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In this article, we focus on inferring high-level descriptions of a system from its execution traces. Specifically,

we consider a classification problem where system behaviors are described using formulae of Signal Temporal

Logic (STL). Given a finite set of pairs of system traces and labels, where each label indicates whether the

corresponding trace exhibits some system property, we devised a decision-tree-based framework that outputs

an STL formula that can distinguish the traces. We also extend this approach to the online learning scenario.

In this setting, it is assumed that new signals may arrive over time and the previously inferred formula should

be updated to accommodate the new data. The proposed approach presents some advantages over traditional

machine learning classifiers. In particular, the produced formulae are interpretable and can be used in other

phases of the system’s operation, such as monitoring and control. We present two case studies to illustrate

the effectiveness of the proposed algorithms: (1) a fault detection problem in an automotive system and (2)

an anomaly detection problem in a maritime environment.
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1 INTRODUCTION

In recent years, there has been a cross-fertilization between the fields of machine learning and
formal methods. For example, formal verification techniques have been applied to provide guaran-
tees on the behavior of machine learning components, such as neural networks [30]. In this article,
we focus on learning high-level descriptions of a system from its execution traces. The system
operation is described using Signal Temporal Logic (STL), a specification language used in the
field of formal methods to define the behaviors of dynamical systems [14]. The inferred formulae
can be employed directly for classification or, more generally, for monitoring and controlling
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the system. This approach, while retaining many qualities of traditional classifiers, addresses
some of the limitations of current formalisms. First, as opposed to most classifiers, STL formulae
have precise meaning and allow for a rich specification of the behaviors that is interpretable by
humans experts. Second, machine learning methods commonly applied to time series data are
either model-based, i.e., they require a good model of the system under analysis [22], or based on
black-box models, such as deep neural networks [23]. Third, classical machine learning methods
are often overly specific to the task. That is, they focus exclusively on solving the problem at hand
but offer no other insight on the system where they have been applied (knowledge discovery).

In this article, we first focus on the so-called two-class classification problem. In this setting,
our goal is to build a temporal logic formula that can distinguish traces belonging to one of two
possible classes. The dataset is given as a finite set of pairs of system traces, also called signals,
and labels. Each label indicates whether the respective trace exhibits some desired system behavior,
e.g., an engine is working correctly (supervised learning). To construct a discriminating formula, we
propose a novel, decision-tree-based framework. In this approach, each node of the tree contains a
test associated with the satisfaction of a simple formula, optimally tuned from a predefined set of
primitive formulae. Our framework produces a binary tree that can be translated to an equivalent
STL formula and used for classification purposes. We refer to our approach as framework, because
we are not just proposing a single algorithm but a family of algorithms.

Later, we turn our attention to the online learning problem. In this scenario, it is assumed that
new data arrives over time and the inference system should be updated to accommodate it. This
is in contrast with the classical (or offline) scenario, where only a single batch of data is available
at the beginning and no further data can be considered. The online learning approach presents
some major advantages. First, it provides a formula early during the signal collection process and
then can refine it progressively when more signals become available. Second, it removes the usual
separation between the building phase and the deployment phase of classifiers. The key insight
we use to solve this problem efficiently is to create a new node in the decision tree only when we
can be reasonably sure that the decision made holds for future data [12]. This is achieved through
a probabilistic assessment among the possible options available for a node.

The offline and online algorithms were first introduced in References [6] and [5], respectively.
In this article, we refine and extend the previous results by (1) utilizing a new optimization algo-
rithm for the node construction (at the core of both algorithms), (2) performing a comprehensive
evaluation of the various proposed impurity measures and primitive sets, (3) introducing a post-
completion pruning procedure for the batch algorithm (to output simpler and more interpretable
formulae), and (4) comparing and contrasting our work with recent related approaches. Moreover,
the software tool was improved and is available online.1

We present two case studies to illustrate the effectiveness of the framework. The first is an
anomaly detection problem in a maritime environment. The second is a fault detection problem in
an automotive powertrain system. Comparisons with some related work are also included.

2 RELATED WORK

In this section, we focus on papers related to learning STL formulae from data. Two major areas
can be identified.

The first area is concerned with finding the optimal parameters for a formula when a formula
structure is given [1, 2, 9, 19, 24, 26]. That is, a designer provides a formula template such as “The
engine speed settles belowv m/s within τ seconds” and an optimization procedure finds values for
v and τ . The given structure reflects the domain knowledge of the designer on the system and its

1LoTuS Toolbox—http://sites.bu.edu/hyness/lotus/.
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properties of interest. This problem is called parameter mining, and the parameters for the formula
are selected so that the resulting formula barely satisfies the input signals [19, 26], or strongly
satisfies them [2] (in the sense of the robustness degree). These approaches essentially differ in
the way the underlying objective function is formulated and the optimization strategy employed.
It is worth mentioning that in References [2, 9, 19, 26], the parameter optimization problem is cast
within a more general active learning framework, where the original system is queried for new
signals if deemed necessary.

The second area tackles the supervised two-class classification problem and the goal is to construct
a formula, both structure and parameters, that can distinguish between two sets of signals [3, 28,
34]. In Reference [28], the authors first defined a fragment of STL, called inference parametric
signal temporal logic (iPSTL), and showed that this fragment admits a partial order among for-
mulae, in the sense of language inclusion, and with respect to the robustness degree. This implies
that iPSTL formulae can be organized in an infinite directed acyclic graph (DAG) capturing their
ordering. This result is used to formulate the classification problem as an optimization problem,
whose objective function involves the robustness degree, and solve it in two cyclic steps: (1) op-
timize the formula structure by exploring the DAG, pruning and growing it, and (2) optimize the
formula parameters, for a fixed structure, using a nonlinear optimization algorithm. This approach
presents two major limitations. First, the parameter optimization routine has a high computational
cost. This is due to its nonlinear nature. Finding the optimal valuation becomes more and more
challenging as the algorithm proceeds, because the dimension of the parameter space grows at
each iteration. Second, the DAG is built using an ordering on the language accepted by PSTL for-
mulae. This has adverse effects on performance. Specifically, the algorithm aims to optimize for
the overall formula structure, i.e., for all valuations the structure should be good, which is too con-
servative. References [3, 8] also tackled the two-class problem. Their approach can be divided into
two separate steps. First, they build two generative models, one for each class. The models have
to be in the form of stochastic systems and are used to compute the probability of satisfaction of a
formula. Second, a discriminative formula is obtained by searching a formula that maximizes the
odds of being true for the first model and false for the other model. As with other approaches, the
formula structure and parameters are optimized separately. In particular, the formula structure is
constructed through heuristics [3] or with a genetic algorithm [8], whereas the parameter space
is explored through statistical model checking. This approach presents some disadvantages. Pri-
marily, it needs to build models of the system under analysis. This requires a domain expert and
a certain amount of data. The parameter optimization process, based on extensive simulations of
the models, is expensive. Nenzi et al. [34] proposed another approach based on genetic algorithms.
Here, however, the structure construction uses primitives and the parameter mining uses a Gauss-
ian Process-based optimization scheme that attempts to maximize the gap between robustness of
normal traces and robustness of anomalous traces.

To conclude, there is a considerable amount of research on Boolean Logic (for an overview, see
[27]), and some recent efforts on mining Linear Temporal Logic (LTL) formulae [33] and min-
ing timed regular expressions (TRE) [32]. [16] used a learning procedure for formulae defined in
particular spatial superposition logic. This logic was developed for describing patterns in images
without a time component. Every image is represented with a multi-resolution format using a
fixed height quad-tree data structure (which should not be confused with a decision tree).

3 SIGNAL TEMPORAL LOGIC

A temporal logic is a system of rules and symbols used for reasoning about propositions whose
truth values change over time. LTLand Computation Tree Logic (CTL) are the most commonly
used temporal logics [10]. Signal Temporal Logic (STL) has emerged recently as a generalization
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of LTL, where time is continuous and the predicates are defined over real values [31]. STL has
found significant applications in formal verification of hybrid systems where it is used to state and
monitor requirements. In this section, we briefly review the syntax and the semantics of this logic.

Let R be the set of real numbers. For t ∈ R, we denote the interval [t ,∞) by R≥t . We use
S = {s : R≥0 → Rn } with n ∈ N to denote the set of all continuous parameterized curves in the n-
dimensional Euclidean space Rn . In this article, an element ofS is called a signal and its parameter
is interpreted as time. Given a signal s , the components of s are denoted by si , i ∈ {1, . . . ,n}. The
set F contains the projection operators from a signal s to one of its components si , that is F =
{ fi : Rn → R, fi (s ) = si , i = {1, . . . ,n}}.2 The suffix at time t ≥ 0 of a signal is denoted by s[t] ∈ S,
and it represents the signal s shifted forward in time by t time units, i.e., s[t](τ ) = s (τ + t ) for all
τ ∈ R≥0.

The syntax of STL is defined as follows [31]:

ϕ ::= � | f (x ) ∼ μ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[a,b )ϕ2,

where � is the Boolean true constant (⊥ for false); f (x ) ∼ μ is a predicate over Rn defined by a
function f ∈ F , a real number μ ∈ R, and an order relation ∼∈ {≤, >}; ¬ and ∧ are the Boolean
operators negation and conjunction; and U[a,b ) is the bounded temporal operator until.

The semantics of STL is defined over signals in S as [31]

s[t] |= � ⇔ �,
s[t] |= f (x ) ∼ μ ⇔ f (s (t )) ∼ μ,

s[t] |= ¬ϕ ⇔ ¬(s[t] |= ϕ),

s[t] |= (ϕ1 ∧ ϕ2) ⇔ (s[t] |= ϕ1) ∧ (s[t] |= ϕ2),

s[t] |= (ϕ1U[a,b )ϕ2) ⇔ ∃tu ∈ [t + a, t + b) s.t.
(
s[tu ] |= ϕ2

)
∧

(
∀t1 ∈ [t , tu ) s[t1] |= ϕ1

)
.

A signal s ∈ S is said to satisfy an STL formula ϕ if and only if s[0] |= ϕ. Other Boolean opera-
tions, such as disjunction, implication, and equivalence, are defined in the usual way. The temporal
operators eventually and globally are defined, respectively, as

F[a,b )ϕ ≡ �U[a,b )ϕ , G[a,b )ϕ ≡ ¬F[a,b )¬ϕ.

In addition to the Boolean semantics defined above, some quantitative semantics have been pro-
posed for STL [14, 15]. These semantics are formalized through the introduction of a real valued
function called robustness, which quantifies the degree of satisfaction of a signal with respect to a
formula.

Proposition 3.1. Let s ∈ S be a signal and ϕ an STL formula such that r (s,ϕ) > 0. All signals

s ′ ∈ S such that ‖s − s ′‖∞ < r (s,ϕ) satisfy the formula ϕ, i.e., s ′ |= ϕ.

Parametric Signal Temporal Logic (PSTL) was introduced in Reference [1] as an extension of STL
where formulae are parameterized. A PSTL formula is similar to an STL formula, however all the
time bounds in the time intervals associated with the temporal operators and all the constants in
the inequality predicates are replaced by free parameters. These two types of parameters are called
time and space parameters, respectively. Ifψ is a PSTL formula, then every parameter assignment
θ ∈ Θ (where Θ is the parameter space ofψ ) induces a corresponding STL formulaϕ = ψ (θ ), where
all the space and time parameters of ψ have been fixed according to θ . This assignment is also

2A more general definition of the set F is used in Reference [31].
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referred to as valuation θ ofψ . For example, givenψ = F[a,b ) ( f1 (x ) > π ) and θ = [1.1, 2.3, 3.7], we
obtain the STL formulaψ (θ ) = F[1.1,2.3) ( f1 (x ) > 3.7).

Even though STL is defined using a dense-time semantics and natively supports predicates over
reals, in practice its monitoring algorithms work with sampled data and assume that the signals
are piece-wise constant (or piece-wise linearly interpolated) [13]. The sampling rate does not have
to be constant.

4 SIGNAL CLASSIFICATION

4.1 Problem Formulation

We want to find an STL formula that separates traces produced by a system that exhibit some
desired property, such as behaving correctly, from other traces of the same system. The normal
working conditions are often referred to as targets, or positives, whereas the non-conforming pat-
terns are usually referred to as anomalies, or negatives. LetC = {Cp ,Cn } be the set of classes, with

Cp standing for the positive class and Cn for the negative class. Let si ∈ S be an n-dimensional

signal, and let l i ∈ C be its label. We consider the following problem:

Problem 1 (Two-Class Classification). Given a dataset of labeled signals Sds = {(si, l i )}Ni=1, we

want to find an STL formula ϕ∗ such that the misclassification rate MCR(ϕ, Sds) is minimized, where

the misclassification rate is defined as

MCR(ϕ, Sds) :=

���
{
si | (si |= ϕ, l i = Cn ) or (si � |= ϕ, l i = Cp )

}���
|Sds |

.

In the above formula, (si |= ϕ, l i = Cn ) represents a false positive, while (si � |= ϕ, l i = Cp ) repre-
sents a false negative.

4.2 STL Formulae and Decision Trees

Our key insight to tackle Problem 1 is that it is possible to build a map between a fragment of STL
and decision trees. Consequently, we can exploit and extend the decision tree learning literature
[7, 35, 36] to build a decision tree that classifies signals and map the constructed tree to an STL
formula.

A decision tree is a tree-structured sequence of questions about the data used to make predic-
tions about the data’s labels. In a tree, we define: the root as the initial node; the depth of a node
as the length of the path from the root to that node; the parent of a node as the neighbor whose
depth is one less; the children of a node as the neighbors whose depths are one more. A node
with no children is called a leaf, all other nodes are called non-terminal nodes. We focus on binary

trees, where every non-terminal node splits the data in two children nodes and every leaf predicts
a class.

Unfortunately, the space of all possible decision trees for a given classification problem is very
large, and it is known that the problem of learning the optimal decision tree is NP-complete [20].
Most decision-tree learning algorithms are based on greedy approaches, where locally optimal
decisions are taken at each node. These greedy induction algorithms can be stated in a simple re-
cursive fashion, starting from the root node, and require two core components: (1) a list of possible
ways to split the signals reaching a node; and (2) an optimality criterion to select the best split.
Several learning algorithms can be created by selecting different components, called here meta-

parameters. That is, once the user fixes the meta-parameters, a specific algorithm is instantiated.
We propose to split the signals using a simple formula at each node, chosen from a finite set of
PSTL formulae, called primitives (Section 4.3). The optimality of each candidate formula for a node
is assessed using an appropriately defined impurity measure, which captures how well it splits the

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 22. Publication date: March 2021.
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Fig. 1. The formula associated with the tree is ϕtr ee = (ϕ1 ∧ ¬ϕ2) ∨ (¬ϕ1 ∧ (ϕ3 ∧ ϕ4)) and can be obtained

using Algorithm 2.

signals reaching that node (Section 4.4). Since we are not just proposing a single algorithm but a
class of algorithms, we refer to this approach as “decision tree learning framework for temporal
logic inference.”

The induction procedure is presented in detail in Section 4.5 and a resulting tree can be mapped
to the equivalent STL formula using the simple algorithm described in Section 4.6. Figure 1 shows
a tree and its corresponding STL formula. In Section 4.8, we discuss the link between depth of
the tree and formula complexity. We define some termination conditions for the tree induction
algorithm along with a post-completion pruning strategy. We conclude in Section 4.9 with an
analysis of the computational complexity of the main algorithm.

4.3 PSTL Primitives

In the decision tree literature, a finite list of simple splitting rules is considered at each node [36].
The aim is to progressively explain the data with a combination of explainable functions. For our
problem, we propose to use simple PSTL formulae, called primitives, to split the data. In particular,
we define two types of primitives:

Definition 4.1 (First-Level Primitives). Let S be the set of signals with values in Rn . We define
the set of first-level primitives as follows:

P1 =
{
F[τ1,τ2] ( fi (x ) ∼ μ ) or G[τ1,τ2] ( fi (x ) ∼ μ )

| i ∈ {1, . . . ,n}, ∼∈ {≤, >}
}
.

The parameters for the PSTL formulae in P1 are (μ,τ1,τ2) and the respective space of parameters
is Θ1 = {(μ,τ1,τ2) | μ ∈ R, τ1 < τ2, τ1,τ2 ∈ R≥0}.

Definition 4.2 (Second-Level Primitives). Let S be the set of signals with values in Rn . We define
the set of second-level primitives as follows:

P2=
{
G[τ1,τ2]F[0,τ3] ( fi (x )∼μ ) or F[τ1,τ2]G[0,τ3] ( fi (x )∼μ )

| i ∈ {1, . . . ,n}, ∼∈ {≤, >}
}
.

The parameters for the PSTL formulae in P2 are (μ,τ1,τ2,τ3) and the respective space of parame-
ters is Θ2 = {(μ,τ1,τ2,τ3) | μ ∈ R, τ1 < τ2, τ1,τ2,τ3 ∈ R≥0}.

The meaning of first-level primitives is straightforward. The primitive F[τ1,τ2] ( fi (x ) ∼ μ ) is used
to express that the predicate fi (x ) ∼ μ must be true for at least one time instance in the interval
[τ1,τ2], while the primitive G[τ1,τ2] ( fi (x ) ∼ μ ) expresses that fi (x ) ∼ μ must be true for all time in

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 22. Publication date: March 2021.
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the interval. Similarly, the formulae in P2 can be interpreted in natural language. For example,
the primitive F[τ1,τ2]G[0,τ3] ( fi (x ) ∼ μ ) specifies that “the predicate ( fi (x ) ∼ μ ) must hold true for τ3

seconds and its start time is in the interval [τ1,τ2].” Both first- and second-level primitives may be
thought as specifications for bounded reachability and safety with varying degrees of flexibility.

Remark 4.1. We choose the primitives in P1 and P2 as building blocks for constructing longer
formulae, because they are generic and easy to interpret. It is important to stress, however, that the
proposed PSTL primitives are not the only possible ones. A user may define other primitives, either
generic ones, like the first- and second- level primitives, or specific ones, guided by the particular
nature of the learning problem at hand.

Remark 4.2. Let P be the set of PSTL primitives. The fragment of STL that is mapped with deci-
sion trees corresponds to the Boolean closure of the valuations from P. We denote this fragment
with STLP . In other words, each decision tree constructed with the set of primitives P is mapped
to an STL formula belonging to the STLP fragment.

4.4 Impurity Measures

In the previous section, we defined a list of ways to split the data using a set of primitives P. It
is also necessary to define a criterion to select which primitive best splits the data at each node.
Intuitively, a good split leads to children that are pure, that is, they contain mostly objects belonging
to the same class. This concept has been formalized in literature with impurity measures [7, 35],
and the goal is to obtain children purer than their parents.

Definition 4.3 (Impurity Measures). Let S be a finite set of signals and ϕ an STL formula. The
following partition weights are introduced to describe how the signals si are distributed according
to their labels l i and the formula ϕ:

p� =
|S�|
|S | , p⊥ =

|S⊥|
|S | , pCp

=

���SCp

���
|S | , pCn

=
��SCn

��
|S | , (1)

where S� = {(si, l i ) ∈ S | si |= ϕ}, S⊥ = {(si, l i ) ∈ S | si � |= ϕ}, SCp
= {(si, l i ) ∈ S | l i = Cp }, and SCn

=

{(si, l i ) ∈ S | l i = Cn }. In other words, p�and p⊥ represent the fraction of signals from S present in
S� and S⊥, respectively, whereas pCp

and pCn
represent the fraction of signals in S belonging to

class Cp and Cn , respectively.
The impurity measures are defined as [7, 35] follows:
— Information gain (IG)

IG (S,ϕ) = H (S ) −
∑

⊗∈{�,⊥}
p⊗ · H (S⊗ ),

H (S ) = −pCp
logpCp

− pCn
logpCn

; (2)

— Misclassification gain (MG)

MG (S,ϕ) = MR (S ) −
∑

⊗∈{�,⊥}
p⊗ ·MR (S⊗ ),

MR (S ) = min(pCp
,pCn

). (3)

Intuitively, a positive value for one of the impurity measure, such as the Information gain
IG (S,ϕ), means that we have reduced the impurity by splitting the set S with the formula ϕ (or,
equivalently, we have gained purity).

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 22. Publication date: March 2021.
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4.5 Parameterized Learning Algorithm

In Algorithm 1, we present the parameterized procedure for inferring temporal logic formulae from
data. The meta-parameters of Algorithm 1 are (1) a set of PSTL primitives P and (2) an impurity
measure J , which were defined in the previous sections. A set of stopping conditions stop is also
necessary for determining the algorithm termination. We discuss them in Section 4.8.

ALGORITHM 1: Parameterized Decision Tree Construction—buildTree(·)
Meta-Parameter: P—set of PSTL primitives

Meta-Parameter: J—impurity measure

Parameter: stop—set of stopping criteria

Input: S = {(si , l i )N
i=1}—set of labeled signals

Input: h—the current depth level

Output: a (sub)-tree

1 if stop(h, S ) then

2 t ← lea f (arg maxc ∈C {pc })
3 return t

4 ϕ∗ ← arg maxψ ∈P,θ ∈Θ J (S,ψ (θ ))

5 t ← non_terminal (ϕ∗)
6 S∗�, S

∗
⊥ ← partition(S,ϕ∗)

7 t .left ← buildTree(S∗�,h + 1)

8 t .right ← buildTree(S∗⊥,h + 1)

9 return t

Algorithm 1 is recursive and takes as input arguments the set of data S that reaches the cur-
rent node, and the current depth level h. At the beginning, the stopping conditions are checked
(line 1). If they are met, then the algorithm returns a single leaf node marked with the label c ∈ C .
The label c is chosen according to the majority vote over data reaching that leaf (line 2). If the stop-
ping conditions are not met (line 4), then the algorithm proceeds to find the optimal STL formula
among all the valuations of PSTL formulae from the set of primitives P. The cost function used
in the optimization is the impurity measure J , which assesses the quality of the partition induced
by PSTL primitives valuations. At line 5, a new non-terminal node is created and associated with
the optimal STL formula ϕ∗. Next, the partition induced by the formula ϕ∗ is computed (line 6).
For each outcome of the split, the buildTree() procedure is called recursively to construct the left
and right subtrees (lines 7 and 8). The corresponding data partition are passed. The depth level is
increased by one.

The parameterized family of algorithms uses three procedures: (a) leaf (c ) creates a leaf node
marked with the label c ∈ C , (b) non_terminal (ϕ) creates a non-terminal node associated with the
valuation of a PSTL primitive fromP, and (c) partition(S,ϕ) splits the set of signals S into satisfying
and non-satisfying signals with respect to ϕ.

By fixing the meta-parameters (P, J ) and a set of stopping conditions (stop), a particular
algorithm is instantiated. For each possible instance, a decision tree is obtained by executing
buildTree(Sds, 0) on a batch set of labeled signals Sds. Clearly, the returned tree depends on both
the input data Sds and the particular instance chosen.

4.6 Tree to STL Formula

A decision tree obtained by an instantiation of Algorithm 1 can be used directly for classification
or converted to an equivalent STL formula using Algorithm 2. This algorithm recursively traverses
the tree, starting from the root, and only keeps track of the paths reaching leaves associated with

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 22. Publication date: March 2021.
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ALGORITHM 2: Tree to formula—Tree2STL(·)
Input: t—node of a tree

Output: ϕ—STL Formula

1 if t is a leaf and class associated with t is Cp then

2 return �
3 if t is a leaf and class associated with t is Cn then

4 return ⊥
5 ϕl = (t .ϕ ∧ Tree2STL(t .left))

6 ϕr = (¬t .ϕ ∧ Tree2STL(t .right))

7 return ϕl ∨ ϕr

the positive classCp . At each node, the formula is obtained by (1) conjunction of the node’s formula
with its left subtree’s formula, (2) conjunction of the negation of the node’s formula with its right
subtree’s formula, (3) disjunction of (1) and (2). Figure 1 shows a simple tree and its corresponding
formula obtained by applying Algorithm 2.

4.7 Local Node Optimization

The cost function used in the local node optimization (line 4 of Algorithm 1) is one of the impurity
measures defined in the Section 4.4. The local node optimization strategy presents some advan-
tages. The optimization is performed over the chosen set of PSTL primitives P and their valuations
Θ, Therefore, the optimization problem is always decomposed into |P | problems over a fixed and
small number of real-valued parameters. In other terms, the complexity of the optimization prob-
lem does not depend on the length of the overall formula. The second advantage is due to the
divide-and-conquer nature of Decision Trees. In Algorithm 1, the signals are partitioned between
the children of the currently processed node and, consequently, the optimization becomes easier
as the depth of the tree increases (fewer data to process).

The local optimization problems may be solved using any global non-linear optimization algo-
rithm. In Reference [6], we used Simulated Annealing [21] and Differential Evolution [39]. How-
ever, we found that Particle Swarm Optimization [38], delivers superior performance. To use any
these numerical optimization algorithms, we need to define finite bounds for the parameters of the
primitive formulae. These bounds may easily be inferred from data, but may also be application-
specific, if expert knowledge is available.

4.8 Stop Conditions, Pruning, and Formula Complexity

Due to the recursive nature of decision trees, Algorithm 1 can achieve perfect classification accu-
racy on the training data, if the maximum depth of the tree is unconstrained. This trivially occurs
when we keep splitting the data until the current node contains only one signal (assuming there
are no two exact signals with different labels).

This strategy is undesirable for several reasons. First, by fitting the training data perfectly, we are
likely to model the noise contained in the data. In this scenario, the resulting formula performance
on unseen signals will be poor for a lack of generalization ability (over-fitting). Inducing a deep
tree will also lead to a longer execution time. Moreover, since in our approach there is a direct
connection between depth of the tree and length of the corresponding STL formula (Section 4.6),
a deeper tree will result in less interpretable formula.

To deal with these problems, two approaches are possible: (1) introduce more restrictive stop-
ping conditions and (2) prune (merge back) unnecessary parts of the tree after its construction.

Several stopping criteria can be set for Algorithm 1. For instance, stop if the vast majority of the
signals belong to the same class, either positive or negative, e.g., stop if 99% of signals belong to
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the same class. Another common strategy is to stop if the algorithm has reached a certain, fixed,
depth. These conditions also provide a faster termination of the algorithm.

For post-completion pruning, a popular method is cost-complexity pruning [17]. In this ap-
proach, a progressive sequence of shallower trees (corresponding to simpler formulae) is derived
from the initial tree. Later, an independent set of data is used to pick the best tree in this sequence.

Specifically, a cost C (t ,α ) is associated to a tree t ,

C (t ,α ) = R (t ) + αL(t ),

where R (t ), called resubstitution error, denotes the fraction of signals in the training set that are
misclassified by t , and αL(t ) is a penalty term that depends on the number of leaves L(t ) in t and
a weight α ≥ 0. Depending on the value of α , a deep tree that makes no errors may have a higher
cost C than a shallow tree that makes some classification errors.

Proposition 4.1. If t1 is an initial decision tree (like the one produced by Algorithm 1), then when

a value for α is fixed, there exists only one subtree tα of t1 that minimizes the cost C (t ,α ) and also

has smallest αL(t ) [17].

Even though α can assume any value greater or equal zero, there is only a finite number of
subtrees of t1. Exploiting Prop. 4.1, we can construct a sequence of subtrees t1, t2, . . . , tm , so that
(1) ti is the smallest optimal subtree for α ∈ [αi ,αi+1] and (2) ti+1 is a subtree of ti . In other words,
we can construct the next tree in the sequence ti+1 simply by pruning the current ti , up until we
reach a tm , a tree composed only by the root node of t1. To obtain ti+1, we explore every node nk

of ti (in a top-down fashion) and compute the value of αik at which ti pruned at nk becomes better
than ti (has lower cost C). Then, we prune all nodes nk for which αik is minimum.

Once the sequence of trees {ti }m1 has been constructed, the easiest way to pick the final tree
(corresponding to a value of alpha), is to pick the tree that has minimum classification error on a
hold-out (validation) set of signals. Alternatively, the optimal value for α can be determined within
a cross-validation procedure.

4.9 Computational Complexity

In this section, we provide a worst-case and average-case complexity analysis of Algorithm 1
in terms of the complexity of the local optimization procedure (Algorithm 1, line 4). This com-
plexity analysis assumes that just the sufficient stopping conditions are set. Let C (N ) and д(N )
be the complexity of Algorithm 1 and of the local optimization algorithm, respectively, where
N is the number of signals to be processed by the algorithms. Trivially, we have д(N ) = Ω(N ),
where Ω(·) is the asymptotic notation for lower bound [11], because the algorithm must at least
check the labels of all signals. The worst-case complexity of Algorithm 1 is attained when at
each node the optimal partition has size (1,N − 1). In this case, the complexity satisfies the re-
currence C (N ) = C (N − 1) +C (1) + д(N ), which implies C (N ) = Θ(N +

∑N
k=2 д(k )), where Θ(·)

is the two-sided asymptotic notation for complexity bound [11]. However, the worst-case scenario
is not likely to occur in large datasets. Therefore, we consider the average case where at least a
fraction γ ∈ (0, 1) of the signals are in one set of the partition. The recurrence relation becomes
C (N ) = C (γN ) +C ((1 − γ )N ) + д(N ), which implies the following complexity bound:

C (N ) = Θ

(
1 ·

(
1 +

∫ N

1

д(u)

u
du

))
, ∀0 < γ < 1,

obtained using the Akra-Bazzi method [11]. Finally, note that the hidden constants in the com-
plexity bounds above depend on the cardinality of the set of primitives considered and the size of
their parameterization.
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ALGORITHM 3: Online Decision Tree Construction

Input: (s, l )—a new labeled signal

Data: T—a tree

1 if T does not exist then

2 T ← emptyLeaf ()

3 L, c ← locateLeaf (s, l )

4 if l � c then

5 updateLeaf (L)

5 ONLINE LEARNING

In the batch algorithm proposed in Section 4.5, a greedy recursive procedure is followed to con-
struct the tree, with all the data available Sds, starting from the root. The data is partitioned as
new nodes are created using locally optimal decisions on the signals reaching each node. The de-
cision on which primitive to pick and which parameters to use is made by optimizing an impurity
measure J on a set of primitives P and its space of parameter Θ.

In this section, we tackle the online learning problem. Here, new signals may arrive over time
and the inference system should be updated to accommodate it. A trivial solution to the online
problem would be, every time a new instance arrives, to use the offline learner of Section 4.5 from
scratch on the whole data accumulated so far. Clearly, this is highly inefficient as any formula
discovered, and any associated data structure, would be thrown away. Therefore, the focus of this
section is to devise a method that builds and updates an STL formula used for data classification in
an efficient manner.

As discussed in Reference [40], updating a decision tree when new data arrives is not an easy
task. Specifically, if the arrival of a new signal causes the change of the best primitive in a node,
in the sense of the impurity measure, then that node and all its children should be pruned and
reconstructed. A different perspective to deal with this problem has emerged from the study of
data streams (i.e., a data source that generates ordered sequence of instances, usually at a high
rate [12, 25]). Instead of creating a node immediately, based on the data currently available, the key
idea is to defer its creation until we can be reasonably sure that the decision made will hold in the
future [12]. In particular, if an infinite amount of data was available, then we would (theoretically)
be able to pick the best formula to use at each node. With a finite amount of data, it is not possible
to be sure about which formula is the overall best, however a decision on the primitive to pick can
be made using probabilistic arguments [12, 25, 37].

We present the online algorithm for constructing the tree in Section 5.1, and we describe the
details of the decision process behind the creation of a new non-terminal node in Section 5.2.

5.1 Online Learning Algorithm

In Algorithm 3, we report the online procedure for inferring temporal logic formulae using high-
level pseudocode. The algorithm can be executed whenever new signals are available. Algorithm 3
operates on a data structure T representing the tree and takes as input a new labelled signal (s, l )
to be processed. At the beginning, the algorithm checks if the tree exists (line 1). If it does not,
then it creates a tree with a single leaf at the root (line 2). When a tree exists, the new labelled
signal (s, l ) is sorted through the tree to the leaf L where it belongs and the label c ∈ C of this leaf
is examined (line 3). The label c associated with a leaf corresponds simply to the majority of the
labels of the signals falling in that leaf. If the new signal is misclassified (line 4), that is l � c , then
the procedure updateLeaf () is invoked on leaf L (line 5).
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ALGORITHM 4: Update a Leaf—updateLeaf (·)
Meta-Parameter: P—set of PSTL primitives

Meta-Parameter: J—impurity measure

Parameter: δ—confidence threshold

Parameter: Nmax—maximum number of signals

Input: L—a leaf of tree T
Data: S—set of signals contained in leaf L

Data: P̃—set of candidate primitives for leaf L

1 θi ← arg maxθ ∈Θ J (S,ψi (θi )), ∀ψi ∈ P̃
2 P̃,ϕbst1, createNode←evalLeafStatus(S,P̃,{θi } | P̃ |1 )

3 if createNode == True then

4 N ← non_terminal (ϕbst1)

5 N .left ← emptyLeaf ()

6 N .right ← emptyLeaf ()

7 S�, S⊥ ← partition(S, ϕbst1)

8 storeInLeaf (N .left, S�)

9 storeInLeaf (N .right, S⊥)

The procedure updateLeaf (), reported in Algorithm 4, operates on a single leaf of the tree and
performs three major steps. First, it finds the optimal parameters for each primitive in the set

P̃ ⊆ P according to the impurity measure J (line 1). Second, it evaluates the status of the leaf
to decide if it should be kept as a leaf or if a new non-terminal node can be created in its place
(line 2). This part is discussed in the next section. Third, if the conditions are met (line 3), the leaf
is transformed into a non-terminal node and it is associated with the optimal formula ϕbst1 (line 4).
Two empty leaves are initially added as children of this new node (lines 5 and 6). Finally, the signals
S are partitioned according to ϕbst1 (line 7), and for each outcome of the split the corresponding
partition is passed to the appropriate leaf (lines 8 and 9).

Algorithms 3 and 4 use several functions: (a) emptyLeaf () creates a leaf with no signals in it and

initializes the set of primitives to analyze P̃ to P; (b) locateLeaf (s, l ) locates and stores a signal s
with label l in the leaf L where it belongs according to the decision tree; (c) evalLeafStatus() tests
the status of the candidate primitives in the leaf under analysis and checks the conditions to create
a new node; (d) storeInLeaf (L, S ) stores the signals S in leaf L.

Remark 5.1. Algorithm 4 operates on a single leaf of the tree at the time and only the signals
belonging to that specific leaf are required to be in memory. Therefore, this approach can poten-
tially handle large datasets. Alternately, if all accumulated signals can be stored in memory, the
addition of new signals can be parallelized over different leaves.

5.2 Primitive Evaluation and Node Creation

Hypothetically, if an infinite set of signals S∞ was available at a leaf, we would be able
to pick the best formula to split the signals, both in terms of primitive and its parameters,
with respect to the impurity measure Equation (3). Assume that ϕbst1 (= ψbst1 (θbst1)) is this
formula, corresponding to the primitive ψbst1 with optimal valuation θbst1. Assume also that
ϕbst2 is the best formula obtainable with any other primitive, say ψbst2, we would obviously
have

J (S∞,ϕbst1) − J (S∞,ϕbst2) > 0. (4)
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That is, primitiveψbst1 provides an overall higher impurity reduction (purity gain) thanψbst2. With
a finite amount of data, it is not possible to be sure about which formula is the best. However, some
probabilistic guarantees on the best overall primitive to pick can be obtained using the finite set
of signals S collected so far in the leaf. Following the idea initially proposed in Reference [12], a
bound is derived on the difference of purity gains (using just the signals S available), such that,

if J (S,ϕbst1) − J (S,ϕbst2) > ϵ (S,δ ), (5)

then Pr(ΔJ (S∞,ϕbst1,ϕbst2) > 0) ≥ 1 − δ . (6)

In other words, if, on the S signals available, the difference between the purity gain of the best for-
mula ϕbst1, obtained with the best primitiveψbst1, and the purity gain of the formula ϕbst2, obtained
with the second best primitiveψbst2, is greater than a certain ϵ , then, with probability greater than
1 − δ ,ψbst1 is indeed better thenψbst2 (as if we had access to infinite signals S∞). Moreover, if Equa-
tion (5) holds and since there are |P | primitives, then we have thatψbst1 is the best primitive with

probability (1 − δ ) ( |P |−1) .
In literature [12, 25, 37], several approaches have been pursued to obtain a value for ϵ in Equa-

tion (5) in order to guarantee Equation (6). They vary on the impurity measure used and on the
concentration inequality (Hoeffding, McDiarmid, etc.) or probabilistic approximation employed.
In this article, we investigate only the Misclassification Gain (J = MG) and use the bound recently
derived in Reference [37] using a Gaussian Approximation approach3:

ϵMG (S,δ ) = z1−δ
1√

2 |S | , (7)

where z1−δ is (1 − δ )-th quantile of the normal distribution. In general, ϵ depends on the confidence
threshold δ and on the cardinality of S . ϵ grows as δ approaches 0 (i.e., we want more confidence)
and becomes smaller as the number of signals acquired increases (i.e., we collected more evidence).

Remark 5.2. It may happen that two primitives are almost equally good in terms of impurity
reduction. In this scenario, a large number of signals would be required to assess the best one.
To avoid a long decision time, the split of a leaf can be forced when more than Nmax signals have
been collected (tie breaking). Even in this scenario, the probabilistic bound is useful to speed up
the computation, because it can be employed to progressively eliminate all the non-promising
primitives from further analysis, that is, the primitives that compared with the current best satisfy
the condition in (5).

The arguments previously discussed are used in the implementation of the function
evalLeafStatus() for Algorithm 4. This function takes as input arguments the set of signals S col-

lected so far in the leaf, the current set of candidate PSTL primitives P̃ ⊆ P, and the optimal

parameters for each primitive in P̃, that is {θi } | P̃ |1 . It returns the updated set of PSTL primitives to

consider in the future P̃, the best splitting formula ϕbst1, and a Boolean createNode that indicates
whether the leaf should become a new non-terminal node. evalLeafStatus() performs three major
actions. First, it finds the best primitive, that is, the one associated with the highest purity gain.

Second, it removes all the non-promising primitives from set P̃ by checking them against the best

primitive using Equation (5). Third, it sets createNode = True if only one primitive is left in set P̃,
or if the number of signals in the leaf has exceeded the maximum |S | > Nmax.

The specific values of the probability confidence threshold δ in Equation (6) and of the maximum
number of signals Nmax are parameters of Algorithm 4 and can be decided by the user.

3In this approach, each gain MG (S∞, ϕi ) is a fixed unknown and the respective MG (S, ϕi ) is its empirical estimator using

S signals. The behavior of MG (S, ϕi ) is characterized as a binomial random variable function of |S | i.i.d signals. Later, it

is approximated with a Gaussian r.v.
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Fig. 2. Maritime surveillance dataset. The vessels behaving normally are shown in green. The magenta and

blue trajectories represent two types of anomalous paths (human trafficking and terrorism, respectively).

Remark 5.3. Further considerations are possible during the leaf evaluation. For example, even if
a good primitive has been found, a node creation can be deferred when the leaf contains mostly
signals belonging to the same class.

6 CASE STUDIES

In this section, we present two case studies that illustrate the usefulness and the computational
advantages of the algorithms. The first is an anomalous trajectory detection problem in a maritime
environment. The second is a fault detection problem in an automotive powertrain system. The
automotive application is particularly appealing because the systems involved are getting more
and more sophisticated. In a modern vehicle, several highly complex dynamical systems are inter-
connected and the methods present in literature may fail to cope with this complexity.

6.1 Maritime Surveillance

This synthetic dataset emulates a maritime surveillance problem, where the goal is to detect sus-
picious vessels approaching the harbor from the open sea by looking at their trajectories. It was
developed in Reference [28], based on the scenarios described in Reference [29], for evaluating
their inference algorithms.

The trajectories are represented with planar coordinates x (t ) andy (t ) and were generated using
a Dubins’ vehicle model with additive Gaussian noise. Three types of scenarios, one normal and
two anomalous, were considered. In the normal scenario, a vessel approaching from sea heads
directly towards the harbor. In the first anomalous scenario, a ship veers to the island and heads
to the harbor next. This scenario is compatible with human trafficking. In the second anomalous
scenario, a boat tries to approach other vessels in the passage between the peninsula and the
island and then veers back to the open sea. This scenario is compatible with terrorist activity.
Some sample traces are shown in Figure 2. The dataset is composed of 2,000 total traces, with
61 sample points per trace. There are 1,000 normal traces and 1,000 anomalous.
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6.2 Fuel Control System

We investigate a fuel control system for a gasoline engine. A model for this system is provided as
a built-in example in Simulink, and we modified it for our purposes. This model was initially used
for Bayesian statistical model checking [43] and has been recently proposed as a benchmark for
the hybrid systems community [18]. We selected this model because it includes all the complexities
of real-world industrial models, but is still quick to simulate, i.e., it is easy to obtain a large number
of traces.

The key quantity in the model is the air-to-fuel ratio, that is, the ratio between the mass of air and
the mass of fuel in the combustion process. The goal of the control system is to keep it close to the
“ideal” stoichiometric value for the combustion process. For this system, the target air-fuel ratio is
14.6, as it provides a good compromise between power, fuel economy, and emissions. The system
has one main output, the air-to-fuel ratio, one control variable, the fuel rate, and two inputs, the
engine speed and the throttle command. The system estimates the correct fuel rate to achieve the
target stoichiometric ratio by taking into account four sensor readings. Two are related directly
to the inputs: the engine speed and the throttle angle. The remaining two sensors provide crucial
feedback information: the EGO sensor reports the amount of residual oxygen present in the ex-
haust gas, and the MAP sensor reports the (intake) manifold absolute pressure. The EGO value is
related to the air-to-fuel ratio, whereas the MAP value is related to the air mass rate. The Simulink
diagram is made of several subsystems with different kinds of blocks, both continuous and dis-
crete, among which there are look-up tables and a hybrid automaton. Due to these characteristics,
this model can exhibit a rich and diverse number of output traces, thus making it an interesting
candidate for our investigation.

The base model, that is, the one included in Simulink, includes a very basic fault detection
scheme and fault injection mechanism. The fault detection scheme is a simple threshold crossing
test (within a Stateflow chart) and is only able to detect single off range values. For avoiding the
overlap of two anomaly detection schemes, the built-in one has been removed. In the base model,
the faults are injected by simply reporting an incorrect and fixed value for a sensor’s reading.
Moreover, these faults are always present from the beginning of the simulation. We replaced this
simple fault injection mechanism with a more sophisticated unit. The new subsystem is capable of
inducing faults in both the EGO and MAP sensors with a random arrival time and with a random

value. Specifically, the faults can manifest at any time during the execution (uniformly at random)
and the readings of the sensors affected are offset by a value that varies at every execution. Finally,
independent Gaussian noise signals, with zero mean and variance σ 2 = 0.01, have been added at
the output of the sensors.

For the fuel control system, 1,200 total simulations were performed. In all cases, the throttle
command provides a periodic triangular input, and the engine speed is kept constant at 300 rad/s
(2,865 RPM). The simulation time is 60 s. In details, we obtained: 600 traces where the system was
working normally; 200 traces with a fault in the EGO sensor; 200 traces with a fault in the MAP
sensor; 200 traces with faults in both sensors. For every trace, we collected 200 samples of the EGO
and MAP sensors’ readings. The average simulation time to obtain a single trace was roughly 1
second.

7 RESULTS

We implemented and tested the algorithms described in Sections 4 and 5 using MATLAB. To as-
sess the performance of the proposed methods, we used a fivefold cross-validation scheme. One
round of cross-validation entails partitioning the whole dataset into two complementary subsets,
performing the training on one subset, and the evaluation of the error on the other (testing). The
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Table 1. Maritime Surveillance: Analysis of Classification Accuracy

as a Function of Impurity Measure (J ), Primitive Set (P), and

Maximum Tree Depth (D)

(J , P) MCR (D = 1) MCR (D = 3) MCR (D = 5)

(MG, P1) 19.36% (0.46%) 1.31% (0.28%) 0.55% (0.33%)
(MG, P2) 19.24% (0.31%) 1.44% (0.18%) 0.45% (0.20%)
(IG, P1) 23.46% (1.42%) 0.81% (0.11%) 0.31% (0.46%)
(IG, P2) 21.17% (2.18%) 0.80% (0.18%) 0.07% (0.17%)

Every cell of the table contains the average train MCR and its standard devia-

tion obtained with the cross-validation procedure.

Table 2. Fuel Control System: Analysis of Classification Accuracy as

a Function of Impurity Measure (J ), Primitive Set (P), and

Maximum Tree Depth (D)

(J , P) MCR (D = 1) MCR (D = 3) MCR (D = 5)

(MG, P1) 23.31% (0.41%) 1.06% (0.32%) 0.35% (0.16%)
(MG, P2) 23.29% (0.59%) 1.02% (0.17%) 0.60% (0.23%)
(IG, P1) 23.50% (0.41%) 0.96% (0.39%) 0.31% (0.31%)
(IG, P2) 23.33% (0.56%) 1.02% (0.31%) 0.46% (0.19%)

Every cell of the table contains the average train MCR and its standard devia-

tion obtained with the cross-validation procedure.

results for each round are averaged to obtain a single estimate of the misclassification rate, its
standard deviation, and the average execution time. We ran our experiments on a Windows PC,
with an Intel 5930K CPU and 16 GB ram.

7.1 Offline Learning Results

As discussed in Section 4.2, Algorithm 1 represents a family of algorithms and several possible
algorithms can be created depending on the chosen impurity measure and primitive set (the meta-

parameters). There is a large number of possible combinations, and we attempt to investigate at
least some of them in Tables 1 and 2 for the maritime surveillance and fuel control case studies,
respectively. As mentioned in Section 4.8, all meta-parameter combinations can achieve a good
accuracy if the maximum depth of the tree is unconstrained. Therefore, it is more insightful to
study how their accuracy behaves as a function of the maximum depth allowed (D) on the training
data.

The tables show that information gain (IG) has a small edge over the misclassification gain (MG)
as the depth of the tree increases. Especially for the naval surveillance case study, MG is better
than IG at depth 1; however, at depths 3 and 5, IG gains the lead. This phenomenon is known in
literature and can be intuitively explained with the capability of IG of preparing the data for a
better division later, sometimes at the expense of the first splits [17].

In both case studies, the primitive sets P1 and P2 achieve very similar results. This indicates
that the greater expressivity of P2 is not needed to describe these case studies. The execution time
for P2 is higher than P1 (about 5 times). Even though both sets have the same number of ele-
ments, P2 involves a more complicated optimization problem. Specifically, primitives in P2 have
4 free parameters, whereas primitives in P1 have only 3 free parameters. Moreover, evaluating
the primitives in P2 is computationally more demanding (due to the presence of nested temporal
operators).
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Fig. 3. Fuel Control: Test MCR as a function of the number of leaves in the tree sequence produced by the

cost-complexity pruning algorithm.

The low variance preset in all results indicates a strong consistency in the produced formulae
during every cross-validation round.

Following the discussion in Section 4.8, it is often advisable to induce a deeper tree from the
training data and then use independent data to determine the right size.

For the automotive case study, if we use the impurity function IG with primitive set P1 and ter-
minate the algorithm only when a maximum depth of 5 has been reached, we obtain the following
formula (x1 and x2 stand for EGO and MAP, respectively):

ϕ = ϕ1 ∧ (ϕ2 ∧ ((ϕ3 ∧ ϕ4) ∨ ϕ5)), (8)

ϕ1 = G[47.7,59.7] (x1 > 0.285) ϕ2 = G[8.45,59.5] (x1 < 0.937),

ϕ3 = G[46.8,59.7] (x2 > 0.392) ϕ4 = F[37,39.9] (x1 < 0.358),

ϕ5 = F[46.8,59.7] (x1 < 0.392), (9)

with an associated MCR of 0.42% on the training data and 2.50% on the testing data (execution time
30 s). Figure 3 shows the testing error for the sequence of trees constructed by the post-completion
pruning procedure. By selecting the third tree in the sequence, we simplify it to

ϕ = G[47.7,59.7] (x1 > 0.285) ∧ G[8.45,59.5] (x1 < 0.937),

with an associated MCR of 2.50% on the training data and 1.67% on the testing data. This formula
establishes tight thresholds for the EGO sensor values. Therefore, we not only obtained a more
interpretable formula but also one that is performing better on unseen data.

7.2 Online Learning Results

We used again a cross-validation scheme. In this case, however, the training signals are presented
to Algorithm 3 one at the time. We used the MG as impurity measure and the P1 as primitive set.

For the maritime surveillance case study, we obtained a mean MCR of 1.95% (STD 0.54%). The
mean runtime (to process all the signals in the training set) was about 140 s per cross-validation

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 3, Article 22. Publication date: March 2021.



22:18 G. Bombara and C. Belta

Fig. 4. Maritime Surveillance: MCR as function of the number of signal processed. In blue, evolution of

MCR computed on training signals (as seen by the algorithm). In red, evolution of MCR computed on an

independent test set.

round. A sample formula, obtained in one of the rounds after processing 1,600 signals, is

ϕ =
(
¬ϕ1 ∧ ϕ3

)
∨

(
ϕ1 ∧ ¬ϕ2

)
∨

(
ϕ1 ∧ ϕ2 ∧ ϕ4

)
, (10)

ϕ1 = F[191,267] (x > 20.1), ϕ2 = F[99.9,294] (y > 32.2),

ϕ3 = F[58.9,186] (x > 43.2), ϕ4 = G[68.3,300] (y > 30.1).

For the fuel control case study, we obtained a mean misclassification rate of 1.92% with a stan-
dard deviation of 0.96%. The mean runtime was 90 s per round. A sample formula obtained during
one of the cross-validation round is reported in Equation (12).

It is interesting to analyze how Algorithm 3 performs as signals are incrementally processed.
Figure 4 displays how two error rates evolve as training signals from the maritime dataset are
presented to the algorithm. The first, in blue, is the misclassification rate on the set of train-

ing signals seen so far by the algorithm, while the second, in red, is the misclassification rate
respect an independent (fixed) test set. As expected, the functions are flat for ample intervals
with jumps at the points where the algorithm creates a new node in the tree. At these points, the
corresponding formula becomes more complex (longer) and, generally, the misclassification rate
decreases.

The evolution of the errors on the training and test data provides valuable information. For
instance, if the training error decreases while the test error remains stable or increases, the formula
inferred is getting overly specific to the training data and will not generalize well on unseen data
(overfitting). From Figure 4, it also clear that after a certain number of signals has been processed,
adding more signals, while still increasing the complexity of the formula, does not improve the
classification accuracy significantly. This information can be exploited to stop early the learning
process (that is, before the whole dataset is processed) and focus on a reasonably accurate and more
interpretable formula. For example in the maritime surveillance case study, by looking at Figure 4,
if we stop after 420 signals have been processed (after around 30 s), we obtain a simpler formula
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Fig. 5. Fuel Control System: MCR as function of the number of signal processed. In blue, evolution of MCR

computed on training signals (as seen by the algorithm). In red, evolution of MCR computed on an indepen-

dent test set.

(compare with Equation (10)):

ϕ =
(
¬ϕ1 ∧ ϕ3

)
∨

(
ϕ1 ∧ ¬ϕ2

)
, (11)

ϕ1 = F[191,267] (x > 20.1), ϕ2 = F[99.9,294] (y > 32.2),

ϕ3 = F[58.9,186] (x > 43.2),

with an associated MCR of 2.25%. This is a form of online evaluation of a formula’s performance
and complexity as opposed to the post-completion pruning procedure described in Section 4.8.
Notice also the insight we can gain from the English translation of Equation (11): Normal vessels’ x
coordinate is eventually past 43.2 in the middle part of the trajectory (i.e., the ships progress toward
the port), and is globally less than 20.1 during the final stages (for the ships that dock in the port).
Moreover, normal vessels’ y coordinate stays below 23.7 for the ships that dock outside the port.

Likewise, for the automotive case study, by stopping the learning process after 350 signals, we
get the formula (Figure 5)

ϕ = G[0,59.7] (x1 > 0.008) ∧ G[7.41,59.1] (x1 ≤ 0.931), (12)

with an associated MCR of 2.00% on the testing data.

Remark 7.1. We did not test the online learning algorithm using the IG. Switching from MG to
IG as impurity measure is not as straightforward as in the offline algorithm. The core inequality
in Equation (5) depends on the impurity measure used. Therefore, as discussed at the end of Sec-
tion 5.2, Equation (7) is tailored for the misclassification gain. In literature, some bounds have been
derived for IG but they are not as tight as the one for MG. A comparison between MG to IG in the
online algorithm would be skewed by this factor.

7.3 Discussion

Given the same meta-parameters, Algorithms 1 and 3 are able to produce similar formulae. How-
ever, comparing them is not straightforward due to the different problem setting they address.
Specifically, Algorithm 1 is an offline algorithm, that is, it processes the whole dataset in a sin-
gle batch and produce a formula, whereas the Algorithm 3 processes the dataset one signal at a
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time and produces a new formula after each addition. In terms of classification performance, the
accuracy of the online algorithm is on par with the results of the offline algorithm. However, to
elaborate the whole maritime surveillance dataset, Algorithm 3 is around 2.5 times slower than
Algorithm 1. In this regard, it is worth noting that the signal addition time of online algorithm is
not constant. For the maritime dataset, it goes from less than 1 second to around 5 s, depending on
whether the algorithm decides to (1) do nothing, (2) only reoptimize the primitives’ parameters,
or (3) create a new node. Moreover, as mentioned in previous section, it is often not necessary to
process the whole dataset available.

As noted in Section 4.6, in this article, we employ a different optimization algorithm for the local
node optimization. This has led to an average speedup of 25×with respect to our previous work [6].
For example, on the maritime surveillance dataset, the average cross-validation fold execution
time, with hyper-parameters (MG, P1) and maximum depth 5, was 16 min in Reference [6] and
35 s now. Likewise, for the fuel control system, the average cross-validation fold execution time
was 18 min in Reference [6] and 40 s now. The speedup is even greater when using P2, since
in Reference [6], we attempted to use another optimization algorithm (different evolution) that
performed poorly.

The maritime surveillance case study was also investigated in References [28, 34]. Reference [28]
uses an SVM-inspired optimization coupled with heuristics for constructing the formula structure.
[34] uses a Gaussian Process inspired optimization coupled with a genetic algorithm on primitives
for the formula structure. Unfortunately, it is not easy to make a formal comparison between the
formulae learned by our approach and the ones in Reference [28]. This is due to the fact that
iPSTL, defined in Reference [28], and STLP do not represent the same STL fragment. Likewise,
Reference [34] uses a slightly different set of primitives (for example, they explicitly include the
until operator). Nevertheless, it is always possible to make a judgment in terms of sheer classifica-
tion performance and, to a less extent, execution time. With respect to Reference [28], we improve
the misclassification rate by a factor of 20 while being around 25× faster. In Reference [34], the
authors report a perfect accuracy and average execution time of 73 s (on their machine). Some
heuristics within the training algorithm are present to promote simpler formulae.

As mentioned in related work (Section 2), most approaches involve two major decisions: how
parameters are optimized and how the formula structure is induced (including the granularity

at which it is induced with primitives). Assuming everything else being equal, genetic algorithms
support more flexible formula structures, however, the price to pay is a more challenging parameter
optimization problem, with more parameters to be optimized and always the same amount of data
at every step. The performance advantage of our method is due to the “divide and conquer” nature
of growing STL formulae represented by special binary trees. For the offline algorithm, the problem
of finding optimal primitives becomes progressively easier as the tree is constructed. This follows
from the fact that a node’s optimization problem has always a fixed number of parameters and the
data is partitioned between the two children of the node. For the online algorithm, a new node is
created only when some conditions on the overall best primitive to pick are attained. This strategy
avoids any pruning and can handle large datasets.

Another non-trivial advantage of our approach is that it is easily adaptable to the multi-class
scenario, i.e., where there are multiple possible labels for a signal, not just positive and negative, and
one formula for each class should be produced. In our case, it is sufficient to adapt the impurity
measures in Definition 4.3 and execute Algorithm 1 once. Approaches based on heuristics [28]
or genetic algorithms [34] can be employed in a multi-class scenario by running the learning
algorithm multiple times using one-vs.-all partitions. This process, other than being more time
consuming, does not guarantee mutual-exclusivity among the formulae produced.
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8 CONCLUSION

We presented an inference framework of timed temporal logic properties from time-series data.
The framework defines customizable decision-tree algorithms that output STL formulae as clas-
sifiers. In particular, two induction algorithms are proposed, one for offline learning (a batch of
signals to be processed) and one for the online scenario (signals incrementally available). These
algorithms may be customized by providing (a) a set of primitive properties of interest and (b) an
impurity measure that captures the node’s homogeneity. The resulting procedures are model-free
and are suitable for inferring properties for problems such as anomaly detection and monitoring
and in application domains as diverse as automotive and maritime security. We showed that the
algorithms are able to capture relevant timed properties in both case studies with good classifi-
cation accuracy. Finally, in this article, we addressed the link between formula complexity and its
accuracy. For the offline supervised case, we employed a post-completion pruning procedure to
avoid over-fitting and produce more interpretable formulae. In the online case, we argued that the
evolution of the misclassification rate (as signals are processed by the algorithm) provides infor-
mation that can be exploited to interrupt the data collection process if a satisfactory solution has
already been found.

This work can be extended in several directions. We believe that the parameter optimization
problem, at the core of our approach and several others, can be further studied and improved.
An interesting idea is present in Reference [24], where the authors try to frame this problem so
that smooth optimization techniques can be used (such as gradient descent). The optimization
formulation can also play a role in making the produced formulae more resilient to noise in the
training data. In this article, we used the formula length as a proxy for interpretability. This is a
simple approach, but not the only possible one. Future work should investigate the construction of
a better metric to assess the formula complexity and rank candidate formulae accordingly. Another
research direction is unsupervised learning, where only a set of unlabeled signals is available and a
formula (or set of formulae) should be inferred to describe them. Some results have been obtained
with a grid-based approach [41], using hierarchical clustering [4], and by projecting the signals in
the space of parameters of formula [42]. Finally, even though this line of research was motivated
by the primary goal of producing formulae and not achieve the highest accuracy, it would be
interesting to compare this body of work against the state of the art of signal classification.
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