapunov-based approaches.

Motivated by the need for certifiably correct behavior of
modern autonomous systems, adaptive control techniques
have recently been applied to more complicated control prob-
lems, such as guaranteeing safety [12]–[18], often formalized
using set theoretic notions [19], and enforcing more general
temporal logic specifications [20]–[22]. In [12], classical
Lyapunov-based adaptive control designs are extended to a
safety-critical setting, where a control barrier function (CBF)
[23] is designed for a modified dynamical system and a
CBF-based adaptive update law is leveraged to eliminate
parameter estimation errors that could otherwise lead to
safety violation. Although [12] provides a foundation for
extending traditional nonlinear adaptive control designs to
enforcing safety using CBFs, the particular approach taken
therein is conservative in the sense that the proposed method
restricts the system to the nonnegative superlevel sets of the
safe set, rather than only the zero superlevel set as is common
when using CBFs [13]. By leveraging known bounds on
the system’s uncertain parameters, works such as [13]–[17]
reduce such conservatism by taking a “robust adaptive”
approach whereby safety is guaranteed by accounting for
the worst-case parameter estimation error, which is reduced
online as more data about the system is collected. In [18]
such robust adaptive approaches are extended to CBFs with
high relative degree [24]–[27] in which the control input may
not directly influence the derivative of the CBF candidate.

The aforementioned approaches to enforcing safety using
adaptive control techniques have demonstrated success on
a wide variety of problems; however, they suffer from a
combination of the following limitations: 1) they restrict the
update laws/estimation algorithms that can be used to guar-
antee safety [12]–[18]; 2) they require precise knowledge of
the bounds on the system parameters/uncertainties [13]–[18];
3) they require redundant parameter estimation in the sense
that multiple estimates of the same parameters are needed if
the adaptive safety controller is combined with an adaptive
stabilizing controller to achieve a performance objective [12],
[13], [15], [18]. The main objective of this paper is to develop
a framework for modular adaptive safety-critical control that
addresses the previous limitations by 1) allowing freedom
in the selection of the parameter update law/estimation
algorithm, 2) not requiring precise knowledge of bounds on
the system parameters/uncertainties, and 3) allowing for the
use of a single set of parameter estimates that are shared be-
tween the safety and performance (stabilizing) controller. We
accomplish this objective by unifying the concept of ISS with
that of input-to-state safety (ISSf) [28]–[30], extending ideas
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from traditional modular nonlinear adaptive control [4] to a
safety-critical setting. In particular, we show how a general
class of parameter estimation algorithms can be combined
with a particular class of ISS-CLFs [31] and a class of ISSf
high order CBFs to simultaneously guarantee ISS and ISSf
of the underlying system in a modular fashion. The drawback
of this modularity is that we establish safety using an ISSf
framework, which studies the invariance of inflated safe sets
parameterized by the magnitude of a disturbance (parameter
estimation error) perturbing the nominal system dynamics.

The contributions of this paper are threefold. First, we
present a modular approach to nonlinear adaptive stabi-
lization using a class of exponential ISS-CLFs [31]. We
combine such CLFs with a class of parameter estimators
characteristic of those found in concurrent learning adaptive
control [6]–[10] and show that our approach guarantees ISS
and, under suitable excitation conditions outlined in [6]–[10],
asymptotic stability of the origin. Second, we generalize
the class of ISSf-CBFs introduced in [28]–[30] to high
relative degree safety constraints [24]–[27], which allows for
the systematic construction of a candidate safe set from a
given safety constraint on the lower order system dynamics.
Finally, we demonstrate the versatility of our approach via
numerical examples in which the uncertain parameters of a
system are learned online using different update laws while
guaranteeing ISS and ISSf.

The remainder of this paper is organized as follows. Sec. II
covers preliminaries on ISS and ISSf. Sec. III presents our
approach to modular adaptive stabilization. Sec. IV intro-
duces the notion of an ISSf high order CBF. Sec. V presents
simulations and Sec. VI contains concluding remarks. Due to
space limitations, all proofs and some simulation examples
are omitted and are available in the preprint of this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider the uncertain nonlinear control affine system

ẋ = f(x) + F (x)θ + g(x)u, (1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, and θ ∈ Rp is a vector of uncertain parameters.
The vector field f : Rn → Rn captures the system drift
dynamics, the columns of g : Rn → Rn×m represent vector
fields describing the control directions, and the matrix-valued
function F : Rn → Rn×p is a known basis of nonlinear
features for the uncertain parameters. We assume f , g, and
F , are locally Lipschitz continuous, and that f(0) = 0 and
F (0) = 0 so that the origin is an equilibrium point of (1)
with u = 0. Our main objective is to learn the uncertain
parameters in (1) completely online, while guaranteeing
stability and safety. To this end, let θ̂ ∈ Rp be an estimate
of θ and define θ̃ := θ− θ̂ as the parameter estimation error.
Using θ̃, system (1) is equivalent to

ẋ = f(x) + F (x)θ̂ + g(x)u+ F (x)θ̃, (2)

and given a controller k : Rn×Rp → Rm, locally Lipschitz
in both its arguments, we obtain the closed-loop system by

fixing u = k(x, θ̂) as

ẋ = f(x) + F (x)θ̂ + g(x)k(x, θ̂) + F (x)θ̃. (3)

When θ̃ is viewed as a disturbance input to the nominal
closed-loop dynamics f(x) + F (x)θ̂ + g(x)k(x, θ̂), a tool
for studying the stability of (3) is input-to-state stability.

Definition 1 ([1]). System (3) is said to be input-to-state
stable (ISS) if for each x(0) ∈ Rn and each θ̃(·) ∈ L∞ the
trajectory of the closed-loop system (3) satisfies

‖x(t)‖ ≤ β(‖x(0)‖, t) + ι(‖θ̃‖∞), ∀t ∈ R≥0, (4)

for some β ∈ KL and ι ∈ K∞. If β(r, s) = cre−λs for
some positive constants c, λ ∈ R>0, then (2) is said to be
exponentially ISS (eISS).

In addition to stability, we are interested in studying the
safety properties of (1), which is often associated with the
concept of set invariance [19]. Given a locally Lipschitz
feedback controller for (1), a set

C = {x ∈ Rn |h(x) ≥ 0}, (5)

where h : Rn → R is continuously differentiable, is
said to be forward invariant if the resulting solution x :
I(x(0)) → Rn satisfies x(t) ∈ C for all t ∈ I(x(0)), where
I(x(0)) ⊆ R≥0 is the solution’s maximal interval of exis-
tence from an initial condition of x(0) ∈ Rn. When studying
the disturbed system (2), the notion of input-to-state safety
(ISSf), introduced in [28]–[30], provides a methodology to
study the impact of uncertainties on safety. In particular, the
ISSf framework is concerned with establishing the forward
invariance of an inflated version of (5) defined as

Cδ ={x ∈ Rn |h(x) + γ(δ) ≥ 0}, γ ∈ K∞. (6)

Definition 2 ([30]). System (3) is said to be input-to-state
safe (ISSf) on a set C as in (5) if there exists a γ as in
(6) such that for all δ ∈ R≥0 and all θ̃(·) ∈ L∞ satisfying
‖θ̃‖∞ ≤ δ, the set Cδ defined as in (6) is forward invariant.

III. MODULAR ADAPTIVE ISS
In this section we introduce a modular adaptive control

approach to stabilization by exploiting a class of exponential
ISS control Lyapunov functions (eISS-CLF) [31]. Although
our development leverages ISS-CLFs, we illustrate that,
under suitable assumptions, the controller derived from this
ISS-CLF guarantees asymptotic stability of the closed-loop
system, rather than ISS. In principle our approach can be
used with any parameter estimation algorithm that guarantees
boundedness of the estimation error; however, we specialize
our results to a particular class of parameter estimators whose
characteristics are outlined in the following lemma.

Lemma 1. Consider a parameter update law ˙̂
θ = τ(θ̂, t),

with τ locally Lipschitz in its first argument and piecewise
continuous in its second, and a Lyapunov-like function Vθ :
Rp × R≥0 → R≥0, continuously differentiable in both its
arguments, satisfying

η1‖θ̃‖2 ≤ Vθ(θ̃, t) ≤ η2‖θ̃‖2, ∀(θ̃, t) ∈ Rp × R≥0, (7)
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for some η1, η2 ∈ R>0. Provided

V̇θ(θ̃, t) ≤ 0, ∀(θ̃, t) ∈ Rp × R≥0, (8)

then θ̃(·) ∈ L∞. Furthermore, if there exists a pair (η3, T ) ∈
R>0 × R≥0 such that

V̇θ(θ̃, t) ≤ −η3‖θ̃‖2, ∀(θ̃, t) ∈ Rp × R≥T , (9)

then θ̃(·) ∈ L2 ∩ L∞ and

‖θ̃(t)‖ ≤ η2
η1

‖θ̃(0)‖e−
η3
2η2

(t−T ), ∀t ∈ R≥0. (10)

The condition in (8) requires that the origin of the pa-
rameter estimation error dynamics is stable in the sense
of Lyapunov – a property satisfied by standard estimation
algorithms (cf. [4]). The condition in (9) is more restrictive.
It asks, after a certain time period, for the parameter estimates
to exponentially converge to their true values. Traditionally,
this is only guaranteed under prohibitive persistence of
excitation (PE) conditions that generally cannot be verified
in practice [6]. Over the past decade, however, a suite
of tools termed concurrent learning adaptive control [6]
have emerged that relax the PE condition by maintaining
a sufficiently rich “history stack” of input-output data [7]. In
this regard, the interval [0, T ) in Lemma 1 corresponds to an
initial input-output data collection phase; once a sufficiently
rich dataset has been collected such data can be exploited to
ensure exponential convergence of the parameter estimates
(see [7] for data collection strategies). We refer the interested
reader to [6]–[8] for a more thorough introduction and to
[9], [10], [32], [33] for specific instances of update laws
satisfying the conditions of Lemma 1. The class of parameter
estimators outlined in the preceding lemma will be combined
with the notion of an eISS-CLF to establish stability of (2)
in the presence of uncertain parameters.

Definition 3. A continuously differentiable positive definite
function V : Rn → R≥0 is said to be an exponential input-
to-state stable control Lyapunov function (eISS-CLF) for (2)
if there exist positive constants c1, c2, c3, ε ∈ R>0 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2, ∀x ∈ Rn, (11a)

inf
u∈Rm

˙̂
V (x, θ̂, u) < −c3V (x)− 1

ε‖LFV (x)‖2, (11b)

for all (x, θ̂) ∈ (Rn \ {0})× Rp where

˙̂
V (x, θ̂, u) := LfV (x) + LFV (x)θ̂ + LgV (x)u.

When the uncertain parameters in (2) are matched the con-
struction of an eISS-CLF can be performed by constructing
a CLF for the nominal dynamics ẋ = f(x) + g(x)u. We
show in the following theorem that combining a parameter
estimator satisfying the conditions of Lemma 1 with a
controller satisfying the conditions in (11) renders the closed-
loop system ISS and, under additional conditions, renders the
origin asymptotically stable.

Theorem 1. If V is an eISS-CLF for (2) and the conditions
of Lemma 1 hold, then any controller u = k(x, θ̂) locally
Lipschitz on (Rn \ {0})× Rp satisfying

˙̂
V (x, θ̂, k(x, θ̂)) ≤ −c3V (x)− 1

ε‖LFV (x)‖2,

for all (x, θ̂) renders (3) eISS and limt→∞ x(t) = 0.

Given an eISS-CLF as in Def. 3, inputs satisfying the
conditions of Theorem 1 can be computed for any (x, θ̂)
by solving the quadratic program (QP)

min
u∈Rm

1
2u

>u

subject to
˙̂
V (x, θ̂, u) ≤ −c3V (x)− 1

ε‖LFV (x)‖2.
(12)

As noted in [30], [34], the strict inequality in (11) helps
to establish Lipschitz continuity of the QP-based controller
away from the origin and is independent of the non-strict in-
equality that a particular controller must satisfy to guarantee
stability. This observation also applies to the CBFs outlined
in the next section. Continuity at the origin can be ensured
provided the eISS-CLF V satisfies the small control property
(see [34] for further details).

IV. MODULAR ADAPTIVE ISSF

In this section we shift our attention to the problem
of establishing safety of (2) in the presence of uncertain
parameters. Importantly, we aim to establish such safety
guarantees without having to commit to any particular pa-
rameter update law as in [12]–[18]. We accomplish this
by unifying the ISSf framework [28]–[30] with the high
order CBF (HOCBF) framework [24]–[27], which allows
one to recursively compute a candidate safe set from a user-
defined high relative degree safety constraint. We note that
efforts towards this unification have been explored by [35] in
the context of safety verification of interconnected systems.
Here, we present a formulation better suited for control
synthesis in the context of uncertain systems.

Definition 4 ([27]). A function h : Rn → R is said to have
relative degree r ∈ N for (2) with respect to u on a domain
D ⊆ Rn if

1) h is r-times differentiable;
2) for all x ∈ Rn and all i ∈ {0, 1, . . . , r − 2}, we have

LgL
i
fh(x) = 0;

3) LgL
r−1
f h(x) 6= 0 for all x ∈ D.

The relative degree of a function h for (2) with respect to
θ̃ is defined similarly by replacing g with F in Def. 4. Now
consider a function h : Rn → R of relative degree r ∈ N
for (2) with respect to u and define

S := {x ∈ Rn |h(x) ≥ 0}, (13)

as the constraint set that we desire to render invariant.

Assumption 1 ([18]). The constraint function h in (13) has
relative degree r ∈ N for (2) with respect to both u and θ̃.

The implication of Assumption 1 is that both the control
input and uncertain parameters only appear in the r-th total
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derivative of h, which will facilitate the development of affine
constraints on the control input that are sufficient to establish
ISSf, and is not restrictive provided the uncertain parameters
are matched. Given a constraint function h of relative degree
r ∈ N as in (13) and a collection of sufficiently smooth αi ∈
Ke∞, i ∈ {1, . . . , r}, we define the sequence of functions

ψ0(x) :=h(x)

ψi(x) :=ψ̇i−1(x) + αi(ψi−1(x)), ∀i ∈ {1, . . . , r − 1},
ψr(x, u) =ψ̇r−1(x, u) + αr(ψr−1(x)).

(14)
We associate to each i ∈ {1, . . . , r} a set Ci ⊂ Rn defined
as the zero-superlevel set of ψi−1 as

Ci := {x ∈ Rn |ψi−1(x) ≥ 0}, (15)

and define a candidate safe set as

C :=

r⋂
i=1

Ci. (16)

We now aim to develop a control strategy that renders C from
(16) ISSf with respect to the parameter estimation error. To
this end, we define the sequence of functions

ρi(x, δ) := ψi−1(x) + γi(δ) (17)

for all i ∈ {1, . . . , r}, where ψi−1 is defined as in (14), and
each γi ∈ K∞. Similar to (15), we associate to each ρi a set
Ciδ ⊂ Rn as

Ciδ := {x ∈ Rn | ρi(x, δ) ≥ 0}, (18)

and define an inflated version of (16) as

Cδ :=
r⋂
i=1

Ciδ, (19)

whose forward invariance will be established using the notion
of an ISSf high order CBF (ISSf-HOCBF).

Definition 5. A function h : Rn → R of relative degree
r with respect to u is said to be an input-to-state safe high
order control barrier function for (2) on Cδ defined as in
(19) if ∇ψi−1(x) 6= 0 for all x ∈ ∂Ci for all i ∈ {1, . . . , r}
and there exist sufficiently smooth αi ∈ Ke∞, i ∈ {1, . . . , r},
and a positive constant ε ∈ R>0 such that for all x ∈ Rn
and all θ̂ ∈ Rp

sup
u∈Rm

˙̂
ψ(x, θ̂, u) > −αr(ψr−1(x)) +

‖LFψr−1(x)‖2

ε
, (20)

where
˙̂
ψ(x, θ̂, u) := Lfψr−1(x) + LFψr−1(x)θ̂ + Lgψr−1(x)u,

and ψr−1 is defined by h and the choice of αi from (14).

Given the above definition, we define the pointwise set of
all control values satisfying the condition in (20) as{
u ∈ Rm | ˙̂

ψ(x, θ̂, u) ≥ −αr(ψr−1(x)) +
‖LFψr−1(x)‖2

ε

}
︸ ︷︷ ︸

=:Kh(x,θ̂)

and show in the following theorem that any locally Lipschitz
controller belonging to Kh renders Cδ forward invariant.

Theorem 2. Let h be an ISSf-HOCBF for (2) on Cδ and
suppose the conditions of Lemma 1 and Assumption 1 hold.
Let k : Rn×Rp → Rm be a locally Lipschitz control policy
satisfying k(x, θ̂) ∈ Kh(x, θ̂) for all (x, θ̂) ∈ Rn × Rp and
suppose ‖θ̃‖∞ ≤ δ. Then, the control policy u = k(x, θ̂)
renders Cδ forward invariant for the closed-loop system with
each γi defined as

γr(δ) :=− α−1
r

(
− εδ2

4

)
,

γi(δ) :=− α−1
i (−γi+1(δ)), ∀i ∈ {1, . . . , r − 1}.

(21)

Given an eISS-CLF and ISSf-HOCBF one can compute
inputs satisfying the conditions of Theorem 2 and (relaxed)
conditions of Theorem 1 by solving the QP

min
u∈Rm

1
2‖u− k(x, θ̂)‖2

s.t. ˙̂
ψ(x, θ̂, u) ≥ −αr(ψr−1(x)) +

‖LFψr−1(x)‖2

ε ,
(22)

where k(x, θ̂) satisfies the conditions of Theorem 1. Rather
than combining the CLF and CBF in a single QP as in [23],
[34], here we filter the solution of (12) through (22). This
obviates the need to select an appropriate penalty on the re-
laxation of the CLF constraint, which can lead to controllers
with large Lipschitz constants if chosen improperly [34].

V. NUMERICAL EXAMPLES

We consider a simple obstacle avoidance scenario for a
planar mobile robot modeled as a double integrator with
nonlinear drag effects of the form [36]

q̈ = −Dq̇‖q̇‖+ u, (23)

where q = [q1 q2]
> ∈ R2 denotes the robot’s position, u ∈

R2 its commanded acceleration, and D ∈ R2×2 a diagonal
matrix of damping coefficients. Defining x := [q> q̇>]> ∈
R4 allows (23) to be expressed as in (1) with

ẋ =

[
q̇
0

]
︸︷︷︸
f(x)

+

[
02×2

diag(q̇‖q̇‖)

]
︸ ︷︷ ︸

F (x)

[
D1

D2

]
︸ ︷︷ ︸
θ

+

[
02×2

I2×2

]
︸ ︷︷ ︸
g(x)

u, (24)

where 02×2 ∈ R2×2 is a 2 × 2 matrix of zeros, I2×2

is a 2 × 2 identity matrix, diag(·) constructs a diagonal
matrix from a vector, and D1, D2 ∈ R>0 are the unknown
drag coefficients. Our control objective is to drive (23) to
the origin while avoiding an obstacle in the workspace
and learning the uncertain parameters online. To estimate
the uncertain parameters, we leverage a general class of
concurrent learning parameter estimation algorithms [6], [8]
based on the method developed in [10]. This method works
based on the observation that, along state-control trajectory
(x(·), u(·)), system (1) can be expressed as∫ t

t−∆t

ẋ(s)ds =

∫ t

t−∆t

f(x(s))ds+

∫ t

t−∆t

F (x(s))dsθ

+

∫ t

t−∆t

g(x(s))u(s)ds,
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for all t ≥ ∆t, where ∆t ∈ R>0 is the length of an
integration window. Defining

Y(t) :=

∫ t

t−∆t

(ẋ(s)− f(x(s))− g(x(s))u(s))ds,

F(t) :=

∫ t

t−∆t

F (x(s))ds

yields the linear relationship for the uncertain parameters

Y(t) = F(t)θ. (25)

Despite the appearance of ẋ in Y , computing Y only requires
state measurements since

∫ t
t−∆t

ẋ(s)ds = x(t)− x(t−∆t).
The parameters can then be recursively estimated online by
storing values of Y and F at run-time in a history stack1

H = {(Yj ,Fj)}Nj=1, which is used to update the parameter
estimates to minimize the squared prediction error E(θ̂) =∑N
j=1 ‖Yj −Fj θ̂‖2. To this end, we consider the following

class of update laws

˙̂
θ = −Γ(t)∇E(θ̂)> = Γ(t)

N∑
j=1

F>
j (Yj −Fj θ̂), (26)

which serves as a general template for particular update laws
based on the properties of Γ(·) as follows:

Γ̇ = 0, (27a)

Γ̇ = −Γ

[
N∑
j=1

F>
j Fj

]
Γ, (27b)

Γ̇ = βΓ− Γ

[
N∑
j=1

F>
j Fj

]
Γ, (27c)

Γ̇ = β

[
1− ‖Γ‖

Γ̄

]
Γ− Γ

[
N∑
j=1

F>
j Fj

]
Γ, (27d)

where β ∈ R>0 is a forgetting/discount factor and Γ̄ ∈ R>0

is a user-defined constant that bounds ‖Γ(t)‖. With Γ̇ as in
(27), the update law in (26) corresponds to: (27a) gradient
descent; (27b) recursive least squares (RLS); (27c) RLS
with a forgetting/discount factor; (27d) RLS with a variable
forgetting factor. An overview of these online parameter es-
timation algorithms, including their benefits and drawbacks,
can be found in [2, Ch. 8.7]. We emphasize that the purpose
of our numerical example is not necessarily to establish
superiority of one algorithm over the others; rather, our
goal is to demonstrate that, under the assumptions posed
in Lemma 1, the stability/safety guarantees of the controller
can be decoupled from the design of the parameter estimator,
which allows considerable freedom in selecting an estimation
algorithm best suited for the problem at hand.

We demonstrate the modularity of our approach (i.e., the
ability to decouple the design of the estimator from the
controller) by running a set of simulations with randomly

1This data is stored in the history stack using the singular value maxi-
mizing algorithm from [7]

0 2 4 6 8 10

0

1

2

t

‖θ̃
(t
)‖

Gradient descent
Recursive least squares (RLS)
RLS w/ forgetting
RLS w/ variable forgetting

Fig. 1. Mean and standard deviation of the norm of the parameter
estimation over time generated by each parameter estimator. The solid lines
indicate the average value of ‖θ̃(t)‖ across each simulation, and the ribbon
surrounding each line corresponds to one standard deviation from the mean.

sampled initial conditions for the system state and estimated
parameters under each algorithm, and show that, for a given
level of uncertainty, the ISSf guarantees are invariant to the
particular choice of parameter estimator. For each estimation
algorithm we produce 25 different trajectories by uniformly
sampling the initial state from [−1.8,−2.2] × [1.8, 2.2] ×
{0} × {0} ⊂ R4 and the initial parameter estimates from
[0, 3]2 ⊂ R2; the true parameters are set to θ = [0.8 1.4]>.
The hyperparameters for the estimation algorithms are se-
lected as N = 20, Γ(0) = 100I2×2, β = 1, Γ̄ = 1000. The
stabilization objective is achieved by considering the eISS-
CLF candidate V (x) = 1

2‖q‖
2 + 1

2‖q+ q̇‖2 with c3 = 1 and
εV = 20. The safety objective is achieved by considering
the constraint function h(x) = ‖q − qo‖2 − R2

o, where
qo = [−1 1]> is the center of the circular obstacle and
Ro = 0.5 its radius, which has relative degree 2 for (23)
with respect to both u and θ as required by Assumption 1.
This constraint function is used to construct an ISSf-HOCBF
candidate with α1(s) = s, α2(s) =

1
2s, and εh = 1.

For each simulation, the closed-loop trajectory is generated
by the controller in (22), the results of which are provided
in Fig. 1 and Fig. 2. As shown in Fig. 2, the trajectories
under each update law remain safe and converge to the origin,
whereas Fig. 1 illustrates the convergence of the parameter
estimation error to zero for each estimation algorithm as
predicted by Lemma 1. The curves in Fig. 1 represent the
mean and standard deviation of the parameter estimation
error over time across all simulations for each estimation
algorithm. The results in Fig. 1 illustrate that, on average,
the RLS with forgetting factor estimator (27c) produces
the fastest convergence of the parameters estimates while
also exhibiting low variance across different trajectories.
The standard RLS algorithm (27b) produces the slowest
convergence, which is expected given that, in general, this
algorithm cannot guarantee exponential convergence of the
parameter estimates, whereas the others can [2, Ch. 8.7].
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Fig. 2. State trajectories generated by each estimation algorithm projected
onto the x1-x2 plane. In each plot the gray disk denotes the obstacle. The
colors in each plot share the same interpretation as those in Fig. 1.

VI. CONCLUSION

We presented a modular approach to safe adaptive control
using CLFs and CBFs. In particular, we unified the concepts
of ISS and ISSf to allow for freedom in the estimation
algorithm used to learn the uncertain parameters while main-
taining ISS and ISSf guarantees. Our hope is that this work
facilitates the application of more advanced techniques from
the machine learning literature [37] to parameter estimation
and learning in a safety-critical setting.
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