
Multi-Agent Persistent Monitoring in Stochastic Environments
with Temporal Logic Constraints

Yushan Chen, Kun Deng and Calin Belta

Abstract— In this paper, we consider the problem of gen-
erating control policies for a team of robots moving in an
environment containing elements with probabilistic behaviors.
The team is required to achieve an optimal surveillance mission,
in which a certain proposition needs to be satisfied infinitely
often. The goal is to minimize the average time between
satisfying instances of the proposition, while ensuring that the
mission is accomplished. By modeling the robots as Transition
Systems and the environmental elements as Markov Chains, the
problem reduces to finding an optimal control policy satisfying
a temporal logic specification on a Markov Decision Process.
The existing approaches for this problem are computational
intensive and therefore not feasible for a large environment
or a large number of robots. To address this issue, we propose
an approximate dynamic programming framework. Specifically,
we choose a set of basis functions to approximate the optimal
cost and find the best parameters for these functions based on
the least-square approximation. We develop an approximate
policy iteration algorithm to implement our framework. We
provide illustrative case studies and evaluate our method
through simulations.

I. INTRODUCTION

Recently there has been an increasing interest in using
temporal logics, such as Linear Temporal Logic (LTL),
Computation Tree Logic (CTL), and µ-calculus as task
specifications for mobile robotics [1]–[3]. These logics are
appealing because they allow for high-level, expressive speci-
fications. In particular, LTL can be used to specify persistent
monitoring e.g., “Observe regions A and then B infinitely
often. Never enter D unless coming directly from C.”

Most of the existing works using LTL assume that a
finite model of the robot motion in the environment is
available. If this is deterministic, control strategies from
specifications given as LTL formulae can be found through
adaption of off-the-shelf model checking algorithms [4]. If
the model is nondeterministic, the control problem can be
mapped to a Rabin game [5], and to a Büchi [6] or GR(1)
game if the specifications are restricted to fragments of LTL
[1], [2]. If the model of the system is probabilistic, the
control problem reduces to synthesizing a control policy for a
Markov Decision Process (MDP) subject to LTL satisfaction
constraints [7].

In this paper, we consider the problem of controlling
a team of robots in an environment containing elements
with probabilistic behaviors from a temporal logic persistent
monitoring task given in Linear Temporal Logic (LTL). In

Y. Chen and C. Belta are with Boston University, {yushanc,
cbelta}@bu.edu, and K. Deng is with University of Illinois at
Urbana-Champaign, kundeng2@illinois.edu. This work was
supported in part by ONR-MURI N00014-09-1051, ARO W911NF-09-1-
0088 and AFOSR YIP FA9550-09-1-020 at Boston University.

addition, we optimize the long-term behavior of the team by
minimizing the time between consecutive satisfactions of a
“persistence” property. An example of a mission that we can
accommodate with the proposed computational framework
is “Download data from A or B and then upload it in C
infinitely often. Minimize the expected value of the time
between consecutive uploads.”

The motivation for this work is to bridge the gap between
the (deterministic) multi-agent optimal control problems [8]
and MDP optimal control problems [9] subject to temporal
logic constraints. Similar to [8], we assign a clock to each
robot to measure its travel time between the regions of
the environment. However, since we consider probabilistic
systems, we model the motion of team as a labeled and
weighted Markov Decision Process (MDP), rather than a
timed automaton as in [8]. Our original problem translates
to finding an optimal policy enforcing the satisfaction of an
LTL formula on the team MDP. Starting from the observation
that the algorithm proposed in [9] does not scale with
the large size of our multi-agent system, we propose an
approximate dynamic programming framework, which points
to a trade-off between optimality and complexity. A set of
basis functions is carefully chosen based on the Krylov space
method [10] to approximate the optimal solution, and then
the best approximation is achieved by minimizing the least-
square error [10]. In summary, the main contributions of this
paper are to extend the results in [9] to multi-agent systems,
and to propose a sub-optimal solution based on approximate
dynamic programming.

II. PROBLEM FORMULATION

Notation: For a finite set Π, we use |Π| and 2Π to denote
its cardinality and power set, respectively. An infinite (finite)
word α0α1 . . . (α0α1 . . . αn) over a set Π is an infinite
(finite) sequence of elements from Π. Πω (Π∗) is the set
of all infinite (finite) words over Π. Πk denotes the set of
all words over Π with length k.

A. Environment, Door, and Robot Models

In this paper, we consider a team of robots moving in
an environment consisting of both static and stochastically
changing elements. To keep the discussion focused, we
consider an indoor-like environment consisting of rooms
(static) and doors (changing and stochastic). Formally, such
an environment can be modeled as a tuple:

E = (V,→E ,Π, LE) (II.1)
where (i) V is a set of labels for the rooms in the environ-
ment; (ii)→E⊆ V×V is the adjacency relation of the rooms;

51st IEEE Conference on Decision and Control
December 10-13, 2012. Maui, Hawaii, USA

978-1-4673-2064-1/12/$31.00 ©2012 IEEE 2801978-1-4673-2066-5/12/$31.00 ©2012 IEEE

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

(iii) Π is a set of atomic propositions; and (iv) LE : V → 2Π

is a labeling function over the set of rooms, where LE(v)
represents the set of atomic propositions that hold true in
room v. An atomic proposition α ∈ Π can be used to
represent a service request occurring in the environment, or
a property of a location (e.g., v is unsafe).

Assume that there is a set D of doors located in the
environment. Two adjacent rooms in E may be separated
by a door, which can be open or closed. To capture the door
locations, we define a partial function FD : V×V → D∪∅,
where FD is defined for all (v, v′) ∈→E ; FD(v, v′) = i
means that the adjacent rooms v and v′ are separated by
door i, whereas FD(v, v′) = ∅ means that there exists no
door in between v and v′. We assume that the doors behave
independently from the robots, and the status of each door
i ∈ D (i.e., open or closed) evolves according to a finite
discrete time Markov chain. Formally, we have

Definition II.1 (Door Model) Each door i ∈ D is mod-
eled as a discrete-time labeled Markov chain Ci =
(Si, ιi, Pi,Ωi, L

C
i) where (i) Si is a set of states; (ii) ιi :

Si → [0, 1] is an initial distribution with
∑
s∈Si

ιi(s) = 1;
(iii) Pi : Si×Si → [0, 1] is a transition probability function
such that ∀s ∈ Si,

∑
s′∈Si

Pi(s, s
′) = 1; (iv) Ωi = {o, c}

is a status set, where o and c stand for open and closed,
respectively; (v) LCi : Si → Ωi is a labeling function.

We assume that the time is uniformly discretized and we
use t to denote the tth time instance. We assume that the time
domain is N and initially, t = 0. For the sake of simplicity,
we assume that the door models (i.e., Markov chains) take
a transition every time instance. The runs of Ci are defined
as infinite state sequences ri = s0s1 . . . ∈ Sωi , such that
ιi(s

0) > 0, st ∈ Si and Pi(s
t, st+1) > 0, ∀t ≥ 0. A run

s0s1 . . . generates an output word LCi (s0)LCi (s1) . . . ∈ Ωωi .
In this paper, an output word of Ci is also referred to as a
behavior of door i ∈ D.

We consider a team of robots moving in environment E ,
whose motions are restricted by the doors D. The robots
are assumed to have a negligible size. We denote R as an
index set for the robots. To capture the interaction between
the robots and the doors, we model each robot k ∈ R as
a game transition system (see Def. II-A below), denoted by
Tk, k ∈ R. There are two players in the game: the robot
(player) and the doors (adversary). The set of states of Tk
is partitioned in two sets: robot set V , at which the robot
takes control, and door set QD, at which the doors decide
the next transitions. Each door i ∈ D, which separates rooms
v and v′, is represented by two states (one for each room),
denoted by qvi and qv

′

i . Thus, QD = ∪i∈D{qvi , qv
′

i | i =
FD(v, v′), v, v′ ∈ V}.
Definition II.2 (Robot Model) We model each robot k ∈ R
as a game transition system Tk = (Qk, v

in
k ,→k,Πk, Lk, gk),

where (i) Qk = V ∪QD is a finite set of states; (ii) vink ∈ V
is an initial state; (iii)→k⊆ Qk×Qk is a transition relation
where ∀(v, v′) ∈→E , we have (v, v′) ∈→k iff FD(v, v′) =
∅, and (v, qvi), (qvi , v), (qvi , v

′) ∈→k iff FD(v, v′) = i; (iv)
Πk ⊆ Π is a set of atomic propositions; (v) Lk : V → 2Πk is

a labeling function over the states of the robot; (vi) gk :→k→
N1 is a weight function that assigns a non-negative integer
to each transition.

A transition (q, q′) ∈→k is also denoted by q →k q
′. At

a robot state v ∈ V , the robot chooses its next location v′,
where (v, v′) ∈→E . If v and v′ are not separated by a door,
the robot starts moving towards v′ and will reach v′ after
a certain period of time. Thus, we have (v, v′) ∈→k, and
gk((v, v′)) captures the travel time for the robot to go from
v to v′. For robot k, ∀k ∈ R, staying at the same location
is assumed to take one time interval, i.e., ∀(v, v) ∈→k,
gk(v, v) = 1. If door i separates v and v′, the robot stays
at v if door i is closed, and moves to v′ otherwise. We use
(v, qvi) ∈→k to represent that the robot plans to go through
door i, and (qvi , v), (qvi , v

′) ∈→k to capture that the door
decides the next location of the robot. In addition, we have
gk((v, qvi)) = 0, gk((qvi , v)) = 1 (i.e., the robot is forced to
stay at v for one time interval); gk((qvi , v

′)) ∈ N captures
the travel time between v and v′. We assume that to move
from v to v′, which are separated by door i, each robot
first takes one time interval to go through the door, and
then travels gk((qvi , v

′)) − 1 time intervals to reach v′. By
specifying different Πk ⊆ Π, we can assign different atomic
propositions to robot k. For example, a service request is
contained in Πk means that robot k, k ∈ R, is capable of
servicing the request. An example of Tk is shown in Fig. 1.

qv1
1

qv2
1

v1 v2

Lk(v1) = {Base} Lk(v2) = {Monitor}

1 1

0 2

1

2

0

1

Fig. 1. An example of a game transition system Tk , k ∈ R. The robot
and door states are represented by circles and squares, respectively.

A run of Tk is an infinite sequence q0q1 . . . ∈ Qωk such
that q0 = vinl and qn →k q

n+1, ∀n ≥ 0. By removing all
the door states from the run of Tk, we can obtain an infinite
path of the robot, denoted by Pk = v0

kv
1
k . . . ∈ Vω . A path

of the robot Pk = v0
kv

1
k . . . generates an output word of the

robot, denoted by Ok = Lk(v0
k)Lk(v1

k) . . ., and an infinite
sequence of time instances Tk := T0

kT1
k . . . such that Lk(vnk)

is satisfied at time Tnk .

Definition II.3 (Team Output Word (Behavior)) Given a
set of robot paths {Pk, k ∈ R}, and the corresponding event
time sequences {Tk, k ∈ R}, a time sequence for the team,
denoted by Tteam = T0T1 . . ., is obtained by taking the
union ∪k∈RTk and ordering this set in an ascending order.
The team output word (behavior) produced by {Pk, k ∈ R}
is defined as Oteam = o0o1 . . ., where on ∈ ∪k∈RΠk (n ≥
0) is the union of all propositions satisfied at Tn.

B. Task Specification

In this paper, we consider robot missions requiring infinite
executions, such as surveillance, persistent monitoring, and
pickup-delivery tasks. Linear Temporal Logic (LTL) [11]

1In general, a weight function assigns real numbers to the transitions. In
this paper, since gk is used to capture the travel time of the robot and the
time is discretized, we use natural numbers.

2802

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

offers a formal framework for describing such missions. A
detailed description of the syntax and semantics of LTL is
beyond the scope of this paper and can be found in [11].
Roughly, an LTL formula is built up from a set of atomic
propositions Π, standard Boolean operators ¬ (negation), ∨
(disjunction), ∧ (conjunction),⇒ (implication), and temporal
operators X (next), U (until), F (eventually), G (always). The
semantics of LTL formulae are given over infinite words over
2Π, where Π = ∪k∈RΠk, such as the team output words
(see Def. II.3). As an example, let us consider a persistent
monitoring task for one robot, whose model is shown in
Fig. 1. The specification “monitor infinitely many times, and
come back to base every time after monitoring” translates to
formula φ = GF Monitor ∧ G(Monitor⇒ X Base).

In addition, we define a special task, called “optimizing”
task, which is required to be executed infinitely often. We
want to minimize the time in between two consecutive
executions of this task. Specifically, our specification is an
LTL formula of the form

φ := ϕ ∧ GFψ, (II.2)
where ϕ can be any LTL formula over Π = ∪k∈RΠk, and
ψ is a boolean combination of atomic propositions in Π. We
use ψ to capture the optimizing task and φ to specify other
missions or rules that must be obeyed. Given a team output
word Oteam = o0o1 . . ., we say the optimizing task ψ is
executed by the team at time Tn, n ≥ 0, if on satisfies ψ.

C. Problem Formulation

Our goal is to control the robots to accomplish a mission
(Eqn. (II.2)), and also minimize the time in between two
consecutive executions of the optimizing task ψ.

Definition II.4 (Robot Control Policy) A history depen-
dent control policy for robot k ∈ R is defined as an infinite
sequence πk = {µ0

k, µ
1
k, . . .}, where µnk :

∏
k∈R V∗ ×∏

i∈D Si → {v ∈ V | (vnk , v) ∈→E}.
At time Tnk , given the sequence of the rooms v0

l v
1
l . . . v

n
l

visited by robot l, ∀l ∈ R (n may vary for different robots),
and the current state of door i, ∀i ∈ D, the policy µnk returns
the next target location v ∈ V , where (vnk , v) ∈→E , for robot
k. Given the initial locations of the robots {vink , k ∈ R}, the
control policies {πk, k ∈ R}, and the behaviors of the doors,
we can produce a set of robot paths {Pk = v0

kv
1
k . . . , k ∈

R}, where at vnk , the next room vn+1
k is determined by both

control µnk and the status of the doors at time Tnk . Note that
given {vink , k ∈ R} and {πk, k ∈ R}, the resultant robot
paths {Pk, k ∈ R} and the corresponding team behavior
Oteam are not unique due to the stochasticity in the behaviors
of the doors. The probability of the set of team behaviors
satisfying an LTL formula is well defined since the team
behaviors can be modeled as an Markov Decision Process
(MDP) (the construction of this MDP is described later in
the paper). Now we are ready to formulate the problem:

Problem II.1 Given a partitioned environment E (Eqn.
(II.1)), a team of robots modeled as game transition systems
Tk, k ∈ R (Def. (II-A)), a set of doors modeled as Markov
Chains Ci, i ∈ D (Def. (II-A)), and a specification in the

form of an LTL formula φ (Eqn. (II.2)), Synthesize a set of
robot control policies {πk, k ∈ R} for the team, such that
the team behaviors (Def. II.3) generated by {πk, k ∈ R}
satisfy φ with probability 1, and

J({vink , k ∈ R}) = lim sup
n→∞

E((Tψteam(n+ 1)− Tψteam(n))

is minimized, where E(·) denotes the expectation operator
and Tψteam(n) stands for the time instance when the opti-
mizing task ψ is executed for the nth time.

Remark 1 We restrict our attention to sets of policies, which
produce team behaviors satisfying φ with probability 1,
because the optimality problem is well posed (see [9]) only
when there exists at least one such set of policies.

Our approach to Prob. II.1 proceeds as follows. We first de-
fine the parallel composition of the game transition systems
modeling the robots and the Markov chains capturing the
door behaviors in the form of a weighted and labeled Markov
Decision Process (MDP). We show that Prob. II.1 reduces to
finding an optimal policy enforcing the satisfaction of an
LTL formula on this MDP. Even though the latter problem
was recently solved in [9], the resulting algorithm cannot be
readily applied to our multi-agent problem due to the large
size of the obtained MDP. To deal with this issue, we propose
an approximate dynamic programming framework.

Remark 2 Throughout this paper we assume that the robots
can deterministically choose their transitions. This assump-
tion, which is made for simplicity of presentation, can be
easily relaxed by allowing nondeterminism and probabilities
in their transitions. The resulting model of the team would
be a similar MDP.

III. MDP CONSTRUCTION

We start by equipping each robot k ∈ R with a clock,
which keeps track of the amount of time that the robot has
been traveling between robot states in the game transition
system Tk. The values of these clocks are non-negative
integers and can be reset to zero. We initiate all the clocks
at zeros. Given two robot states (v, v′) such that v →k v

′,
robot k can transit from v to v′ only when the current clock
value plus 1 is equal to the travel time of this transition. After
taking the transition, the clock will be reset to 0. When the
clock value is smaller than the required travel time, the robot
is in an intermediate state, which means that the robot has left
v and is moving towards its target location v′. Thus, for each
robot, we insert a new state denoted by v→v

′
, ∀(v, v′) ∈→E ,

such that the travel time between v and v′ is greater than 1,
to represent the intermediate state between v and v′.

In addition, the MDP captures how the doors affect the
motion of the robotic team. If robot k is at v and plans to
move to v′, where ∃i ∈ D such that v →k q

v
i →k v

′ (i.e.,
v and v′ are separated by a door), the next state of robot k
is decided by the current status of door i. If door i is open,
the robot starts moving from state v to v′, and similarly, if
gk(qvi , v

′) > 1, the robot transits to the intermediate state
v→v

′
. If the door is closed, the robot stays at the same state.

2803

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

Therefore, the MDP can be seen as a special product of
the game transition systems Tk with the set of clocks and
the Markov Chains Ci. Formally, it is defined as follows:

MG = (QG , ιG , UG , PG ,Π, LG , gG),where (III.1)
(i) QG ⊂

∏
k∈R{V ∪ Vmid

k } ×
∏
i∈D Si × N|R| is a set of

states, where Vmid
k denotes the set of intermediate states;

for a more intuitive notation, we use (str, std, clk) to
represent a state in QG , where str = (v1, . . . , v|R|) is
the states of the robots, std = (s1, . . . , s|D|) is the states
of the doors, and clk = (clk1, . . . , clk|R|) is the clock
values, one for each robot;

(ii) ι is an initial distribution such that ιG(str, std, clk) =∏
i∈D ιi(std[i]), iff str = (vin1 , . . . , v

in
|R|) and clk =

(0, 0, . . . , 0), and ιG(str, std, clk) = 0 otherwise;
(iii) UG ⊆

∏
k∈R{V ∪ {εk}} is a set of controls, where εk

is a dummy control ∀k ∈ R;
(iv) PG : QG ×UG ×QG → [0, 1] is a transition probability

function such that PG((str, std, clk), (u1, . . . , u|R|), (st
′
r,

st′d, clk
′)) =

∏
i∈D Pi(std[i], st

′
d[i]), iff ∀k ∈ R, one of

the following conditions holds:
1) str[k] = v, st′r[k] = v′, uk = v′, clkk = 0, clk′k =

1, and, a) FD(v, v′) = ∅, gk(v, v′) = 1, or b)
FD(v, v′) = i, LCi (std[i]) = o, gk(qvi , o) = 1

2) str[k] = st′r[k] = v, uk = v, clkk = 0, clk′k = 0,
∃v′, i, s.t. FD(v, v′) = i, LCi (std[i]) = c

3) str[k] = v, st′r[k] = v→v
′
, uk = v′, clkk = 0,

clk′k = 1, and a) FD(v, v′) = ∅, gk(v, v′) > 1, or
b) FD(v, v′) = i, LCi (std[i]) = o, gk(qvi , v

′) > 1
4) str[k] = st′r[k] = v→v

′
, uk = εk, 1 ≤ clkk <

gk(v, v′)− 1, and clk′k = clkk + 1
5) str[k] = v→v

′
, st′r[k] = v′, uk = εk, clk′k = 0,

and a) FD(v, v′) = ∅, gk(v, v′) = clkk + 1, or b)
FD(v, v′) = i, gk(qvi , v

′) = clkk + 1

and PG((str, std, clk), (u1, . . . , u|R|), (st
′
r, st

′
d, clk

′))
= 0 otherwise;

(v) Π = ∪k∈RΠk is a set of atomic propositions;
(vi) LG : QG → 2Π such that LG(str, std, clk) =

∪k∈R{Lk(str[k]) | str[k] ∈ V}.
(vii) gG : QG × UG → 1 is the trivial weight function that

assign 1 to all transitions with probability larger than 0.
At an intermediate state v→v

′
, only a dummy control εk is

enabled. The weight function gG assigns 1 to all transitions
since the states of the MDP evolve every time step (i.e., this
is because the states of the MCs evolve every time step).

Remark 3 The number of states |QG | of MG is bounded
above by

∏
k∈R(|V| +

∑
(q,q′)∈→k

gk(q,q′)>1

(gk(q, q′) − 1)) ×∏
i∈D |Si|. The size of MG can be reduced by removing

states with only dummy actions (ε1, ε2, . . . , ε|R|) as inputs,
and then adjusting the relative transitions accordingly. This
direction will be considered in our future work.

We define a control function µG : QG → UG , ∀qG ∈ QG .
An infinite sequence of control functions {µ0

G , µ
1
G , . . .} is

called an MDP policy. If µtG = µG ,∀t ≥ 0, we call it a
stationary MDP policy and we denote it simply as µG . Given
an initial state, an infinite sequence q0

Gq
1
G . . . onM generated

under {µ0
G , µ

1
G , . . .} is called a path on M if ιG(q0

G) > 0,
and PG(qtG , µ

n(qtG), qt+1
G) > 0, ∀t ≥ 0. A path q0

Gq
1
G . . . on

M generates an output word LG(q0
G)LG(q1

G) . . . ∈ Πω on
M. A path on M satisfies an LTL formula if and only if its
corresponding output word satisfies the LTL formula. Given
a path q0

Gq
1
G . . . of MG with qtG = (sttr, st

t
d, clk

t), we can
obtain a path Pk = v0

kv
1
k . . . of robot k ∈ R, by removing

all the intermediate states from st0r[k]st1r[k] In addition,
given q0

Gq
1
G . . ., the corresponding set of paths {Pk, k ∈ R},

the team output word Oteam, and time sequence Tteam, it
holds that a) ∀t = Tn ∈ ∪k∈RTk, LG(qtG) = on and b)
∀t ∈ N, t /∈ ∪k∈RTk, LG(qtG) = ∅.
Definition III.1 (Inducing a policy from MG) A policy
{µ0
G , µ

1
G , . . .} on MG induces a control policy {µ0

k, µ
1
k, . . .}

for each robot k ∈ R, by setting µnk (vnk) = µ
Tn
k

G ((st
Tn
k
r , st

Tn
k

d ,

clkT
n
k),∀n ≥ 0.

Note that stT
n
k
r and clkT

n
k can be decided by keeping track

of the motion of the robots. Therefore, our optimal control
synthesis problem reduces to the problem of finding a control
policy {µ0

G , µ
1
G , . . .} on MG , such that a) {µ0

G , µ
1
G , . . .}

satisfies the LTL formula φ with probability 1, and b) the
expected time in between visiting states in QG satisfying
ψ is minimized when t → ∞ (i.e., optimize the long-term
behavior of the robotic team). To formalize this, we let Mφ

denote the set of policies satisfying the LTL formula φ with
probability 1, and Qψ denote the set of states where ψ (i.e.,
the optimizing task) holds true. We say that each visit of the
MDP path to the set Qψ completes a cycle. Given an MDP
sample path q0

Gq
1
G . . ., we use C(q0

G , . . . , q
N
G) to denote the

number of cycles completed at stage N + 1. Then, we are
interested in finding an optimal policy in Mφ to minimize the
average cost per cycle (ACPC) given the initial distribution.
Therefore, Prob. II.1 reduces to:
Problem III.1 Find a policy {µ0

G , µ
1
G , . . .} ∈ Mφ on MG

that minimizes

Jπ(ιG) = lim sup
N→∞

E

{∑N
n=0 gG(qnG , µ

n
G(qnG))

C(q0Gq
1
G . . . q

N
G)

}
. (III.2)

where E{·} denotes the expectation operator.

IV. APPROXIMATE DYNAMIC PROGRAMMING APPROACH

A. Existing Approach to Prob. III.1

The existing approach to Prob. III.1 can be divided into
two parts: 1) LTL synthesis part, where Mφ is computed,
and 2) optimizing part, where a policy in Mφ minimizing
Eqn. (III.2) is found. The LTL synthesis part proceeds with
constructing a product MDP MP = MG × Aφ, where Aφ
is a Deterministic Rabin Automaton accepting all and only
words satisfying φ [11]. Then, a set of accepting maximum
end components (AMECs) of MP is computed. These
AMECs are sub-MDPs of MP that are communicating. As
stated in [11], a stationary policy on MP that can reach
an AMEC given the initial distribution with probability 1
induces a policy on M that satisfies the LTL formula φ
with probability 1. In the optimizing part, a stationary policy
minimizing the ACPC cost defined in (III.2) is computed for
each obtained AMEC. Since we only aim to optimize the

2804

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

long-term behavior of the system, we only need to solve the
optimization problem within each (reachable) AMEC. The
ACPC optimization problem is defined as follows:
Problem IV.1 Given a communicating MDP, denoted by
M = (Q, ι, U, P,Π, L, g) and the optimizing task ψ, find a
stationary policy µ, that minimizes the cost from Eqn. (III.2).

A stationary policy µ onM induces a finite-state Markov
chain where its set of states is Q and the transition probability
from state q to q′ is P (q, µ(q), q′). We use Pµ to denote the
transition probability matrix: Pµ(q, q′) := P (q, µ(q), q′). We
define a cost per stage vector gµ, where gµ(q) := g(q, µ(q)).
A stationary policy µ is said to be proper if, under µ, all
initial states have positive probabilities to reach the set Qψ
in a finite number of stages. It is shown in [9] that Prob. IV.1
can be converted to the traditional average cost per stage
(ACPS) problem (see [10]). To achieve this, another MDP is
constructed such that solving the ACPS problem in the new
MDP is equivalent to finding a solution to Prob. IV.1. To
obtain a new MDP, we first introduce two |Q|×|Q| matrices:

←−
P µ(q, q′) =

{
Pµ(q, q′) if q′ ∈ Qψ
0 otherwise (IV.1)

−→
P µ(q, q′) =

{
Pµ(q, q′) if q′ /∈ Qψ
0 otherwise (IV.2)

The matrix (I − −→P µ) is shown to be non-singular for any
proper policy. Given

←−
P µ and

−→
P µ, we obtain the transition

probability matrix, denoted by P̃µ, and the cost per stage
vector, denoted by g̃µ, of the new MDP. Formally, we have
P̃µ := (I − −→P µ)−1←−P µ, and g̃µ := (I − −→P µ)−1gµ. The
matrix P̃µ is also a stochastic matrix. Given the new MDP
with P̃µ and g̃µ, Eqn. (III.2) in Prob. IV.1 is proven to be
equal to the average cost per stage (ACPS) for the new MDP:
Jµ(ι) = limN→∞ E

{∑N
n=0 g̃(qn,µ(qn))

N+1

}
. As shown in [9],

Jµ(ι) does not depend on the initial states. Thus, we have
Jµ(q) = λµ, ∀q ∈ Q, where λµ is a scalar. In addition, a
relative cost vector hµ := limN→∞

∑N
k=0(P̃ kµ g̃µ − λµ1) is

defined to quantify the total deviation from the average cost.
Dynamic Programming (DP) Approach to Prob. IV.1:

As shown in Prop. IV.10 of [10], for any policy µ, the
average cost λµ associated with the relative cost vector hµ
satisfies the Bellman’s equation λµ1+hµ = g̃µ+ P̃µhµ. The
solution to this equation can be made unique by eliminating
one degree of freedom [10], such as adding one more
linear equation for hµ: 1Thµ = 0. We denote µ? as the
stationary policy µ? minimizing (III.2) over all policies on
M. Let λ? and h? denote the average cost and relative cost
vector corresponding to the policy µ?, respectively. One of
common methods to find the optimal policy µ? uses the
policy iteration algorithm (PIA) [10]. However, for large state
spaces, PIA is computationally intensive. At each iteration,
the computational complexity is of order O(|Q|3).

B. Approximate DP Approach to Prob. IV.1

Instead of searching for an optimal solution to Prob.
IV.1, we employ the function approximation method to
compute sub-optimal solutions with less computational com-
plexity [10].

1) Linear Parametric Function Approximation: We em-
ploy the function approximation method to approximate the
solution to the Bellman’s equation λµ1 + hµ = g̃µ + P̃µhµ.
According to Prop IV.10 of [9], the Bellman’s equation can
be represented in the following equivalent form

λµ1 + hµ = gµ + Pµhµ + λµ
−→
P µ1. (IV.3)

Together with 1Thµ = 0, Eqn. (IV.3) can be expressed
compactly as Aµxµ = bµ where

Aµ :=

[
I − Pµ 1−

−→
P µ1

1T 0

]
, xµ :=

[
hµ
λµ

]
, bµ :=

[
gµ
0

]
.

To reduce the high computational complexity of solving
xµ, we aim to find a lower dimensional approximation for
hµ, and a scalar λ ∈ R to approximate λµ. Formally, we
approximate hµ using a linear parametric form: h(r) =∑m
k=1 rkφk, where rk is a tunable parameter, φk is called

a basis function, and m is a user-defined number to trade-
off between optimality and computational complexity. For a
given policy µ, we define a basis matrix Φµ := [φ1| · · · |φm].
Then h(r) can be expressed compactly as a linear combi-
nation h(r) = Φµr, where r = [r1, . . . , rm]T . We assume
that the basis functions {φ1, . . . , φm} together with the unit
vector 1 are linearly independent.

2) Automatic generation of basis functions: We employ
the Krylov subspace method to automatically generate basis
functions [10]. For any finite-state Markov chain, the limiting
matrix P ∗µ := limN→∞

1
N

∑N−1
k=0 P kµ is well-defined. More-

over, it is easy to check that P ∗µ = P ∗µPµ = PµP
∗
µ = P ∗µP

∗
µ ,

and the matrix (I−Pµ+P ∗µ) is non-singular [10]. GivenM,
the limiting matrix P ∗µ has identical rows, i.e., P ∗µ = 1ρTµ
(this is due to the fact that M is communicating [10]).
Consequently, we can represent Eqn. (IV.3) equivalently as
the following: λµ1 + hµ = gµ +Pµhµ + λµ

−→
P µ1−P ∗µhµ +

1ρTµhµ. Since (I − Pµ + P ∗µ) is non-singular, then

hµ =

∞∑
k=0

(
P kµ − lim

N→∞

1

N

N−1∑
k=0

P kµ

)
(gµ + λ̃µ1 + λµpµ)

where λ̃µ is a scalar defined as λ̃µ := ρTµhµ − λµ and
pµ is a vector defined as pµ :=

−→
P µ1. The expansion

form of hµ implies that hµ can be approximated by the
basis functions of the form: P kµ gµ, P

k
µ1 ≡ 1, and P kµpµ.

Thus, a candidate set of basis functions is taken as Bµ =
{1, gµ, Pµgµ, . . . , P m̄µ gµ, pµ, Pµpµ, . . . , P m̄µ pµ}. We usually
choose an integer m̄ large enough, such that we can obtain m
independent basis functions by eliminating the dependencies
of vectors in the set Bµ.

3) Selection of optimal parameters: Given a set of basis
functions chosen from Bµ, we approximate hµ with h(r) =
Φµr, and λµ with a scalar λ ∈ R, respectively. We denote

Ψµ :=

[
Φµ 0
0T 1

]
, x(r, λ) := Ψµ

[
r
λ

]
. We use the least-

square method to approximate the solution of the Bellman’s
equation Aµxµ = bµ [10], which leads to solving the
following least-square approximation problem:

min
r∈Rm,λ∈R

‖Aµx(r, λ)− bµ‖2 (IV.4)

where ‖ · ‖ denotes Euclidean norm. Under independence
assumption of basis functions, the solution to (IV.4) is unique[

r∗

λ∗

]
= (ΨT

µA
T
µAµΨµ)−1ΨT

µA
T
µ bµ. (IV.5)

2805

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

Therefore, the optimal approximation of hµ is h∗ = Φµr
∗.

The optimal approximation to the average cost λµ is λ∗.
4) Approximate dynamic programming algorithm: We

propose an approximate policy iteration algorithm (APIA)
in Alg. 1 to compute the sub-optimal solution to Prob. IV.1.

Algorithm 1 : Approximate Policy Iteration Algorithm
Input: M = (Q, ι, U, P,Π, L, g), π, and m
Output: Sub-optimal policy µ∗

1: Initialize a proper policy µ0 and set k = 0
2: repeat
3: Construct basis matrix Φµk through the set Bµk

4: Compute r∗k and λ∗k using (IV.5) and obtain h∗k = (Φµk)r∗k
5: Find µk+1 through µk+1 ∈ arg minµ[gµ+Pµh

∗
k+λ∗k

−→
P µ1]

6: Set k ← k + 1
7: until µk+1 = µk

8: return µk as the sub-optimal policy µ∗

Remark 4 (Complexity) During each iteration of Alg. 1,
the computational complexity is of order O(m|Q|2), where
m is the number of selected basis function. In most cases,
we have m� |Q|. Given the special structure of M (since
M is an AMEC of MP , Pµ is often a sparse matrix), the
computational complexity is of order O(mn̄+m2|Q|), where
n̄ denotes the number of non-zero entries of Pµ.

V. CASE STUDY AND SIMULATION RESULTS

The algorithmic framework developed in this paper was
implemented in MATLAB, and used in conjunction with a
simulator to demonstrate the motion of a robotic team in a
partitioned environment. A computer at 1.30 GHz and with
2GB RAM was used to generate the simulation results. A
movie of the simulation is available at http://hyness.
bu.edu/CDC2012/.

We consider two robots and assume that Robot 1 moves
twice as fast as Robot 2. We consider a persistent surveillance
task, where they are required to monitor rooms V1 and V3
and then return to Base to report the collected information.
In other words, the robots should occupy rooms V1 and V3
at the same time and then return to Base together, infinitely
often. Robots 1 and 2 should always avoid unsafe regions. To
specify this task, we define a set of atomic propositions in the
form Π = {Base1,Base2,M V1,M V3,Unsafe1,Unsafe2}. and
assign the atomic propositions to the robots as follows: Π1 =

{Base1,M V1,M V3,Unsafe1},Π2 = {Base2,M V1,M V3,

Unsafe2}. The labeling functions for Robot 1 and 2 are
defined as follows: L1(V1) = L2(V1) = {M V1}, L1(V3) =

L2(V3) = {M V3}, L1(V6) = {Unsafe1}, L2(V5) =

{Unsafe2}, L1(V7) = {Base1}, L2(V7) = {Base2}.
Our goal is to minimize the expected time in between

the robots’ simultaneous visits to V1 and V3. Therefore, the
optimizing task ψ is M V1 ∧M V3. The specification
φ = G(¬Unsafe1) ∧ G(¬Unsafe2) ∧ GF(Base1 ∧ Base2)∧

G((M V1 ∧M V3)→ X ((¬M V1 ∧ ¬M V3)

U (Base1 ∧ Base2))) ∧ GF(M V1 ∧M V3).

GF(Base1∧Base2) ensures that both robots visit the base si-
multaneously. G(¬Unsafe1) and G(¬Unsafe2) specifies that
Robots 1 and 2 should always avoid regions Unsafe1 and

1 6 11 16 21 26 31
0

3

6

9

12

1 6 11 16 21 26 31
0

50

100

150

200

1 6 11 16 21 26 31

80

100

120

140

C
om

pu
ta

tio
n

T
im

e

Fig. 2. left: average cost error, middle: relative cost error, and right:
computation time (seconds) for different values of m̄.

Unsafe2, respectively. G((M V1 ∧M V3) → X ((¬M V1 ∧
¬M V3) U (Base1 ∧ Base2))) ensures that after monitoring
both V1 and V3, none of them are visited again before the
robots visit the base together.

To compute the optimal policies {πk, k ∈ R} satisfying φ
with probability 1, we first constructed the MDP MG (Eqn.
(III.1)), and then computed the product automaton MP =
MG × Aφ (Aφ is computed using the software tool [12]).
The constructed MG and MP have 2575 and 33475 states,
respectively. We found one AMEC with 4102 states in the
product automaton MP . Finally, we applied Alg. 1 to find
the desired robot policies given the AMEC.

Using the policy iteration algorithm (PIA) proposed in
[9] (see Sec. IV-A), we obtained the optimal control policy
µ? and the optimal ACPC cost λ? = 12.9794. For the
approximate policy iteration algorithm (APIA) described in
Alg. 1, we select different values of basis functions. The error
plots and computation times of APIA are shown in Fig. 2.
We observe from Fig. 2 that both the average and relative
cost errors nearly approach zero when m̄ is greater than 22.
The computation time of employing APIA with m̄ = 22
is around 107.62 seconds, while the computation time of
employing PIA is around 809.63 seconds.

REFERENCES

[1] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc CDC and
CCC, Shanghai, China, December 2009, pp. 5997–6004.

[2] H. Kress-Gazit, D. C. Conner, H. Choset, A. A. Rizzi, and G. J.
Pappas, “Courteous cars,” IEEE RAM, vol. 15, no. 1, pp. 30–38, 2008.

[3] S. Karaman and E. Frazzoli, “Complex mission optimization for
multiple-UAVs using linear temporal logic,” in Proc ACC, Seattle,
US, 2008, pp. 2003–2009.

[4] M. Antoniotti and B. Mishra, “Discrete event models + temporal
logic = supervisory controller: Automatic synthesis of locomotion
controllers,” in Proc ICRA, 1995.

[5] J. Tumova, B. Yordanov, C. Belta, I. Cerna, and J. Barnat, “A symbolic
approach to controlling piecewise affine systems,” in Proc CDC,
Atlanta, GA, 2010.

[6] M. Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Proc HSCC, ser. LNCS. Spinger Verlag, 2008, pp. 287–
300.

[7] X. Ding, S. L. Smith, C. Belta, and D. Rus, “LTL control in uncertain
environments with probabilistic satisfaction guarantees,” in Proc IFAC
World C, Milan, Italy, 2011.

[8] A. Ulusoy, S. L. Smith, X. C. Ding, and C. Belta, “Robust multi-robot
optimal path planning with temporal logic constraints,” in Proc ICRA,
St. Paul, USA, 2012 (to appear).

[9] X. Ding, S. L. Smith, C. Belta, and D. Rus, “MDP optimal control
under temporal logic constraints,” in Proc CDC, Orlando, FL, USA,
2011.

[10] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd Ed.
Athena Scientific, 2007.

[11] C. Baier and J. P. Katoen, Principles of Model Checking. MIT Press,
2008.

[12] J. Klein. (2007) ltl2dstar-ltl to deterministic streett and rabin automata.
[Online]. Available: http://www.ltl2dstar.de/

2806

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on December 30,2023 at 05:37:03 UTC from IEEE Xplore. Restrictions apply.

